Properties

Label 240.9.c.f.209.19
Level $240$
Weight $9$
Character 240.209
Analytic conductor $97.771$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,9,Mod(209,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.209"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 240.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,2528] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(97.7708664147\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.19
Character \(\chi\) \(=\) 240.209
Dual form 240.9.c.f.209.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-24.3113 - 77.2655i) q^{3} +(-547.246 - 301.906i) q^{5} -1536.33i q^{7} +(-5378.92 + 3756.85i) q^{9} -7761.82i q^{11} +24341.2i q^{13} +(-10022.6 + 49622.9i) q^{15} +83979.0 q^{17} +115321. q^{19} +(-118705. + 37350.2i) q^{21} +186279. q^{23} +(208331. + 330433. i) q^{25} +(421044. + 324271. i) q^{27} -907077. i q^{29} +1.08877e6 q^{31} +(-599721. + 188700. i) q^{33} +(-463828. + 840751. i) q^{35} +59293.5i q^{37} +(1.88073e6 - 591765. i) q^{39} -329743. i q^{41} +4.48269e6i q^{43} +(4.07781e6 - 431994. i) q^{45} -473075. q^{47} +3.40449e6 q^{49} +(-2.04164e6 - 6.48868e6i) q^{51} +1.18509e7 q^{53} +(-2.34334e6 + 4.24762e6i) q^{55} +(-2.80360e6 - 8.91032e6i) q^{57} -3.27453e6i q^{59} -2.05184e7 q^{61} +(5.77177e6 + 8.26381e6i) q^{63} +(7.34874e6 - 1.33206e7i) q^{65} +3.13995e7i q^{67} +(-4.52869e6 - 1.43929e7i) q^{69} +9.40161e6i q^{71} -3.64874e7i q^{73} +(2.04663e7 - 2.41301e7i) q^{75} -1.19247e7 q^{77} +4.17263e7 q^{79} +(1.48189e7 - 4.04156e7i) q^{81} +2.83168e7 q^{83} +(-4.59572e7 - 2.53538e7i) q^{85} +(-7.00858e7 + 2.20522e7i) q^{87} +1.11786e7i q^{89} +3.73961e7 q^{91} +(-2.64695e7 - 8.41246e7i) q^{93} +(-6.31088e7 - 3.48160e7i) q^{95} +5.09945e7i q^{97} +(2.91600e7 + 4.17502e7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2528 q^{9} - 132352 q^{15} + 116176 q^{21} + 56976 q^{25} - 1395648 q^{31} - 6888832 q^{39} - 4287056 q^{45} - 30813552 q^{49} + 22815168 q^{51} + 6062784 q^{55} + 14031936 q^{61} + 2522608 q^{69}+ \cdots + 21719360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −24.3113 77.2655i −0.300140 0.953895i
\(4\) 0 0
\(5\) −547.246 301.906i −0.875593 0.483049i
\(6\) 0 0
\(7\) 1536.33i 0.639872i −0.947439 0.319936i \(-0.896339\pi\)
0.947439 0.319936i \(-0.103661\pi\)
\(8\) 0 0
\(9\) −5378.92 + 3756.85i −0.819832 + 0.572604i
