gp: [N,k,chi] = [240,9,Mod(209,240)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(240, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
N = Newforms(chi, 9, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("240.209");
S:= CuspForms(chi, 9);
N := Newforms(S);
Newform invariants
sage: traces = [48,0,0,0,0,0,0,0,2528]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{9}^{\mathrm{new}}(240, [\chi])\):
\( T_{7}^{24} + 76881000 T_{7}^{22} + \cdots + 10\!\cdots\!36 \)
T7^24 + 76881000*T7^22 + 2526819941731800*T7^20 + 46531857085850281146016*T7^18 + 528524685465867462896931954960*T7^16 + 3842052076940450507360711872126709760*T7^14 + 17973571411653356708275243658262118887653376*T7^12 + 53184627322791349103773294994888083787645378887680*T7^10 + 95885921319902882355969006463744575798730125804337889280*T7^8 + 99341213573546996201690094552820557367753273952657311736528896*T7^6 + 53897597906061123892040107022329796676658216458814457884179808911360*T7^4 + 12983002712650214223722170630061243869788045988911682170221909051084636160*T7^2 + 1078929716612644915780345657963302395172241771460246886320149665091345853710336
\( T_{17}^{24} - 84688503264 T_{17}^{22} + \cdots + 55\!\cdots\!56 \)
T17^24 - 84688503264*T17^22 + 2909995445342352074688*T17^20 - 52451615256874634861953526665728*T17^18 + 538048525366110287937012040420909331351040*T17^16 - 3215435488021225178365370156708810740306085703131136*T17^14 + 11143716760222443603576953718890967945217382606750031119106048*T17^12 - 22033857550478576711432209801493257360597493546379204262624662992584704*T17^10 + 24355276634874813064442194473628525202260563589612287983946582585007715788062720*T17^8 - 14304553018456587362743023029806589803063032100742933996001910436360340098388246524854272*T17^6 + 3878484496672748810547776476750525196424063326509723779407314600582212733290143693926601135751168*T17^4 - 317614312196605707463067251420713510040151183244387229370502044225787720249829752757608727297025906835456*T17^2 + 5552255543755978283964982713089289982113948967092673367396465557344100124989595918190706329723171758806407315456