Properties

Label 240.9.c.f.209.23
Level $240$
Weight $9$
Character 240.209
Analytic conductor $97.771$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,9,Mod(209,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.209"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 240.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,2528] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(97.7708664147\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.23
Character \(\chi\) \(=\) 240.209
Dual form 240.9.c.f.209.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.827899 - 80.9958i) q^{3} +(-614.183 - 115.775i) q^{5} +2689.51i q^{7} +(-6559.63 + 134.113i) q^{9} +8645.32i q^{11} +10695.3i q^{13} +(-8868.83 + 49842.1i) q^{15} -63832.7 q^{17} -127573. q^{19} +(217839. - 2226.64i) q^{21} -65329.8 q^{23} +(363817. + 142215. i) q^{25} +(16293.3 + 531191. i) q^{27} +326271. i q^{29} -326429. q^{31} +(700235. - 7157.45i) q^{33} +(311379. - 1.65185e6i) q^{35} +2.55678e6i q^{37} +(866275. - 8854.64i) q^{39} -3.04601e6i q^{41} -2.76741e6i q^{43} +(4.04434e6 + 677073. i) q^{45} +9.65661e6 q^{47} -1.46867e6 q^{49} +(52847.1 + 5.17018e6i) q^{51} +5.50516e6 q^{53} +(1.00092e6 - 5.30981e6i) q^{55} +(105618. + 1.03329e7i) q^{57} -3.10238e6i q^{59} -6.78622e6 q^{61} +(-360697. - 1.76422e7i) q^{63} +(1.23825e6 - 6.56888e6i) q^{65} -1.83710e7i q^{67} +(54086.5 + 5.29144e6i) q^{69} -3.17540e7i q^{71} +3.20830e7i q^{73} +(1.12176e7 - 2.95854e7i) q^{75} -2.32517e7 q^{77} -5.93091e7 q^{79} +(4.30107e7 - 1.75946e6i) q^{81} -7.24238e7 q^{83} +(3.92050e7 + 7.39026e6i) q^{85} +(2.64266e7 - 270119. i) q^{87} -7.78845e7i q^{89} -2.87652e7 q^{91} +(270250. + 2.64394e7i) q^{93} +(7.83535e7 + 1.47699e7i) q^{95} +1.59825e8i q^{97} +(-1.15945e6 - 5.67101e7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2528 q^{9} - 132352 q^{15} + 116176 q^{21} + 56976 q^{25} - 1395648 q^{31} - 6888832 q^{39} - 4287056 q^{45} - 30813552 q^{49} + 22815168 q^{51} + 6062784 q^{55} + 14031936 q^{61} + 2522608 q^{69}+ \cdots + 21719360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.827899 80.9958i −0.0102210 0.999948i
\(4\) 0 0
\(5\) −614.183 115.775i −0.982693 0.185241i
\(6\) 0 0
\(7\) 2689.51i 1.12016i 0.828438 + 0.560081i \(0.189230\pi\)
−0.828438 + 0.560081i \(0.810770\pi\)
\(8\) 0 0
\(9\) −6559.63 + 134.113i −0.999791 + 0.0204409i
\(10\) 0 0
\(11\) 8645.32i 0.590487i 0.955422 + 0.295244i \(0.0954008\pi\)
−0.955422 + 0.295244i \(0.904599\pi\)
\(12\) 0 0
\(13\) 10695.3i 0.374473i 0.982315 + 0.187236i \(0.0599530\pi\)
−0.982315 + 0.187236i \(0.940047\pi\)
\(14\) 0 0
\(15\) −8868.83 + 49842.1i −0.175187 + 0.984535i
\(16\) 0 0
\(17\) −63832.7 −0.764272 −0.382136 0.924106i \(-0.624811\pi\)
−0.382136 + 0.924106i \(0.624811\pi\)
\(18\) 0 0
\(19\) −127573. −0.978917 −0.489458 0.872027i \(-0.662806\pi\)
−0.489458 + 0.872027i \(0.662806\pi\)
\(20\) 0 0
\(21\) 217839. 2226.64i 1.12010 0.0114492i
\(22\) 0 0
\(23\) −65329.8 −0.233453 −0.116727 0.993164i \(-0.537240\pi\)
−0.116727 + 0.993164i \(0.537240\pi\)
\(24\) 0 0
\(25\) 363817. + 142215.i 0.931372 + 0.364069i
\(26\) 0 0
\(27\) 16293.3 + 531191.i 0.0306587 + 0.999530i
\(28\) 0 0
\(29\) 326271.i 0.461303i 0.973036 + 0.230651i \(0.0740857\pi\)
−0.973036 + 0.230651i \(0.925914\pi\)
\(30\) 0 0
\(31\) −326429. −0.353462 −0.176731 0.984259i \(-0.556552\pi\)
−0.176731 + 0.984259i \(0.556552\pi\)
\(32\) 0 0
\(33\) 700235. 7157.45i 0.590456 0.00603535i
\(34\) 0 0
\(35\) 311379. 1.65185e6i 0.207500 1.10078i
\(36\) 0 0
\(37\) 2.55678e6i 1.36422i 0.731248 + 0.682112i \(0.238938\pi\)
−0.731248 + 0.682112i \(0.761062\pi\)
\(38\) 0 0
\(39\) 866275. 8854.64i 0.374453 0.00382748i
\(40\) 0 0
\(41\) 3.04601e6i 1.07794i −0.842324 0.538972i \(-0.818813\pi\)
0.842324 0.538972i \(-0.181187\pi\)
\(42\) 0 0
\(43\) 2.76741e6i 0.809467i −0.914435 0.404734i \(-0.867364\pi\)
0.914435 0.404734i \(-0.132636\pi\)
\(44\) 0 0
\(45\) 4.04434e6 + 677073.i 0.986274 + 0.165115i
\(46\) 0 0
\(47\) 9.65661e6 1.97894 0.989471 0.144729i \(-0.0462310\pi\)
0.989471 + 0.144729i \(0.0462310\pi\)
\(48\) 0 0
\(49\) −1.46867e6 −0.254765
\(50\) 0 0
\(51\) 52847.1 + 5.17018e6i 0.00781160 + 0.764232i
\(52\) 0 0
\(53\) 5.50516e6 0.697696 0.348848 0.937179i \(-0.386573\pi\)
0.348848 + 0.937179i \(0.386573\pi\)
\(54\) 0 0
\(55\) 1.00092e6 5.30981e6i 0.109382 0.580268i
\(56\) 0 0
\(57\) 105618. + 1.03329e7i 0.0100055 + 0.978866i
\(58\) 0 0
\(59\) 3.10238e6i 0.256028i −0.991772 0.128014i \(-0.959140\pi\)
0.991772 0.128014i \(-0.0408602\pi\)
\(60\) 0 0
\(61\) −6.78622e6 −0.490127 −0.245063 0.969507i \(-0.578809\pi\)
−0.245063 + 0.969507i \(0.578809\pi\)
\(62\) 0 0
\(63\) −360697. 1.76422e7i −0.0228971 1.11993i
\(64\) 0 0
\(65\) 1.23825e6 6.56888e6i 0.0693675 0.367992i
\(66\) 0 0
\(67\) 1.83710e7i 0.911664i −0.890066 0.455832i \(-0.849342\pi\)
0.890066 0.455832i \(-0.150658\pi\)
\(68\) 0 0
\(69\) 54086.5 + 5.29144e6i 0.00238612 + 0.233441i
\(70\) 0 0
\(71\) 3.17540e7i 1.24958i −0.780792 0.624791i \(-0.785184\pi\)
0.780792 0.624791i \(-0.214816\pi\)
\(72\) 0 0
\(73\) 3.20830e7i 1.12975i 0.825175 + 0.564877i \(0.191076\pi\)
−0.825175 + 0.564877i \(0.808924\pi\)