\(10\) 0 0
\(11\) 7761.82i 0.530143i −0.964229 0.265072i \(-0.914604\pi\)
0.964229 0.265072i \(-0.0853956\pi\)
\(12\) 0 0
\(13\) 24341.2i 0.852252i 0.904664 + 0.426126i \(0.140122\pi\)
−0.904664 + 0.426126i \(0.859878\pi\)
\(14\) 0 0
\(15\) −10022.6 + 49622.9i −0.197978 + 0.980206i
\(16\) 0 0
\(17\) 83979.0 1.00548 0.502742 0.864437i \(-0.332325\pi\)
0.502742 + 0.864437i \(0.332325\pi\)
\(18\) 0 0
\(19\) 115321. 0.884898 0.442449 0.896794i \(-0.354110\pi\)
0.442449 + 0.896794i \(0.354110\pi\)
\(20\) 0 0
\(21\) −118705. + 37350.2i −0.610371 + 0.192051i
\(22\) 0 0
\(23\) 186279. 0.665660 0.332830 0.942987i \(-0.391996\pi\)
0.332830 + 0.942987i \(0.391996\pi\)
\(24\) 0 0
\(25\) 208331. + 330433.i 0.533327 + 0.845909i
\(26\) 0 0
\(27\) 421044. + 324271.i 0.792268 + 0.610173i
\(28\) 0 0
\(29\) 907077.i 1.28249i −0.767338 0.641243i \(-0.778419\pi\)
0.767338 0.641243i \(-0.221581\pi\)
\(30\) 0 0
\(31\) 1.08877e6 1.17894 0.589468 0.807792i \(-0.299337\pi\)
0.589468 + 0.807792i \(0.299337\pi\)
\(32\) 0 0
\(33\) −599721. + 188700.i −0.505701 + 0.159117i
\(34\) 0 0
\(35\) −463828. + 840751.i −0.309090 + 0.560267i
\(36\) 0 0
\(37\) 59293.5i 0.0316373i 0.999875 + 0.0158187i \(0.00503545\pi\)
−0.999875 + 0.0158187i \(0.994965\pi\)
\(38\) 0 0
\(39\) 1.88073e6 591765.i 0.812959 0.255794i
\(40\) 0 0
\(41\) 329743.i 0.116692i −0.998296 0.0583459i \(-0.981417\pi\)
0.998296 0.0583459i \(-0.0185826\pi\)
\(42\) 0 0
\(43\) 4.48269e6i 1.31119i 0.755113 + 0.655594i \(0.227582\pi\)
−0.755113 + 0.655594i \(0.772418\pi\)
\(44\) 0 0
\(45\) 4.07781e6 431994.i 0.994435 0.105348i
\(46\) 0 0
\(47\) −473075. −0.0969480 −0.0484740 0.998824i \(-0.515436\pi\)
−0.0484740 + 0.998824i \(0.515436\pi\)
\(48\) 0 0
\(49\) 3.40449e6 0.590564
\(50\) 0 0
\(51\) −2.04164e6 6.48868e6i −0.301785 0.959126i
\(52\) 0 0
\(53\) 1.18509e7 1.50192 0.750959 0.660349i \(-0.229592\pi\)
0.750959 + 0.660349i \(0.229592\pi\)
\(54\) 0 0
\(55\) −2.34334e6 + 4.24762e6i −0.256085 + 0.464190i
\(56\) 0 0
\(57\) −2.80360e6 8.91032e6i −0.265593 0.844100i
\(58\) 0 0
\(59\) 3.27453e6i 0.270234i −0.990830 0.135117i \(-0.956859\pi\)
0.990830 0.135117i \(-0.0431411\pi\)
\(60\) 0 0
\(61\) −2.05184e7 −1.48192 −0.740958 0.671552i \(-0.765628\pi\)
−0.740958 + 0.671552i \(0.765628\pi\)
\(62\) 0 0
\(63\) 5.77177e6 + 8.26381e6i 0.366393 + 0.524588i
\(64\) 0 0
