Properties

Label 240.9.c
Level $240$
Weight $9$
Character orbit 240.c
Rep. character $\chi_{240}(209,\cdot)$
Character field $\Q$
Dimension $94$
Newform subspaces $6$
Sturm bound $432$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 240.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(432\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(7\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(240, [\chi])\).

Total New Old
Modular forms 396 98 298
Cusp forms 372 94 278
Eisenstein series 24 4 20

Trace form

\( 94 q - 2 q^{9} - 78782 q^{15} + 83780 q^{19} + 183968 q^{21} + 318686 q^{25} - 122748 q^{31} - 2399872 q^{39} + 390624 q^{45} - 66762850 q^{49} + 13722308 q^{51} - 24933376 q^{55} + 36730172 q^{61} - 20014308 q^{69}+ \cdots - 109415552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(240, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
240.9.c.a 240.c 15.d $1$ $97.771$ \(\Q\) \(\Q(\sqrt{-15}) \) 15.9.d.a \(0\) \(-81\) \(625\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-3^{4}q^{3}+5^{4}q^{5}+3^{8}q^{9}-15^{4}q^{15}+\cdots\)
240.9.c.b 240.c 15.d $1$ $97.771$ \(\Q\) \(\Q(\sqrt{-15}) \) 15.9.d.a \(0\) \(81\) \(-625\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+3^{4}q^{3}-5^{4}q^{5}+3^{8}q^{9}-15^{4}q^{15}+\cdots\)
240.9.c.c 240.c 15.d $12$ $97.771$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 15.9.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{3}+(4\beta _{2}+\beta _{3}-\beta _{4}-\beta _{5})q^{5}+\cdots\)
240.9.c.d 240.c 15.d $16$ $97.771$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 60.9.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+\beta _{3}q^{5}+\beta _{6}q^{7}+(-922+\cdots)q^{9}+\cdots\)
240.9.c.e 240.c 15.d $16$ $97.771$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 30.9.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(\beta _{1}-\beta _{5})q^{5}+(-6\beta _{1}+\beta _{3}+\cdots)q^{7}+\cdots\)
240.9.c.f 240.c 15.d $48$ $97.771$ None 120.9.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{9}^{\mathrm{old}}(240, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(240, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)