\(74\) 0 0
\(75\) 1.12176e7 2.95854e7i 0.354531 0.935044i
\(76\) 0 0
\(77\) −2.32517e7 −0.661442
\(78\) 0 0
\(79\) −5.93091e7 −1.52269 −0.761347 0.648344i \(-0.775462\pi\)
−0.761347 + 0.648344i \(0.775462\pi\)
\(80\) 0 0
\(81\) 4.30107e7 1.75946e6i 0.999164 0.0408732i
\(82\) 0 0
\(83\) −7.24238e7 −1.52605 −0.763025 0.646369i \(-0.776287\pi\)
−0.763025 + 0.646369i \(0.776287\pi\)
\(84\) 0 0
\(85\) 3.92050e7 + 7.39026e6i 0.751045 + 0.141574i
\(86\) 0 0
\(87\) 2.64266e7 270119.i 0.461279 0.00471496i
\(88\) 0 0
\(89\) 7.78845e7i 1.24134i −0.784072 0.620670i \(-0.786861\pi\)
0.784072 0.620670i \(-0.213139\pi\)
\(90\) 0 0
\(91\) −2.87652e7 −0.419470
\(92\) 0 0
\(93\) 270250. + 2.64394e7i 0.00361272 + 0.353443i
\(94\) 0 0
\(95\) 7.83535e7 + 1.47699e7i 0.961975 + 0.181335i
\(96\) 0 0
\(97\) 1.59825e8i 1.80534i 0.430334 + 0.902670i \(0.358396\pi\)
−0.430334 + 0.902670i \(0.641604\pi\)
\(98\) 0 0
\(99\) −1.15945e6 5.67101e7i −0.0120701 0.590364i
\(100\) 0 0
\(101\) 1.50933e7i 0.145044i −0.997367 0.0725220i \(-0.976895\pi\)
0.997367 0.0725220i \(-0.0231047\pi\)
\(102\) 0 0
\(103\) 8.06438e7i 0.716510i −0.933624 0.358255i \(-0.883372\pi\)
0.933624 0.358255i \(-0.116628\pi\)
\(104\) 0 0
\(105\) −1.34051e8 2.38528e7i −1.10284 0.196238i
\(106\) 0 0
\(107\) −1.45381e8 −1.10911 −0.554553 0.832148i \(-0.687111\pi\)
−0.554553 + 0.832148i \(0.687111\pi\)
\(108\) 0 0
\(109\) −1.38800e8 −0.983291 −0.491646 0.870795i \(-0.663604\pi\)
−0.491646 + 0.870795i \(0.663604\pi\)
\(110\) 0 0
\(111\) 2.07088e8 2.11675e6i 1.36415 0.0139437i
\(112\) 0 0
\(113\) 9.43804e7 0.578852 0.289426 0.957200i \(-0.406536\pi\)
0.289426 + 0.957200i \(0.406536\pi\)
\(114\) 0 0
\(115\) 4.01245e7 + 7.56358e6i 0.229413 + 0.0432450i
\(116\) 0 0
\(117\) −1.43438e6 7.01573e7i −0.00765455 0.374394i
\(118\) 0 0
\(119\) 1.71679e8i 0.856109i
\(120\) 0 0
\(121\) 1.39617e8 0.651325
\(122\) 0 0
\(123\) −2.46714e8 + 2.52179e6i −1.07789 + 0.0110176i
\(124\) 0 0
\(125\) −2.06985e8 1.29467e8i −0.847812 0.530296i
\(126\) 0 0
\(127\) 1.62468e8i 0.624531i 0.949995 + 0.312266i \(0.101088\pi\)
−0.949995 + 0.312266i \(0.898912\pi\)
\(128\) 0 0
\(129\) −2.24148e8 + 2.29113e6i −0.809425 + 0.00827354i
\(130\) 0 0
\(131\) 2.83670e8i 0.963227i −0.876384 0.481614i \(-0.840051\pi\)
0.876384 0.481614i \(-0.159949\pi\)
\(132\) 0 0
\(133\) 3.43110e8i 1.09655i
\(134\) 0 0
\(135\) 5.14918e7 3.28135e8i 0.155025 0.987910i
\(136\) 0 0
\(137\) −2.16033e8 −0.613251 −0.306626 0.951830i \(-0.599200\pi\)
−0.306626 + 0.951830i \(0.599200\pi\)
\(138\) 0 0
\(139\) −3.24470e8 −0.869191 −0.434595 0.900626i \(-0.643109\pi\)
−0.434595 + 0.900626i \(0.643109\pi\)
\(140\) 0 0
\(141\) −7.99470e6 7.82144e8i −0.0202267 1.97884i
\(142\) 0 0
\(143\) −9.24645e7 −0.221121
\(144\) 0 0
\(145\) 3.77741e7 2.00390e8i 0.0854520 0.453319i
\(146\) 0 0
\(147\) 1.21591e6 + 1.18956e8i 0.00260395 + 0.254752i
\(148\) 0 0
\(149\) 3.56978e8i 0.724263i −0.932127 0.362132i \(-0.882049\pi\)
0.932127 0.362132i \(-0.117951\pi\)
\(150\) 0 0
\(151\) −5.96108e7 −0.114661 −0.0573307 0.998355i \(-0.518259\pi\)
−0.0573307 + 0.998355i \(0.518259\pi\)
\(152\) 0 0
\(153\) 4.18719e8 8.56077e6i 0.764112 0.0156224i
\(154\) 0 0
\(155\) 2.00487e8 + 3.77925e7i 0.347344 + 0.0654754i
\(156\) 0 0
\(157\) 1.08167e9i 1.78031i −0.455655 0.890157i \(-0.650595\pi\)
0.455655 0.890157i \(-0.349405\pi\)
\(158\) 0 0
\(159\) −4.55771e6 4.45894e8i −0.00713113 0.697659i
\(160\) 0 0
\(161\) 1.75705e8i 0.261506i
\(162\) 0 0
\(163\) 9.33597e8i 1.32254i 0.750147 + 0.661271i \(0.229983\pi\)
−0.750147 + 0.661271i \(0.770017\pi\)
\(164\) 0 0
\(165\) −4.30901e8 7.66739e7i −0.581355 0.103446i
\(166\) 0 0
\(167\) 9.37788e8 1.20570 0.602849 0.797855i \(-0.294032\pi\)
0.602849 + 0.797855i \(0.294032\pi\)
\(168\) 0 0
\(169\) 7.01341e8 0.859770
\(170\) 0 0
\(171\) 8.36834e8 1.71092e7i 0.978712 0.0200099i
\(172\) 0 0
\(173\) 1.08766e9 1.21425 0.607123 0.794608i \(-0.292323\pi\)
0.607123 + 0.794608i \(0.292323\pi\)
\(174\) 0 0
\(175\) −3.82488e8 + 9.78490e8i −0.407817 + 1.04329i
\(176\) 0 0
\(177\) −2.51280e8 + 2.56846e6i −0.256014 + 0.00261685i
\(178\) 0 0
\(179\) 1.37206e9i 1.33648i −0.743947 0.668239i \(-0.767048\pi\)
0.743947 0.668239i \(-0.232952\pi\)
\(180\) 0 0
\(181\) 1.36221e9 1.26920 0.634600 0.772841i \(-0.281165\pi\)
0.634600 + 0.772841i \(0.281165\pi\)
\(182\) 0 0
\(183\) 5.61830e6 + 5.49655e8i 0.00500957 + 0.490101i
\(184\) 0 0
\(185\) 2.96012e8 1.57033e9i 0.252710 1.34061i
\(186\) 0 0
\(187\) 5.51855e8i 0.451293i
\(188\) 0 0
\(189\) −1.42864e9 + 4.38209e7i −1.11964 + 0.0343427i
\(190\) 0 0
\(191\) 1.69573e9i 1.27416i −0.770800 0.637078i \(-0.780143\pi\)
0.770800 0.637078i \(-0.219857\pi\)
\(192\) 0 0
\(193\) 3.55641e8i 0.256320i 0.991754 + 0.128160i \(0.0409071\pi\)
−0.991754 + 0.128160i \(0.959093\pi\)
\(194\) 0 0
\(195\) −5.33077e8 9.48549e7i −0.368682 0.0656027i
\(196\) 0 0
\(197\) −4.28125e8 −0.284254 −0.142127 0.989848i \(-0.545394\pi\)
−0.142127 + 0.989848i \(0.545394\pi\)
\(198\) 0 0
\(199\) 7.73732e7 0.0493376 0.0246688 0.999696i \(-0.492147\pi\)
0.0246688 + 0.999696i \(0.492147\pi\)
\(200\) 0 0
\(201\) −1.48798e9 + 1.52094e7i −0.911616 + 0.00931809i