\(65\) 7.34874e6 1.33206e7i 0.411680 0.746226i
\(66\) 0 0
\(67\) 3.13995e7i 1.55820i 0.626900 + 0.779100i \(0.284324\pi\)
−0.626900 + 0.779100i \(0.715676\pi\)
\(68\) 0 0
\(69\) −4.52869e6 1.43929e7i −0.199791 0.634970i
\(70\) 0 0
\(71\) 9.40161e6i 0.369972i 0.982741 + 0.184986i \(0.0592240\pi\)
−0.982741 + 0.184986i \(0.940776\pi\)
\(72\) 0 0
\(73\) 3.64874e7i 1.28485i −0.766350 0.642423i \(-0.777929\pi\)
0.766350 0.642423i \(-0.222071\pi\)
\(74\) 0 0
\(75\) 2.04663e7 2.41301e7i 0.646836 0.762629i
\(76\) 0 0
\(77\) −1.19247e7 −0.339223
\(78\) 0 0
\(79\) 4.17263e7 1.07128 0.535639 0.844447i \(-0.320071\pi\)
0.535639 + 0.844447i \(0.320071\pi\)
\(80\) 0 0
\(81\) 1.48189e7 4.04156e7i 0.344250 0.938878i
\(82\) 0 0
\(83\) 2.83168e7 0.596667 0.298334 0.954462i \(-0.403569\pi\)
0.298334 + 0.954462i \(0.403569\pi\)
\(84\) 0 0
\(85\) −4.59572e7 2.53538e7i −0.880395 0.485698i
\(86\) 0 0
\(87\) −7.00858e7 + 2.20522e7i −1.22336 + 0.384925i
\(88\) 0 0
\(89\) 1.11786e7i 0.178167i 0.996024 + 0.0890834i \(0.0283938\pi\)
−0.996024 + 0.0890834i \(0.971606\pi\)
\(90\) 0 0
\(91\) 3.73961e7 0.545332
\(92\) 0 0
\(93\) −2.64695e7 8.41246e7i −0.353845 1.12458i
\(94\) 0 0
\(95\) −6.31088e7 3.48160e7i −0.774811 0.427449i
\(96\) 0 0
\(97\) 5.09945e7i 0.576019i 0.957628 + 0.288009i \(0.0929934\pi\)
−0.957628 + 0.288009i \(0.907007\pi\)
\(98\) 0 0
\(99\) 2.91600e7 + 4.17502e7i 0.303562 + 0.434628i
\(100\) 0 0
\(101\) 1.60526e7i 0.154262i −0.997021 0.0771310i \(-0.975424\pi\)
0.997021 0.0771310i \(-0.0245760\pi\)
\(102\) 0 0
\(103\) 1.14045e8i 1.01327i 0.862159 + 0.506637i \(0.169112\pi\)
−0.862159 + 0.506637i \(0.830888\pi\)
\(104\) 0 0
\(105\) 7.62373e7 + 1.53981e7i 0.627206 + 0.126681i
\(106\) 0 0
\(107\) −1.82935e8 −1.39560 −0.697801 0.716292i \(-0.745838\pi\)
−0.697801 + 0.716292i \(0.745838\pi\)
\(108\) 0 0
\(109\) −5.63846e7 −0.399443 −0.199721 0.979853i \(-0.564004\pi\)
−0.199721 + 0.979853i \(0.564004\pi\)
\(110\) 0 0
\(111\) 4.58134e6 1.44150e6i 0.0301787 0.00949562i
\(112\) 0 0
\(113\) −2.92929e8 −1.79659 −0.898295 0.439392i \(-0.855194\pi\)
−0.898295 + 0.439392i \(0.855194\pi\)
\(114\) 0 0
\(115\) −1.01940e8 5.62387e7i −0.582848 0.321547i
\(116\) 0 0
\(117\) −9.14461e7 1.30929e8i −0.488002 0.698704i
\(118\) 0 0
\(119\) 1.29020e8i 0.643381i
\(120\) 0 0
\(121\) 1.54113e8 0.718948
\(122\) 0 0
\(123\) −2.54778e7 + 8.01649e6i −0.111312 + 0.0350239i
