Defining parameters
Level: | \( N \) | \(=\) | \( 240 = 2^{4} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 240.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(432\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(7\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(240, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 396 | 98 | 298 |
Cusp forms | 372 | 94 | 278 |
Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(240, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
240.9.c.a | $1$ | $97.771$ | \(\Q\) | \(\Q(\sqrt{-15}) \) | \(0\) | \(-81\) | \(625\) | \(0\) | \(q-3^{4}q^{3}+5^{4}q^{5}+3^{8}q^{9}-15^{4}q^{15}+\cdots\) |
240.9.c.b | $1$ | $97.771$ | \(\Q\) | \(\Q(\sqrt{-15}) \) | \(0\) | \(81\) | \(-625\) | \(0\) | \(q+3^{4}q^{3}-5^{4}q^{5}+3^{8}q^{9}-15^{4}q^{15}+\cdots\) |
240.9.c.c | $12$ | $97.771$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{3}+(4\beta _{2}+\beta _{3}-\beta _{4}-\beta _{5})q^{5}+\cdots\) |
240.9.c.d | $16$ | $97.771$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}+\beta _{3}q^{5}+\beta _{6}q^{7}+(-922+\cdots)q^{9}+\cdots\) |
240.9.c.e | $16$ | $97.771$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}+(\beta _{1}-\beta _{5})q^{5}+(-6\beta _{1}+\beta _{3}+\cdots)q^{7}+\cdots\) |
240.9.c.f | $48$ | $97.771$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{9}^{\mathrm{old}}(240, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(240, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)