\(202\) 0 0
\(203\) −8.77509e8 −0.516734
\(204\) 0 0
\(205\) −3.52653e8 + 1.87081e9i −0.199679 + 1.05929i
\(206\) 0 0
\(207\) 4.28539e8 8.76155e6i 0.233405 0.00477199i
\(208\) 0 0
\(209\) 1.10291e9i 0.578038i
\(210\) 0 0
\(211\) 9.44377e8 0.476448 0.238224 0.971210i \(-0.423435\pi\)
0.238224 + 0.971210i \(0.423435\pi\)
\(212\) 0 0
\(213\) −2.57194e9 + 2.62891e7i −1.24952 + 0.0127719i
\(214\) 0 0
\(215\) −3.20397e8 + 1.69969e9i −0.149946 + 0.795458i
\(216\) 0 0
\(217\) 8.77935e8i 0.395935i
\(218\) 0 0
\(219\) 2.59859e9 2.65615e7i 1.12970 0.0115472i
\(220\) 0 0
\(221\) 6.82711e8i 0.286199i
\(222\) 0 0
\(223\) 2.69965e9i 1.09166i −0.837895 0.545831i \(-0.816214\pi\)
0.837895 0.545831i \(-0.183786\pi\)
\(224\) 0 0
\(225\) −2.40558e9 8.84082e8i −0.938619 0.344955i
\(226\) 0 0
\(227\) −3.36947e9 −1.26899 −0.634494 0.772928i \(-0.718791\pi\)
−0.634494 + 0.772928i \(0.718791\pi\)
\(228\) 0 0
\(229\) 2.89455e9 1.05254 0.526270 0.850318i \(-0.323590\pi\)
0.526270 + 0.850318i \(0.323590\pi\)
\(230\) 0 0
\(231\) 1.92501e7 + 1.88329e9i 0.00676058 + 0.661407i
\(232\) 0 0
\(233\) −3.91852e9 −1.32953 −0.664766 0.747052i \(-0.731469\pi\)
−0.664766 + 0.747052i \(0.731469\pi\)
\(234\) 0 0
\(235\) −5.93093e9 1.11800e9i −1.94469 0.366580i
\(236\) 0 0
\(237\) 4.91019e7 + 4.80378e9i 0.0155634 + 1.52261i
\(238\) 0 0
\(239\) 3.63759e9i 1.11487i −0.830222 0.557433i \(-0.811786\pi\)
0.830222 0.557433i \(-0.188214\pi\)
\(240\) 0 0
\(241\) 5.96625e9 1.76862 0.884308 0.466905i \(-0.154631\pi\)
0.884308 + 0.466905i \(0.154631\pi\)
\(242\) 0 0
\(243\) −1.78117e8 3.48223e9i −0.0510835 0.998694i
\(244\) 0 0
\(245\) 9.02032e8 + 1.70036e8i 0.250356 + 0.0471928i
\(246\) 0 0
\(247\) 1.36444e9i 0.366578i
\(248\) 0 0
\(249\) 5.99596e7 + 5.86602e9i 0.0155977 + 1.52597i
\(250\) 0 0
\(251\) 4.21754e9i 1.06259i 0.847188 + 0.531294i \(0.178294\pi\)
−0.847188 + 0.531294i \(0.821706\pi\)
\(252\) 0 0
\(253\) 5.64797e8i 0.137851i
\(254\) 0 0
\(255\) 5.66122e8 3.18156e9i 0.133890 0.752452i
\(256\) 0 0
\(257\) 5.58045e9 1.27919 0.639597 0.768710i \(-0.279101\pi\)
0.639597 + 0.768710i \(0.279101\pi\)
\(258\) 0 0
\(259\) −6.87648e9 −1.52815
\(260\) 0 0
\(261\) −4.37570e7 2.14022e9i −0.00942944 0.461206i
\(262\) 0 0
\(263\) 8.48161e9 1.77278 0.886391 0.462938i \(-0.153205\pi\)
0.886391 + 0.462938i \(0.153205\pi\)
\(264\) 0 0
\(265\) −3.38117e9 6.37361e8i −0.685621 0.129242i
\(266\) 0 0
\(267\) −6.30831e9 + 6.44805e7i −1.24128 + 0.0126877i
\(268\) 0 0
\(269\) 8.84324e9i 1.68889i 0.535640 + 0.844446i \(0.320070\pi\)
−0.535640 + 0.844446i \(0.679930\pi\)
\(270\) 0 0
\(271\) −2.38301e8 −0.0441823 −0.0220911 0.999756i \(-0.507032\pi\)
−0.0220911 + 0.999756i \(0.507032\pi\)
\(272\) 0 0
\(273\) 2.38147e7 + 2.32986e9i 0.00428740 + 0.419449i
\(274\) 0 0
\(275\) −1.22949e9 + 3.14532e9i −0.214978 + 0.549963i
\(276\) 0 0
\(277\) 5.59173e9i 0.949788i 0.880043 + 0.474894i \(0.157514\pi\)
−0.880043 + 0.474894i \(0.842486\pi\)
\(278\) 0 0
\(279\) 2.14126e9 4.37783e7i 0.353388 0.00722507i
\(280\) 0 0
\(281\) 2.97153e7i 0.00476601i 0.999997 + 0.00238301i \(0.000758535\pi\)
−0.999997 + 0.00238301i \(0.999241\pi\)
\(282\) 0 0
\(283\) 9.87692e8i 0.153984i 0.997032 + 0.0769920i \(0.0245316\pi\)
−0.997032 + 0.0769920i \(0.975468\pi\)
\(284\) 0 0
\(285\) 1.13143e9 6.35853e9i 0.171493 0.963778i
\(286\) 0 0
\(287\) 8.19228e9 1.20747
\(288\) 0 0
\(289\) −2.90114e9 −0.415889
\(290\) 0 0
\(291\) 1.29452e10 1.32319e8i 1.80525 0.0184523i
\(292\) 0 0
\(293\) −2.92728e8 −0.0397186 −0.0198593 0.999803i \(-0.506322\pi\)
−0.0198593 + 0.999803i \(0.506322\pi\)
\(294\) 0 0
\(295\) −3.59179e8 + 1.90543e9i −0.0474267 + 0.251597i
\(296\) 0 0
\(297\) −4.59232e9 + 1.40861e8i −0.590210 + 0.0181035i
\(298\) 0 0
\(299\) 6.98723e8i 0.0874219i
\(300\) 0 0
\(301\) 7.44297e9 0.906735
\(302\) 0 0
\(303\) −1.22250e9 + 1.24958e7i −0.145036 + 0.00148249i
\(304\) 0 0
\(305\) 4.16798e9 + 7.85676e8i 0.481644 + 0.0907913i
\(306\) 0 0
\(307\) 2.25899e9i 0.254309i 0.991883 + 0.127154i \(0.0405843\pi\)
−0.991883 + 0.127154i \(0.959416\pi\)
\(308\) 0 0
\(309\) −6.53180e9 + 6.67649e7i −0.716472 + 0.00732343i
\(310\) 0 0
\(311\) 1.39907e10i 1.49554i 0.663957 + 0.747771i \(0.268876\pi\)
−0.663957 + 0.747771i \(0.731124\pi\)
\(312\) 0 0
\(313\) 4.23221e9i 0.440951i 0.975393 + 0.220475i \(0.0707609\pi\)
−0.975393 + 0.220475i \(0.929239\pi\)
\(314\) 0 0
\(315\) −1.82100e9 + 1.08773e10i −0.184955 + 1.10479i
\(316\) 0 0
\(317\) 8.10394e9 0.802526 0.401263 0.915963i \(-0.368571\pi\)
0.401263 + 0.915963i \(0.368571\pi\)
\(318\) 0 0
\(319\) −2.82072e9 −0.272393
\(320\) 0 0
\(321\) 1.20361e8 + 1.17753e10i 0.0113362 + 1.10905i
\(322\) 0 0
\(323\) 8.14336e9 0.748158
\(324\) 0 0
\(325\) −1.52103e9 + 3.89114e9i −0.136334 + 0.348773i
\(326\) 0 0
\(327\) 1.14912e8 + 1.12422e10i 0.0100502 + 0.983240i
\(328\) 0 0
\(329\) 2.59716e10i 2.21674i
\(330\) 0 0
\(331\) 4.11106e9 0.342485 0.171243 0.985229i \(-0.445222\pi\)
0.171243 + 0.985229i \(0.445222\pi\)
\(332\) 0 0
\(333\) −3.42896e8 1.67715e10i −0.0278859 1.36394i
\(334\) 0 0
\(335\) −2.12691e9 + 1.12832e10i −0.168877 + 0.895886i
\(336\) 0 0
\(337\) 1.87362e10i 1.45265i −0.687349 0.726327i \(-0.741226\pi\)