\(124\) 0 0
\(125\) −1.42484e7 2.43724e8i −0.0583614 0.998296i
\(126\) 0 0
\(127\) 2.62325e8i 1.00838i −0.863593 0.504190i \(-0.831791\pi\)
0.863593 0.504190i \(-0.168209\pi\)
\(128\) 0 0
\(129\) 3.46357e8 1.08980e8i 1.25074 0.393540i
\(130\) 0 0
\(131\) 4.02961e8i 1.36829i −0.729347 0.684144i \(-0.760176\pi\)
0.729347 0.684144i \(-0.239824\pi\)
\(132\) 0 0
\(133\) 1.77171e8i 0.566221i
\(134\) 0 0
\(135\) −1.32515e8 3.04572e8i −0.398961 0.916968i
\(136\) 0 0
\(137\) 1.89514e8 0.537971 0.268985 0.963144i \(-0.413312\pi\)
0.268985 + 0.963144i \(0.413312\pi\)
\(138\) 0 0
\(139\) 1.34482e7 0.0360250 0.0180125 0.999838i \(-0.494266\pi\)
0.0180125 + 0.999838i \(0.494266\pi\)
\(140\) 0 0
\(141\) 1.15011e7 + 3.65524e7i 0.0290979 + 0.0924783i
\(142\) 0 0
\(143\) 1.88932e8 0.451815
\(144\) 0 0
\(145\) −2.73852e8 + 4.96394e8i −0.619504 + 1.12294i
\(146\) 0 0
\(147\) −8.27675e7 2.63049e8i −0.177252 0.563336i
\(148\) 0 0
\(149\) 8.69761e8i 1.76463i −0.470655 0.882317i \(-0.655982\pi\)
0.470655 0.882317i \(-0.344018\pi\)
\(150\) 0 0
\(151\) 6.67479e8 1.28390 0.641948 0.766749i \(-0.278127\pi\)
0.641948 + 0.766749i \(0.278127\pi\)
\(152\) 0 0
\(153\) −4.51716e8 + 3.15497e8i −0.824328 + 0.575744i
\(154\) 0 0
\(155\) −5.95826e8 3.28707e8i −1.03227 0.569484i
\(156\) 0 0
\(157\) 7.07110e8i 1.16383i 0.813251 + 0.581914i \(0.197696\pi\)
−0.813251 + 0.581914i \(0.802304\pi\)
\(158\) 0 0
\(159\) −2.88110e8 9.15662e8i −0.450785 1.43267i
\(160\) 0 0
\(161\) 2.86186e8i 0.425937i
\(162\) 0 0
\(163\) 1.12694e9i 1.59643i −0.602375 0.798213i \(-0.705779\pi\)
0.602375 0.798213i \(-0.294221\pi\)
\(164\) 0 0
\(165\) 3.85165e8 + 7.77940e7i 0.519650 + 0.104957i
\(166\) 0 0
\(167\) 8.17466e8 1.05100 0.525501 0.850793i \(-0.323878\pi\)
0.525501 + 0.850793i \(0.323878\pi\)
\(168\) 0 0
\(169\) 2.23239e8 0.273667
\(170\) 0 0
\(171\) −6.20301e8 + 4.33243e8i −0.725468 + 0.506696i
\(172\) 0 0
\(173\) −6.87454e8 −0.767467 −0.383733 0.923444i \(-0.625362\pi\)
−0.383733 + 0.923444i \(0.625362\pi\)
\(174\) 0 0
\(175\) 5.07655e8 3.20065e8i 0.541273 0.341261i
\(176\) 0 0
\(177\) −2.53008e8 + 7.96081e7i −0.257775 + 0.0811081i
\(178\) 0 0
\(179\) 1.62205e8i 0.157998i 0.996875 + 0.0789989i \(0.0251723\pi\)
−0.996875 + 0.0789989i \(0.974828\pi\)
\(180\) 0 0
\(181\) 7.76510e8 0.723491 0.361745 0.932277i \(-0.382181\pi\)
0.361745 + 0.932277i \(0.382181\pi\)