0.687349 0.726327i \(-0.258774\pi\)
\(338\) 0 0
\(339\) −7.81374e7 7.64441e9i −0.00591644 0.578822i
\(340\) 0 0
\(341\) 2.82209e9i 0.208715i
\(342\) 0 0
\(343\) 1.15545e10i 0.834785i
\(344\) 0 0
\(345\) 5.79399e8 3.25617e9i 0.0408979 0.229843i
\(346\) 0 0
\(347\) 1.41417e10 0.975404 0.487702 0.873010i \(-0.337835\pi\)
0.487702 + 0.873010i \(0.337835\pi\)
\(348\) 0 0
\(349\) −8.98906e9 −0.605916 −0.302958 0.953004i \(-0.597974\pi\)
−0.302958 + 0.953004i \(0.597974\pi\)
\(350\) 0 0
\(351\) −5.68126e9 + 1.74262e8i −0.374297 + 0.0114808i
\(352\) 0 0
\(353\) 2.71489e10 1.74845 0.874224 0.485523i \(-0.161371\pi\)
0.874224 + 0.485523i \(0.161371\pi\)
\(354\) 0 0
\(355\) −3.67632e9 + 1.95027e10i −0.231473 + 1.22795i
\(356\) 0 0
\(357\) −1.39053e10 + 1.42133e8i −0.856064 + 0.00875027i
\(358\) 0 0
\(359\) 1.89024e10i 1.13799i −0.822341 0.568995i \(-0.807332\pi\)
0.822341 0.568995i \(-0.192668\pi\)
\(360\) 0 0
\(361\) −7.08584e8 −0.0417218
\(362\) 0 0
\(363\) −1.15589e8 1.13084e10i −0.00665717 0.651291i
\(364\) 0 0
\(365\) 3.71442e9 1.97049e10i 0.209276 1.11020i
\(366\) 0 0
\(367\) 1.19898e10i 0.660918i −0.943820 0.330459i \(-0.892796\pi\)
0.943820 0.330459i \(-0.107204\pi\)
\(368\) 0 0
\(369\) 4.08508e8 + 1.99807e10i 0.0220341 + 1.07772i
\(370\) 0 0
\(371\) 1.48062e10i 0.781533i
\(372\) 0 0
\(373\) 2.84938e10i 1.47202i −0.676969 0.736011i \(-0.736707\pi\)
0.676969 0.736011i \(-0.263293\pi\)
\(374\) 0 0
\(375\) −1.03149e10 + 1.68721e10i −0.521603 + 0.853188i
\(376\) 0 0
\(377\) −3.48957e9 −0.172745
\(378\) 0 0
\(379\) −5.90472e9 −0.286182 −0.143091 0.989710i \(-0.545704\pi\)
−0.143091 + 0.989710i \(0.545704\pi\)
\(380\) 0 0
\(381\) 1.31593e10 1.34507e8i 0.624499 0.00638332i
\(382\) 0 0
\(383\) −1.95451e10 −0.908328 −0.454164 0.890918i \(-0.650062\pi\)
−0.454164 + 0.890918i \(0.650062\pi\)
\(384\) 0 0
\(385\) 1.42808e10 + 2.69197e9i 0.649995 + 0.122526i
\(386\) 0 0
\(387\) 3.71144e8 + 1.81532e10i 0.0165462 + 0.809298i
\(388\) 0 0
\(389\) 1.11276e10i 0.485964i 0.970031 + 0.242982i \(0.0781255\pi\)
−0.970031 + 0.242982i \(0.921874\pi\)
\(390\) 0 0
\(391\) 4.17018e9 0.178422
\(392\) 0 0
\(393\) −2.29761e10 + 2.34850e8i −0.963177 + 0.00984512i
\(394\) 0 0
\(395\) 3.64266e10 + 6.86653e9i 1.49634 + 0.282065i
\(396\) 0 0
\(397\) 1.76590e10i 0.710895i −0.934696 0.355447i \(-0.884329\pi\)
0.934696 0.355447i \(-0.115671\pi\)
\(398\) 0 0
\(399\) −2.77905e10 + 2.84061e8i −1.09649 + 0.0112078i
\(400\) 0 0
\(401\) 2.51338e10i 0.972031i −0.873950 0.486016i \(-0.838450\pi\)
0.873950 0.486016i \(-0.161550\pi\)
\(402\) 0 0
\(403\) 3.49126e9i 0.132362i
\(404\) 0 0
\(405\) −2.66202e10 3.89895e9i −0.989443 0.144920i
\(406\) 0 0
\(407\) −2.21042e10 −0.805557
\(408\) 0 0
\(409\) −1.15164e10 −0.411551 −0.205776 0.978599i \(-0.565972\pi\)
−0.205776 + 0.978599i \(0.565972\pi\)
\(410\) 0 0
\(411\) 1.78854e8 + 1.74978e10i 0.00626803 + 0.613219i
\(412\) 0 0
\(413\) 8.34388e9 0.286793
\(414\) 0 0
\(415\) 4.44815e10 + 8.38489e9i 1.49964 + 0.282686i
\(416\) 0 0
\(417\) 2.68628e8 + 2.62807e10i 0.00888398 + 0.869146i
\(418\) 0 0
\(419\) 5.32510e10i 1.72771i −0.503738 0.863856i \(-0.668042\pi\)
0.503738 0.863856i \(-0.331958\pi\)
\(420\) 0 0
\(421\) −3.51669e10 −1.11945 −0.559727 0.828677i \(-0.689094\pi\)
−0.559727 + 0.828677i \(0.689094\pi\)
\(422\) 0 0
\(423\) −6.33438e10 + 1.29507e9i −1.97853 + 0.0404513i
\(424\) 0 0
\(425\) −2.32234e10 9.07794e9i −0.711821 0.278248i
\(426\) 0 0
\(427\) 1.82516e10i 0.549022i
\(428\) 0 0
\(429\) 7.65512e7 + 7.48923e9i 0.00226008 + 0.221110i
\(430\) 0 0
\(431\) 3.94186e9i 0.114233i 0.998368 + 0.0571166i \(0.0181907\pi\)
−0.998368 + 0.0571166i \(0.981809\pi\)
\(432\) 0 0
\(433\) 3.68544e10i 1.04843i 0.851587 + 0.524213i \(0.175640\pi\)
−0.851587 + 0.524213i \(0.824360\pi\)
\(434\) 0 0
\(435\) −1.62620e10 2.89364e9i −0.454169 0.0808142i
\(436\) 0 0
\(437\) 8.33435e9 0.228531
\(438\) 0 0
\(439\) 5.40882e10 1.45628 0.728139 0.685429i \(-0.240385\pi\)
0.728139 + 0.685429i \(0.240385\pi\)
\(440\) 0 0
\(441\) 9.63393e9 1.96967e8i 0.254712 0.00520762i
\(442\) 0 0
\(443\) 1.65809e10 0.430520 0.215260 0.976557i \(-0.430940\pi\)
0.215260 + 0.976557i \(0.430940\pi\)
\(444\) 0 0
\(445\) −9.01710e9 + 4.78354e10i −0.229947 + 1.21986i
\(446\) 0 0
\(447\) −2.89137e10 + 2.95542e8i −0.724225 + 0.00740268i
\(448\) 0 0
\(449\) 7.08627e10i 1.74354i 0.489914 + 0.871771i \(0.337028\pi\)
−0.489914 + 0.871771i \(0.662972\pi\)
\(450\) 0 0
\(451\) 2.63337e10 0.636512
\(452\) 0 0
\(453\) 4.93517e7 + 4.82822e9i 0.00117195 + 0.114655i
\(454\) 0 0
\(455\) 1.76671e10 + 3.33030e9i 0.412211 + 0.0777029i
\(456\) 0 0
\(457\) 3.73933e10i 0.857291i 0.903473 + 0.428646i \(0.141009\pi\)
−0.903473 + 0.428646i \(0.858991\pi\)
\(458\) 0 0
\(459\) −1.04004e9 3.39074e10i −0.0234315 0.763912i
\(460\) 0 0
\(461\) 7.64195e10i 1.69200i −0.533182 0.846001i \(-0.679004\pi\)
0.533182 0.846001i \(-0.320996\pi\)
\(462\) 0 0
\(463\) 7.86784e10i 1.71211i −0.516886 0.856054i \(-0.672909\pi\)
0.516886 0.856054i \(-0.327091\pi\)
\(464\) 0 0
\(465\) 2.89505e9 1.62699e10i 0.0619218 0.347996i
\(466\) 0 0
\(467\) 5.21913e10 1.09731 0.548657 0.836048i \(-0.315139\pi\)