\(182\) 0 0
\(183\) 4.98828e8 + 1.58536e9i 0.444781 + 1.41359i
\(184\) 0 0
\(185\) 1.79010e7 3.24481e7i 0.0152824 0.0277014i
\(186\) 0 0
\(187\) 6.51830e8i 0.533050i
\(188\) 0 0
\(189\) 4.98188e8 6.46863e8i 0.390433 0.506950i
\(190\) 0 0
\(191\) 1.59755e9i 1.20038i −0.799856 0.600192i \(-0.795091\pi\)
0.799856 0.600192i \(-0.204909\pi\)
\(192\) 0 0
\(193\) 1.66557e8i 0.120042i 0.998197 + 0.0600210i \(0.0191168\pi\)
−0.998197 + 0.0600210i \(0.980883\pi\)
\(194\) 0 0
\(195\) −1.20788e9 2.43963e8i −0.835383 0.168727i
\(196\) 0 0
\(197\) −2.58267e8 −0.171476 −0.0857380 0.996318i \(-0.527325\pi\)
−0.0857380 + 0.996318i \(0.527325\pi\)
\(198\) 0 0
\(199\) 6.98731e8 0.445551 0.222776 0.974870i \(-0.428488\pi\)
0.222776 + 0.974870i \(0.428488\pi\)
\(200\) 0 0
\(201\) 2.42610e9 7.63362e8i 1.48636 0.467678i
\(202\) 0 0
\(203\) −1.39357e9 −0.820626
\(204\) 0 0
\(205\) −9.95514e7 + 1.80451e8i −0.0563679 + 0.102175i
\(206\) 0 0
\(207\) −1.00198e9 + 6.99823e8i −0.545730 + 0.381159i
\(208\) 0 0
\(209\) 8.95100e8i 0.469122i
\(210\) 0 0
\(211\) 2.39920e9 1.21042 0.605210 0.796066i \(-0.293089\pi\)
0.605210 + 0.796066i \(0.293089\pi\)
\(212\) 0 0
\(213\) 7.26420e8 2.28565e8i 0.352914 0.111043i
\(214\) 0 0
\(215\) 1.35335e9 2.45313e9i 0.633369 1.14807i
\(216\) 0 0
\(217\) 1.67272e9i 0.754368i
\(218\) 0 0
\(219\) −2.81922e9 + 8.87056e8i −1.22561 + 0.385633i
\(220\) 0 0
\(221\) 2.04415e9i 0.856925i
\(222\) 0 0
\(223\) 1.47178e9i 0.595146i −0.954699 0.297573i \(-0.903823\pi\)
0.954699 0.297573i \(-0.0961772\pi\)
\(224\) 0 0
\(225\) −2.36198e9 9.94707e8i −0.921609 0.388119i
\(226\) 0 0
\(227\) −1.08671e9 −0.409272 −0.204636 0.978838i \(-0.565601\pi\)
−0.204636 + 0.978838i \(0.565601\pi\)
\(228\) 0 0
\(229\) −4.17978e9 −1.51989 −0.759943 0.649990i \(-0.774773\pi\)
−0.759943 + 0.649990i \(0.774773\pi\)
\(230\) 0 0
\(231\) 2.89906e8 + 9.21371e8i 0.101814 + 0.323584i
\(232\) 0 0
\(233\) 2.71753e9 0.922042 0.461021 0.887389i \(-0.347483\pi\)
0.461021 + 0.887389i \(0.347483\pi\)
\(234\) 0 0
\(235\) 2.58888e8 + 1.42824e8i 0.0848870 + 0.0468307i
\(236\) 0 0
\(237\) −1.01442e9 3.22401e9i −0.321533 1.02189i
\(238\) 0 0
\(239\) 2.95521e9i 0.905726i 0.891580 + 0.452863i \(0.149597\pi\)
−0.891580 + 0.452863i \(0.850403\pi\)
\(240\) 0 0
\(241\) −4.66821e9 −1.38383 −0.691914 0.721980i \(-0.743232\pi\)
−0.691914 + 0.721980i \(0.743232\pi\)
\(242\) 0 0
\(243\) −3.48300e9 1.62430e8i −0.998914 0.0465845i
\(244\) 0 0
\(245\) −1.86309e9 1.02783e9i −0.517094 0.285272i
\(246\) 0 0
\(247\) 2.80704e9i 0.754156i
\(248\) 0 0
\(249\) −6.88419e8 2.18791e9i −0.179083 0.569158i
\(250\) 0 0
\(251\) 4.78667e9i 1.20598i 0.797750 + 0.602988i \(0.206023\pi\)
−0.797750 + 0.602988i \(0.793977\pi\)
\(252\) 0 0
\(253\) 1.44586e9i 0.352895i
\(254\) 0 0
\(255\) −8.41692e8 + 4.16729e9i −0.199064 + 0.985582i
\(256\) 0 0
\(257\) 2.28160e8 0.0523007 0.0261504 0.999658i \(-0.491675\pi\)
0.0261504 + 0.999658i \(0.491675\pi\)
\(258\) 0 0
\(259\) 9.10944e7 0.0202438
\(260\) 0 0
\(261\) 3.40775e9 + 4.87910e9i 0.734355 + 1.05142i
\(262\) 0 0
\(263\) 1.74265e9 0.364241 0.182120 0.983276i \(-0.441704\pi\)
0.182120 + 0.983276i \(0.441704\pi\)
\(264\) 0 0
\(265\) −6.48533e9 3.57784e9i −1.31507 0.725500i
\(266\) 0 0
\(267\) 8.63719e8 2.71766e8i 0.169952 0.0534749i
\(268\) 0 0
\(269\) 7.36671e9i 1.40690i −0.710742 0.703452i \(-0.751641\pi\)
0.710742 0.703452i \(-0.248359\pi\)
\(270\) 0 0
\(271\) 1.03021e10 1.91007 0.955037 0.296487i \(-0.0958151\pi\)
0.955037 + 0.296487i \(0.0958151\pi\)
\(272\) 0 0
\(273\) −9.09148e8 2.88943e9i −0.163676 0.520189i
\(274\) 0 0
\(275\) 2.56477e9 1.61703e9i 0.448453 0.282739i
\(276\) 0 0
\(277\) 6.13563e9i 1.04217i 0.853504 + 0.521086i \(0.174473\pi\)
−0.853504 + 0.521086i \(0.825527\pi\)
\(278\) 0 0
\(279\) −5.85642e9 + 4.09036e9i −0.966530 + 0.675063i
\(280\) 0 0
\(281\) 8.53142e9i 1.36835i 0.729320 + 0.684173i \(0.239837\pi\)
−0.729320 + 0.684173i \(0.760163\pi\)
\(282\) 0 0
\(283\) 4.57625e8i 0.0713451i −0.999364 0.0356726i \(-0.988643\pi\)
0.999364 0.0356726i \(-0.0113573\pi\)
\(284\) 0 0
\(285\) −1.15582e9 + 5.72256e9i −0.175191 + 0.867383i
\(286\) 0 0
\(287\) −5.06595e8 −0.0746678
\(288\) 0 0
\(289\) 7.67165e7 0.0109976
\(290\) 0 0
\(291\) 3.94012e9 1.23974e9i 0.549462 0.172886i
\(292\) 0 0
\(293\) 1.24237e10 1.68569 0.842847 0.538153i \(-0.180878\pi\)
0.842847 + 0.538153i \(0.180878\pi\)
\(294\) 0 0
\(295\) −9.88599e8 + 1.79197e9i −0.130537 + 0.236615i
\(296\) 0 0
\(297\) 2.51694e9 3.26807e9i 0.323479 0.420015i
\(298\) 0 0
\(299\) 4.53425e9i 0.567310i
\(300\) 0 0
\(301\) 6.88690e9 0.838992
\(302\) 0 0
\(303\) −1.24031e9 + 3.90259e8i −0.147150 + 0.0463001i
\(304\) 0 0
\(305\) 1.12286e10 + 6.19461e9i 1.29755 + 0.715838i