0.548657 + 0.836048i \(0.315139\pi\)
\(468\) 0 0
\(469\) 4.94091e10 1.02121
\(470\) 0 0
\(471\) −8.76107e10 + 8.95514e8i −1.78022 + 0.0181965i
\(472\) 0 0
\(473\) 2.39251e10 0.477980
\(474\) 0 0
\(475\) −4.64134e10 1.81428e10i −0.911736 0.356393i
\(476\) 0 0
\(477\) −3.61118e10 + 7.38311e8i −0.697550 + 0.0142615i
\(478\) 0 0
\(479\) 4.68712e10i 0.890357i −0.895442 0.445179i \(-0.853140\pi\)
0.895442 0.445179i \(-0.146860\pi\)
\(480\) 0 0
\(481\) −2.73455e10 −0.510865
\(482\) 0 0
\(483\) −1.42314e10 + 1.45466e8i −0.261492 + 0.00267284i
\(484\) 0 0
\(485\) 1.85038e10 9.81621e10i 0.334422 1.77409i
\(486\) 0 0
\(487\) 3.43558e9i 0.0610779i −0.999534 0.0305390i \(-0.990278\pi\)
0.999534 0.0305390i \(-0.00972236\pi\)
\(488\) 0 0
\(489\) 7.56174e10 7.72924e8i 1.32247 0.0135177i
\(490\) 0 0
\(491\) 8.87660e10i 1.52729i −0.645638 0.763643i \(-0.723409\pi\)
0.645638 0.763643i \(-0.276591\pi\)
\(492\) 0 0
\(493\) 2.08268e10i 0.352561i
\(494\) 0 0
\(495\) −5.85352e9 + 3.49646e10i −0.0974981 + 0.582382i
\(496\) 0 0
\(497\) 8.54026e10 1.39973
\(498\) 0 0
\(499\) 4.27977e10 0.690269 0.345134 0.938553i \(-0.387833\pi\)
0.345134 + 0.938553i \(0.387833\pi\)
\(500\) 0 0
\(501\) −7.76394e8 7.59569e10i −0.0123234 1.20564i
\(502\) 0 0
\(503\) 9.23473e10 1.44262 0.721311 0.692612i \(-0.243540\pi\)
0.721311 + 0.692612i \(0.243540\pi\)
\(504\) 0 0
\(505\) −1.74744e9 + 9.27007e9i −0.0268680 + 0.142534i
\(506\) 0 0
\(507\) −5.80639e8 5.68056e10i −0.00878769 0.859725i
\(508\) 0 0
\(509\) 1.23059e11i 1.83333i −0.399655 0.916666i \(-0.630870\pi\)
0.399655 0.916666i \(-0.369130\pi\)
\(510\) 0 0
\(511\) −8.62877e10 −1.26551
\(512\) 0 0
\(513\) −2.07859e9 6.77659e10i −0.0300123 0.978457i
\(514\) 0 0
\(515\) −9.33656e9 + 4.95301e10i −0.132727 + 0.704109i
\(516\) 0 0
\(517\) 8.34845e10i 1.16854i
\(518\) 0 0
\(519\) −9.00469e8 8.80955e10i −0.0124108 1.21418i
\(520\) 0 0
\(521\) 1.19451e11i 1.62121i 0.585594 + 0.810604i \(0.300861\pi\)
−0.585594 + 0.810604i \(0.699139\pi\)
\(522\) 0 0
\(523\) 8.52895e10i 1.13996i −0.821659 0.569979i \(-0.806951\pi\)
0.821659 0.569979i \(-0.193049\pi\)
\(524\) 0 0
\(525\) 7.95702e10 + 3.01698e10i 1.04740 + 0.397132i
\(526\) 0 0
\(527\) 2.08369e10 0.270141
\(528\) 0 0
\(529\) −7.40430e10 −0.945500
\(530\) 0 0
\(531\) 4.16068e8 + 2.03505e10i 0.00523343 + 0.255974i
\(532\) 0 0
\(533\) 3.25780e10 0.403660
\(534\) 0 0
\(535\) 8.92908e10 + 1.68316e10i 1.08991 + 0.205452i
\(536\) 0 0
\(537\) −1.11131e11 + 1.13593e9i −1.33641 + 0.0136601i
\(538\) 0 0
\(539\) 1.26971e10i 0.150436i
\(540\) 0 0
\(541\) −9.16464e10 −1.06986 −0.534929 0.844897i \(-0.679662\pi\)
−0.534929 + 0.844897i \(0.679662\pi\)
\(542\) 0 0
\(543\) −1.12777e9 1.10333e11i −0.0129725 1.26913i
\(544\) 0 0
\(545\) 8.52484e10 + 1.60696e10i 0.966274 + 0.182145i
\(546\) 0 0
\(547\) 1.44838e11i 1.61783i 0.587926 + 0.808915i \(0.299945\pi\)
−0.587926 + 0.808915i \(0.700055\pi\)
\(548\) 0 0
\(549\) 4.45151e10 9.10117e8i 0.490024 0.0100186i
\(550\) 0 0
\(551\) 4.16235e10i 0.451577i
\(552\) 0 0
\(553\) 1.59512e11i 1.70567i
\(554\) 0 0
\(555\) −1.27435e11 2.26756e10i −1.34313 0.238994i
\(556\) 0 0
\(557\) −1.61507e10 −0.167791 −0.0838957 0.996475i \(-0.526736\pi\)
−0.0838957 + 0.996475i \(0.526736\pi\)
\(558\) 0 0
\(559\) 2.95983e10 0.303123
\(560\) 0 0
\(561\) −4.46979e10 + 4.56880e8i −0.451269 + 0.00461265i
\(562\) 0 0
\(563\) −1.91282e10 −0.190388 −0.0951942 0.995459i \(-0.530347\pi\)
−0.0951942 + 0.995459i \(0.530347\pi\)
\(564\) 0 0
\(565\) −5.79668e10 1.09269e10i −0.568834 0.107227i
\(566\) 0 0
\(567\) 4.73208e9 + 1.15678e11i 0.0457847 + 1.11923i
\(568\) 0 0
\(569\) 9.97367e10i 0.951494i 0.879582 + 0.475747i \(0.157822\pi\)
−0.879582 + 0.475747i \(0.842178\pi\)
\(570\) 0 0
\(571\) 7.92305e9 0.0745329 0.0372664 0.999305i \(-0.488135\pi\)
0.0372664 + 0.999305i \(0.488135\pi\)
\(572\) 0 0
\(573\) −1.37347e11 + 1.40389e9i −1.27409 + 0.0130231i
\(574\) 0 0
\(575\) −2.37681e10 9.29085e9i −0.217432 0.0849932i
\(576\) 0 0
\(577\) 3.84287e8i 0.00346699i 0.999998 + 0.00173349i \(0.000551788\pi\)
−0.999998 + 0.00173349i \(0.999448\pi\)
\(578\) 0 0
\(579\) 2.88054e10 2.94435e8i 0.256306 0.00261984i
\(580\) 0 0
\(581\) 1.94785e11i 1.70943i
\(582\) 0 0
\(583\) 4.75939e10i 0.411981i
\(584\) 0 0
\(585\) −7.24151e9 + 4.32555e10i −0.0618310 + 0.369333i
\(586\) 0 0
\(587\) −9.25816e10 −0.779780 −0.389890 0.920861i \(-0.627487\pi\)
−0.389890 + 0.920861i \(0.627487\pi\)
\(588\) 0 0
\(589\) 4.16437e10 0.346010
\(590\) 0 0
\(591\) 3.54444e8 + 3.46763e10i 0.00290535 + 0.284239i
\(592\) 0 0
\(593\) −3.60791e10 −0.291767 −0.145884 0.989302i \(-0.546603\pi\)
−0.145884 + 0.989302i \(0.546603\pi\)
\(594\) 0 0
\(595\) −1.98762e10 + 1.05442e11i −0.158586 + 0.841292i
\(596\) 0 0
\(597\) −6.40572e7 6.26690e9i −0.000504279 0.0493351i
\(598\) 0 0
\(599\) 6.63438e9i 0.0515339i 0.999668 + 0.0257670i \(0.00820278\pi\)
−0.999668 + 0.0257670i \(0.991797\pi\)
\(600\) 0 0
\(601\) −8.01880e10 −0.614627 −0.307313 0.951608i \(-0.599430\pi\)
−0.307313 + 0.951608i \(0.599430\pi\)
\(602\) 0 0
\(603\) 2.46379e9 + 1.20507e11i 0.0186352 + 0.911473i
\(604\) 0 0
\(605\) −8.57506e10 1.61642e10i −0.640052 0.120652i
\(606\) 0 0
\(607\) 7.86480e10i 0.579339i 0.957127 + 0.289670i \(0.0935455\pi\)
−0.957127 + 0.289670i \(0.906455\pi\)
\(608\) 0 0
\(609\) 7.26489e8 + 7.10745e10i 0.00528153 + 0.516707i
\(610\) 0 0
\(611\) 1.03280e11i 0.741060i
\(612\) 0 0
\(613\) 1.23608e11i 0.875394i −0.899123 0.437697i \(-0.855794\pi\)
0.899123 0.437697i \(-0.144206\pi\)
\(614\) 0 0
\(615\) 1.51819e11 + 2.70145e10i 1.06127 + 0.188841i
\(616\) 0 0
\(617\) 1.10181e11 0.760267 0.380134 0.924932i \(-0.375878\pi\)
0.380134 + 0.924932i \(0.375878\pi\)
\(618\) 0 0
\(619\) 3.94436e10 0.268667 0.134333 0.990936i \(-0.457111\pi\)
0.134333 + 0.990936i \(0.457111\pi\)
\(620\) 0 0
\(621\) −1.06444e9 3.47026e10i −0.00715736 0.233344i
\(622\) 0 0
\(623\) 2.09471e11 1.39050
\(624\) 0 0
\(625\) 1.12138e11 + 1.03480e11i 0.734907 + 0.678168i
\(626\) 0 0
\(627\) −8.93313e10 + 9.13101e8i −0.578008 + 0.00590811i
\(628\) 0 0
\(629\) 1.63206e11i 1.04264i
\(630\) 0 0
\(631\) −1.77147e10 −0.111742 −0.0558710 0.998438i \(-0.517794\pi\)
−0.0558710 + 0.998438i \(0.517794\pi\)
\(632\) 0 0
\(633\) −7.81849e8 7.64906e10i −0.00486976 0.476423i
\(634\) 0 0
\(635\) 1.88098e10 9.97854e10i 0.115689 0.613723i
\(636\) 0 0
\(637\) 1.57079e10i 0.0954026i
\(638\) 0 0
\(639\) 4.25861e9 + 2.08294e11i 0.0255425 + 1.24932i
\(640\) 0 0
\(641\) 2.60682e11i 1.54411i 0.635553 + 0.772057i \(0.280772\pi\)
−0.635553 + 0.772057i \(0.719228\pi\)
\(642\) 0 0
\(643\) 1.67181e11i 0.978007i −0.872282 0.489004i \(-0.837360\pi\)
0.872282 0.489004i \(-0.162640\pi\)
\(644\) 0 0
\(645\) 1.37933e11 + 2.45437e10i 0.796949 + 0.141808i
\(646\) 0 0
\(647\) −3.14485e10 −0.179466 −0.0897332 0.995966i \(-0.528601\pi\)
−0.0897332 + 0.995966i \(0.528601\pi\)
\(648\) 0 0
\(649\) 2.68211e10 0.151181
\(650\) 0 0
\(651\) −7.11090e10 + 7.26842e8i −0.395914 + 0.00404684i
\(652\) 0 0
\(653\) −2.03277e11 −1.11799 −0.558993 0.829172i \(-0.688812\pi\)
−0.558993 + 0.829172i \(0.688812\pi\)
\(654\) 0 0
\(655\) −3.28420e10 + 1.74226e11i −0.178429 + 0.946557i
\(656\) 0 0
\(657\) −4.30274e9 2.10453e11i −0.0230932 1.12952i
\(658\) 0 0
\(659\) 1.20844e11i 0.640744i 0.947292 + 0.320372i \(0.103808\pi\)
−0.947292 + 0.320372i \(0.896192\pi\)
\(660\) 0 0
\(661\) 1.71943e11 0.900697 0.450349 0.892853i \(-0.351300\pi\)
0.450349 + 0.892853i \(0.351300\pi\)
\(662\) 0 0
\(663\) −5.52967e10 + 5.65216e8i −0.286184 + 0.00292523i
\(664\) 0 0
\(665\) −3.97237e10 + 2.10733e11i −0.203125 + 1.07757i
\(666\) 0 0
\(667\) 2.13152e10i 0.107693i
\(668\) 0 0
\(669\) −2.18660e11 + 2.23504e9i −1.09161 + 0.0111579i
\(670\) 0 0
\(671\) 5.86690e10i 0.289414i
\(672\) 0 0
\(673\) 2.68936e11i 1.31096i −0.755215 0.655478i \(-0.772467\pi\)
0.755215 0.655478i \(-0.227533\pi\)
\(674\) 0 0
\(675\) −6.96153e10 + 1.95574e11i −0.335343 + 0.942096i
\(676\) 0 0
\(677\) 2.69671e11 1.28375 0.641873 0.766811i \(-0.278158\pi\)
0.641873 + 0.766811i \(0.278158\pi\)
\(678\) 0 0
\(679\) −4.29852e11 −2.02227
\(680\) 0 0
\(681\) 2.78958e9 + 2.72912e11i 0.0129703 + 1.26892i
\(682\) 0 0
\(683\) −7.06710e10 −0.324757 −0.162378 0.986729i \(-0.551917\pi\)
−0.162378 + 0.986729i \(0.551917\pi\)
\(684\) 0 0
\(685\) 1.32684e11 + 2.50113e10i 0.602638 + 0.113599i
\(686\) 0 0
\(687\) −2.39639e9 2.34446e11i −0.0107580 1.05248i
\(688\) 0 0
\(689\) 5.88794e10i 0.261268i
\(690\) 0 0
\(691\) −7.39121e10 −0.324193 −0.162096 0.986775i \(-0.551826\pi\)
−0.162096 + 0.986775i \(0.551826\pi\)
\(692\) 0 0
\(693\) 1.52523e11 3.11835e9i 0.661304 0.0135205i
\(694\) 0 0
\(695\) 1.99284e11 + 3.75656e10i 0.854148 + 0.161009i
\(696\) 0 0
\(697\) 1.94435e11i 0.823841i
\(698\) 0 0
\(699\) 3.24414e9 + 3.17384e11i 0.0135891 + 1.32946i
\(700\) 0 0
\(701\) 1.31322e11i 0.543833i 0.962321 + 0.271917i \(0.0876575\pi\)
−0.962321 + 0.271917i \(0.912343\pi\)
\(702\) 0 0
\(703\) 3.26177e11i 1.33546i
\(704\) 0 0
\(705\) −8.56428e10 + 4.81306e11i −0.346685 + 1.94834i
\(706\) 0 0
\(707\) 4.05937e10 0.162473
\(708\) 0 0
\(709\) −1.01201e11 −0.400497 −0.200248 0.979745i \(-0.564175\pi\)
−0.200248 + 0.979745i \(0.564175\pi\)
\(710\) 0 0
\(711\) 3.89046e11 7.95409e9i 1.52238 0.0311252i
\(712\) 0 0
\(713\) 2.13256e10 0.0825168
\(714\) 0 0
\(715\) 5.67901e10 + 1.07051e10i 0.217294 + 0.0409606i
\(716\) 0 0
\(717\) −2.94630e11 + 3.01156e9i −1.11481 + 0.0113950i
\(718\) 0 0
\(719\) 2.67104e11i 0.999458i 0.866182 + 0.499729i \(0.166567\pi\)
−0.866182 + 0.499729i \(0.833433\pi\)
\(720\) 0 0
\(721\) 2.16892e11 0.802607
\(722\) 0 0
\(723\) −4.93945e9 4.83241e11i −0.0180770 1.76852i
\(724\) 0 0
\(725\) −4.64004e10 + 1.18703e11i −0.167946 + 0.429645i
\(726\) 0 0
\(727\) 1.03626e11i 0.370964i 0.982648 + 0.185482i \(0.0593847\pi\)
−0.982648 + 0.185482i \(0.940615\pi\)
\(728\) 0 0
\(729\) −2.81899e11 + 1.73097e10i −0.998120 + 0.0612885i
\(730\) 0 0
\(731\) 1.76651e11i 0.618653i
\(732\) 0 0
\(733\) 1.48148e11i 0.513192i −0.966519 0.256596i \(-0.917399\pi\)
0.966519 0.256596i \(-0.0826010\pi\)
\(734\) 0 0
\(735\) 1.30254e10 7.32016e10i 0.0446315 0.250825i
\(736\) 0 0
\(737\) 1.58824e11 0.538326
\(738\) 0 0
\(739\) 2.86587e11 0.960901 0.480450 0.877022i \(-0.340473\pi\)
0.480450 + 0.877022i \(0.340473\pi\)
\(740\) 0 0
\(741\) −1.10514e11 + 1.12962e9i −0.366559 + 0.00374678i