\(306\) 0 0
\(307\) 9.95212e9i 1.12037i 0.828367 + 0.560186i \(0.189270\pi\)
−0.828367 + 0.560186i \(0.810730\pi\)
\(308\) 0 0
\(309\) 8.81174e9 2.77258e9i 0.966557 0.304124i
\(310\) 0 0
\(311\) 2.96957e9i 0.317433i 0.987324 + 0.158717i \(0.0507356\pi\)
−0.987324 + 0.158717i \(0.949264\pi\)
\(312\) 0 0
\(313\) 1.22243e10i 1.27364i 0.771012 + 0.636821i \(0.219751\pi\)
−0.771012 + 0.636821i \(0.780249\pi\)
\(314\) 0 0
\(315\) −6.63685e8 6.26486e9i −0.0674093 0.636311i
\(316\) 0 0
\(317\) −1.12216e9 −0.111127 −0.0555634 0.998455i \(-0.517695\pi\)
−0.0555634 + 0.998455i \(0.517695\pi\)
\(318\) 0 0
\(319\) −7.04057e9 −0.679901
\(320\) 0 0
\(321\) 4.44739e9 + 1.41346e10i 0.418875 + 1.33126i
\(322\) 0 0
\(323\) 9.68453e9 0.889750
\(324\) 0 0
\(325\) −8.04313e9 + 5.07101e9i −0.720928 + 0.454529i
\(326\) 0 0
\(327\) 1.37078e9 + 4.35658e9i 0.119889 + 0.381026i
\(328\) 0 0
\(329\) 7.26801e8i 0.0620343i
\(330\) 0 0
\(331\) −1.42650e10 −1.18839 −0.594195 0.804321i \(-0.702529\pi\)
−0.594195 + 0.804321i \(0.702529\pi\)
\(332\) 0 0
\(333\) −2.22757e8 3.18935e8i −0.0181156 0.0259373i
\(334\) 0 0
\(335\) 9.47969e9 1.71832e10i 0.752688 1.36435i
\(336\) 0 0
\(337\) 1.67909e10i 1.30183i 0.759151 + 0.650914i \(0.225614\pi\)
−0.759151 + 0.650914i \(0.774386\pi\)
\(338\) 0 0
\(339\) 7.12150e9 + 2.26333e10i 0.539228 + 1.71376i
\(340\) 0 0
\(341\) 8.45086e9i 0.625005i
\(342\) 0 0
\(343\) 1.40871e10i 1.01776i
\(344\) 0 0
\(345\) −1.86701e9 + 9.24371e9i −0.131786 + 0.652484i
\(346\) 0 0
\(347\) 2.61649e10 1.80468 0.902342 0.431020i \(-0.141846\pi\)
0.902342 + 0.431020i \(0.141846\pi\)
\(348\) 0 0
\(349\) −4.75720e8 −0.0320663 −0.0160332 0.999871i \(-0.505104\pi\)
−0.0160332 + 0.999871i \(0.505104\pi\)
\(350\) 0 0
\(351\) −7.89313e9 + 1.02487e10i −0.520021 + 0.675212i
\(352\) 0 0
\(353\) −7.48574e8 −0.0482099 −0.0241049 0.999709i \(-0.507674\pi\)
−0.0241049 + 0.999709i \(0.507674\pi\)
\(354\) 0 0
\(355\) 2.83840e9 5.14499e9i 0.178715 0.323945i
\(356\) 0 0
\(357\) −9.96877e9 + 3.13664e9i −0.613718 + 0.193104i
\(358\) 0 0
\(359\) 2.69368e10i 1.62169i 0.585261 + 0.810845i \(0.300992\pi\)
−0.585261 + 0.810845i \(0.699008\pi\)
\(360\) 0 0
\(361\) −3.68468e9 −0.216956
\(362\) 0 0
\(363\) −3.74669e9 1.19076e10i −0.215785 0.685801i
\(364\) 0 0
\(365\) −1.10158e10 + 1.99676e10i −0.620644 + 1.12500i
\(366\) 0 0
\(367\) 2.88998e10i 1.59305i −0.604603 0.796527i \(-0.706668\pi\)