\(742\) 0 0
\(743\) −1.04718e10 −0.0343609 −0.0171805 0.999852i \(-0.505469\pi\)
−0.0171805 + 0.999852i \(0.505469\pi\)
\(744\) 0 0
\(745\) −4.13292e10 + 2.19250e11i −0.134163 + 0.711728i
\(746\) 0 0
\(747\) 4.75073e11 9.71295e9i 1.52573 0.0311938i
\(748\) 0 0
\(749\) 3.91005e11i 1.24238i
\(750\) 0 0
\(751\) 2.22488e11 0.699433 0.349717 0.936855i \(-0.386278\pi\)
0.349717 + 0.936855i \(0.386278\pi\)
\(752\) 0 0
\(753\) 3.41603e11 3.49170e9i 1.06253 0.0108607i
\(754\) 0 0
\(755\) 3.66120e10 + 6.90146e9i 0.112677 + 0.0212399i
\(756\) 0 0
\(757\) 3.34747e11i 1.01937i 0.860361 + 0.509686i \(0.170238\pi\)
−0.860361 + 0.509686i \(0.829762\pi\)
\(758\) 0 0
\(759\) −4.57462e10 + 4.67595e8i −0.137844 + 0.00140897i
\(760\) 0 0
\(761\) 2.34208e10i 0.0698335i 0.999390 + 0.0349168i \(0.0111166\pi\)
−0.999390 + 0.0349168i \(0.988883\pi\)
\(762\) 0 0
\(763\) 3.73303e11i 1.10145i
\(764\) 0 0
\(765\) −2.58161e11 4.32195e10i −0.753782 0.126192i
\(766\) 0 0
\(767\) 3.31809e10 0.0958753
\(768\) 0 0
\(769\) 4.64303e11 1.32769 0.663845 0.747870i \(-0.268924\pi\)
0.663845 + 0.747870i \(0.268924\pi\)
\(770\) 0 0
\(771\) −4.62005e9 4.51993e11i −0.0130746 1.27913i
\(772\) 0 0
\(773\) 4.73329e11 1.32570 0.662850 0.748752i \(-0.269346\pi\)
0.662850 + 0.748752i \(0.269346\pi\)
\(774\) 0 0
\(775\) −1.18761e11 4.64230e10i −0.329204 0.128685i
\(776\) 0 0
\(777\) 5.69303e9 + 5.56965e11i 0.0156192 + 1.52807i
\(778\) 0 0
\(779\) 3.88590e11i 1.05522i
\(780\) 0 0
\(781\) 2.74523e11 0.737862
\(782\) 0 0
\(783\) −1.73312e11 + 5.31602e9i −0.461086 + 0.0141429i
\(784\) 0 0
\(785\) −1.25231e11 + 6.64344e11i −0.329786 + 1.74950i
\(786\) 0 0
\(787\) 2.83682e11i 0.739492i 0.929133 + 0.369746i \(0.120555\pi\)
−0.929133 + 0.369746i \(0.879445\pi\)
\(788\) 0 0
\(789\) −7.02191e9 6.86974e11i −0.0181196 1.77269i
\(790\) 0 0
\(791\) 2.53837e11i 0.648409i
\(792\) 0 0
\(793\) 7.25807e10i 0.183539i
\(794\) 0 0
\(795\) −4.88243e10 + 2.74389e11i −0.122227 + 0.686906i
\(796\) 0 0
\(797\) −4.08181e11 −1.01163 −0.505813 0.862643i \(-0.668807\pi\)
−0.505813 + 0.862643i \(0.668807\pi\)
\(798\) 0 0
\(799\) −6.16408e11 −1.51245
\(800\) 0 0
\(801\) 1.04453e10 + 5.10893e11i 0.0253741 + 1.24108i
\(802\) 0 0
\(803\) −2.77368e11 −0.667105
\(804\) 0 0
\(805\) −2.03423e10 + 1.07915e11i −0.0484415 + 0.256980i
\(806\) 0 0
\(807\) 7.16265e11 7.32131e9i 1.68880 0.0172621i
\(808\) 0 0
\(809\) 2.28320e11i 0.533028i 0.963831 + 0.266514i \(0.0858719\pi\)
−0.963831 + 0.266514i \(0.914128\pi\)
\(810\) 0 0
\(811\) −4.30064e11 −0.994144 −0.497072 0.867709i \(-0.665592\pi\)
−0.497072 + 0.867709i \(0.665592\pi\)
\(812\) 0 0
\(813\) 1.97289e8 + 1.93013e10i 0.000451586 + 0.0441800i
\(814\) 0 0
\(815\) 1.08088e11 5.73400e11i 0.244988 1.29965i
\(816\) 0 0
\(817\) 3.53048e11i 0.792401i
\(818\) 0 0
\(819\) 1.88689e11 3.85777e9i 0.419383 0.00857435i
\(820\) 0 0
\(821\) 1.77961e11i 0.391699i 0.980634 + 0.195850i \(0.0627464\pi\)
−0.980634 + 0.195850i \(0.937254\pi\)
\(822\) 0 0
\(823\) 4.06602e11i 0.886278i −0.896453 0.443139i \(-0.853865\pi\)
0.896453 0.443139i \(-0.146135\pi\)
\(824\) 0 0
\(825\) 2.55775e11 + 9.69795e10i 0.552132 + 0.209346i
\(826\) 0 0
\(827\) −8.21144e11 −1.75549 −0.877743 0.479133i \(-0.840951\pi\)
−0.877743 + 0.479133i \(0.840951\pi\)
\(828\) 0 0
\(829\) 2.41128e11 0.510540 0.255270 0.966870i \(-0.417836\pi\)
0.255270 + 0.966870i \(0.417836\pi\)
\(830\) 0 0
\(831\) 4.52906e11 4.62938e9i 0.949739 0.00970776i
\(832\) 0 0
\(833\) 9.37492e10 0.194710
\(834\) 0 0
\(835\) −5.75974e11 1.08573e11i −1.18483 0.223344i
\(836\) 0 0
\(837\) −5.31860e9 1.73396e11i −0.0108367 0.353296i
\(838\) 0 0
\(839\) 5.99608e11i 1.21009i 0.796189 + 0.605047i \(0.206846\pi\)
−0.796189 + 0.605047i \(0.793154\pi\)
\(840\) 0 0
\(841\) 3.93794e11 0.787200
\(842\) 0 0
\(843\) 2.40682e9 2.46013e7i 0.00476577 4.87133e-5i
\(844\) 0 0
\(845\) −4.30752e11 8.11980e10i −0.844890 0.159264i
\(846\) 0 0
\(847\) 3.75502e11i 0.729590i
\(848\) 0 0
\(849\) 7.99989e10 8.17709e8i 0.153976 0.00157387i
\(850\) 0 0
\(851\) 1.67034e11i 0.318483i
\(852\) 0 0
\(853\) 6.49840e11i 1.22747i −0.789513 0.613734i \(-0.789667\pi\)
0.789513 0.613734i \(-0.210333\pi\)
\(854\) 0 0
\(855\) −5.15950e11 8.63766e10i −0.965481 0.161634i
\(856\) 0 0
\(857\) −5.07048e11 −0.939995 −0.469998 0.882668i \(-0.655745\pi\)
−0.469998 + 0.882668i \(0.655745\pi\)
\(858\) 0 0
\(859\) 7.28000e11 1.33708 0.668542 0.743674i \(-0.266918\pi\)
0.668542 + 0.743674i \(0.266918\pi\)
\(860\) 0 0
\(861\) −6.78238e9 6.63540e11i −0.0123415 1.20741i
\(862\) 0 0
\(863\) −2.68029e11 −0.483213 −0.241606 0.970374i \(-0.577674\pi\)
−0.241606 + 0.970374i \(0.577674\pi\)
\(864\) 0 0
\(865\) −6.68020e11 1.25924e11i −1.19323 0.224928i
\(866\) 0 0
\(867\) 2.40185e9 + 2.34980e11i 0.00425079 + 0.415867i
\(868\) 0 0
\(869\) 5.12746e11i 0.899132i
\(870\) 0 0
\(871\) 1.96484e11 0.341393
\(872\) 0 0
\(873\) −2.14346e10 1.04840e12i −0.0369027 1.80496i
\(874\) 0 0
\(875\) 3.48203e11 5.56690e11i 0.594018 0.949688i
\(876\) 0 0
\(877\) 3.03544e11i 0.513125i −0.966528 0.256563i \(-0.917410\pi\)
0.966528 0.256563i \(-0.0825900\pi\)
\(878\) 0 0
\(879\) 2.42349e8 + 2.37097e10i 0.000405962 + 0.0397165i
\(880\) 0 0
\(881\) 5.01924e11i 0.833172i −0.909096 0.416586i \(-0.863226\pi\)
0.909096 0.416586i \(-0.136774\pi\)
\(882\) 0 0
\(883\) 2.24386e11i 0.369108i −0.982822 0.184554i \(-0.940916\pi\)
0.982822 0.184554i \(-0.0590840\pi\)
\(884\) 0 0
\(885\) 1.54629e11 + 2.75145e10i 0.252068 + 0.0448526i
\(886\) 0 0
\(887\) −8.33590e11 −1.34666 −0.673330 0.739342i \(-0.735137\pi\)
−0.673330 + 0.739342i \(0.735137\pi\)
\(888\) 0 0
\(889\) −4.36961e11 −0.699577
\(890\) 0 0
\(891\) 1.52111e10 + 3.71842e11i 0.0241351 + 0.589994i
\(892\) 0 0
\(893\) −1.23193e12 −1.93722
\(894\) 0 0
\(895\) −1.58851e11 + 8.42698e11i −0.247570 + 1.31335i
\(896\) 0 0
\(897\) −5.65936e10 + 5.78472e8i −0.0874173 + 0.000893537i
\(898\) 0 0
\(899\) 1.06504e11i 0.163053i
\(900\) 0 0
\(901\) −3.51409e11 −0.533229
\(902\) 0 0
\(903\) −6.16203e9 6.02849e11i −0.00926772 0.906688i
\(904\) 0 0
\(905\) −8.36648e11 1.57710e11i −1.24723 0.235107i
\(906\) 0 0
\(907\) 2.56833e11i 0.379509i 0.981832 + 0.189755i \(0.0607692\pi\)
−0.981832 + 0.189755i \(0.939231\pi\)
\(908\) 0 0
\(909\) 2.02421e9 + 9.90067e10i 0.00296483 + 0.145014i
\(910\) 0 0
\(911\) 1.08855e12i 1.58043i −0.612829 0.790215i \(-0.709969\pi\)
0.612829 0.790215i \(-0.290031\pi\)
\(912\) 0 0
\(913\) 6.26127e11i 0.901113i
\(914\) 0 0
\(915\) 6.01858e10 3.38239e11i 0.0858637 0.482547i
\(916\) 0 0
\(917\) 7.62935e11 1.07897
\(918\) 0 0
\(919\) −1.96591e11 −0.275614 −0.137807 0.990459i \(-0.544005\pi\)
−0.137807 + 0.990459i \(0.544005\pi\)
\(920\) 0 0
\(921\) 1.82969e11 1.87022e9i 0.254295 0.00259928i
\(922\) 0 0
\(923\) 3.39619e11 0.467934
\(924\) 0 0
\(925\) −3.63611e11 + 9.30199e11i −0.496672 + 1.27060i
\(926\) 0 0
\(927\) 1.08153e10 + 5.28993e11i 0.0146461 + 0.716360i
\(928\) 0 0
\(929\) 1.41420e12i 1.89866i −0.314285 0.949329i \(-0.601765\pi\)
0.314285 0.949329i \(-0.398235\pi\)
\(930\) 0 0
\(931\) 1.87363e11 0.249394
\(932\) 0 0
\(933\) 1.13319e12 1.15829e10i 1.49546 0.0152859i
\(934\) 0 0
\(935\) −6.38912e10 + 3.38940e11i −0.0835977 + 0.443482i
\(936\) 0 0
\(937\) 9.48260e11i 1.23018i −0.788457 0.615090i \(-0.789120\pi\)
0.788457 0.615090i \(-0.210880\pi\)
\(938\) 0 0
\(939\) 3.42791e11 3.50384e9i 0.440928 0.00450695i
\(940\) 0 0
\(941\) 6.15688e11i 0.785239i 0.919701 + 0.392620i \(0.128431\pi\)
−0.919701 + 0.392620i \(0.871569\pi\)
\(942\) 0 0
\(943\) 1.98995e11i 0.251649i
\(944\) 0 0
\(945\) 8.82523e11 + 1.38488e11i 1.10662 + 0.173654i
\(946\) 0 0
\(947\) −6.24461e11 −0.776435 −0.388218 0.921568i \(-0.626909\pi\)
−0.388218 + 0.921568i \(0.626909\pi\)
\(948\) 0 0
\(949\) −3.43138e11 −0.423062
\(950\) 0 0
\(951\) −6.70924e9 6.56385e11i −0.00820260 0.802484i
\(952\) 0 0
\(953\) −7.85330e11 −0.952096 −0.476048 0.879419i \(-0.657931\pi\)
−0.476048 + 0.879419i \(0.657931\pi\)
\(954\) 0 0
\(955\) −1.96323e11 + 1.04149e12i −0.236025 + 1.25210i
\(956\) 0 0
\(957\) 2.33527e9 + 2.28466e11i 0.00278413 + 0.272379i
\(958\) 0 0
\(959\) 5.81024e11i 0.686941i
\(960\) 0 0
\(961\) −7.46335e11 −0.875065
\(962\) 0 0
\(963\) 9.53647e11 1.94975e10i 1.10888 0.0226711i
\(964\) 0 0
\(965\) 4.11744e10 2.18429e11i 0.0474808 0.251884i
\(966\) 0 0
\(967\) 6.73177e9i 0.00769881i 0.999993 + 0.00384940i \(0.00122531\pi\)
−0.999993 + 0.00384940i \(0.998775\pi\)
\(968\) 0 0
\(969\) −6.74188e9 6.59578e11i −0.00764691 0.748119i
\(970\) 0 0
\(971\) 1.15007e12i 1.29374i −0.762601 0.646869i \(-0.776078\pi\)
0.762601 0.646869i \(-0.223922\pi\)
\(972\) 0 0
\(973\) 8.72665e11i 0.973636i
\(974\) 0 0
\(975\) 3.16425e11 + 1.19975e11i 0.350149 + 0.132762i
\(976\) 0 0
\(977\) 1.28466e12 1.40997 0.704983 0.709224i \(-0.250955\pi\)
0.704983 + 0.709224i \(0.250955\pi\)
\(978\) 0 0
\(979\) 6.73337e11 0.732996
\(980\) 0 0
\(981\) 9.10474e11 1.86148e10i 0.983086 0.0200993i
\(982\) 0 0
\(983\) −9.83890e10 −0.105374 −0.0526869 0.998611i \(-0.516779\pi\)
−0.0526869 + 0.998611i \(0.516779\pi\)
\(984\) 0 0
\(985\) 2.62947e11 + 4.95663e10i 0.279334 + 0.0526553i
\(986\) 0 0
\(987\) 2.10359e12 2.15018e10i 2.21662 0.0226572i
\(988\) 0 0
\(989\) 1.80794e11i 0.188973i
\(990\) 0 0
\(991\) 1.87647e12 1.94557 0.972787 0.231703i \(-0.0744297\pi\)
0.972787 + 0.231703i \(0.0744297\pi\)
\(992\) 0 0
\(993\) −3.40354e9 3.32979e11i −0.00350054 0.342468i
\(994\) 0 0
\(995\) −4.75213e10 8.95791e9i −0.0484838 0.00913933i
\(996\) 0 0
\(997\) 1.13370e12i 1.14741i 0.819063 + 0.573704i \(0.194494\pi\)
−0.819063 + 0.573704i \(0.805506\pi\)
\(998\) 0 0
\(999\) −1.35814e12 + 4.16582e10i −1.36358 + 0.0418253i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.9.c.f.209.23 48
3.2 odd 2 inner 240.9.c.f.209.25 48
4.3 odd 2 120.9.c.a.89.26 yes 48
5.4 even 2 inner 240.9.c.f.209.26 48
12.11 even 2 120.9.c.a.89.24 yes 48
15.14 odd 2 inner 240.9.c.f.209.24 48
20.19 odd 2 120.9.c.a.89.23 48
60.59 even 2 120.9.c.a.89.25 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.9.c.a.89.23 48 20.19 odd 2
120.9.c.a.89.24 yes 48 12.11 even 2
120.9.c.a.89.25 yes 48 60.59 even 2
120.9.c.a.89.26 yes 48 4.3 odd 2
240.9.c.f.209.23 48 1.1 even 1 trivial
240.9.c.f.209.24 48 15.14 odd 2 inner
240.9.c.f.209.25 48 3.2 odd 2 inner
240.9.c.f.209.26 48 5.4 even 2 inner