0.604603 0.796527i \(-0.293332\pi\)
\(368\) 0 0
\(369\) 1.23880e9 + 1.77366e9i 0.0668182 + 0.0956678i
\(370\) 0 0
\(371\) 1.82068e10i 0.961035i
\(372\) 0 0
\(373\) 1.68477e10i 0.870371i −0.900341 0.435186i \(-0.856683\pi\)
0.900341 0.435186i \(-0.143317\pi\)
\(374\) 0 0
\(375\) −1.84851e10 + 7.02617e9i −0.934753 + 0.355299i
\(376\) 0 0
\(377\) 2.20793e10 1.09300
\(378\) 0 0
\(379\) −1.47718e10 −0.715942 −0.357971 0.933733i \(-0.616531\pi\)
−0.357971 + 0.933733i \(0.616531\pi\)
\(380\) 0 0
\(381\) −2.02687e10 + 6.37746e9i −0.961889 + 0.302655i
\(382\) 0 0
\(383\) 1.12179e10 0.521335 0.260667 0.965429i \(-0.416057\pi\)
0.260667 + 0.965429i \(0.416057\pi\)
\(384\) 0 0
\(385\) 6.52576e9 + 3.60015e9i 0.297022 + 0.163862i
\(386\) 0 0
\(387\) −1.68408e10 2.41120e10i −0.750791 1.07495i
\(388\) 0 0
\(389\) 3.64224e10i 1.59063i −0.606194 0.795316i \(-0.707305\pi\)
0.606194 0.795316i \(-0.292695\pi\)
\(390\) 0 0
\(391\) 1.56435e10 0.669311
\(392\) 0 0
\(393\) −3.11350e10 + 9.79650e9i −1.30520 + 0.410677i
\(394\) 0 0
\(395\) −2.28346e10 1.25974e10i −0.938003 0.517480i
\(396\) 0 0
\(397\) 1.47854e10i 0.595210i −0.954689 0.297605i \(-0.903812\pi\)
0.954689 0.297605i \(-0.0961879\pi\)
\(398\) 0 0
\(399\) −1.36892e10 + 4.30726e9i −0.540116 + 0.169945i
\(400\) 0 0
\(401\) 3.77306e10i 1.45920i 0.683872 + 0.729602i \(0.260295\pi\)
−0.683872 + 0.729602i \(0.739705\pi\)
\(402\) 0 0
\(403\) 2.65020e10i 1.00475i
\(404\) 0 0
\(405\) −2.03113e10 + 1.76434e10i −0.754948 + 0.655785i
\(406\) 0 0
\(407\) 4.60225e8 0.0167723
\(408\) 0 0
\(409\) 3.92354e10 1.40212 0.701060 0.713102i \(-0.252711\pi\)
0.701060 + 0.713102i \(0.252711\pi\)
\(410\) 0 0
\(411\) −4.60733e9 1.46429e10i −0.161466 0.513168i
\(412\) 0 0
\(413\) −5.03076e9 −0.172915
\(414\) 0 0
\(415\) −1.54963e10 8.54901e9i −0.522438 0.288220i
\(416\) 0 0
\(417\) −3.26943e8 1.03908e9i −0.0108125 0.0343641i
\(418\) 0 0
\(419\) 2.13803e10i 0.693677i 0.937925 + 0.346839i \(0.112745\pi\)
−0.937925 + 0.346839i \(0.887255\pi\)
\(420\) 0 0
\(421\) 5.69063e9 0.181147 0.0905736 0.995890i \(-0.471130\pi\)
0.0905736 + 0.995890i \(0.471130\pi\)
\(422\) 0 0
\(423\) 2.54463e9 1.77727e9i 0.0794811 0.0555128i
\(424\) 0 0
\(425\) 1.74954e10 + 2.77495e10i 0.536251 + 0.850548i
\(426\) 0 0
\(427\) 3.15230e10i 0.948236i
\(428\) 0 0
\(429\) −4.59318e9 1.45979e10i −0.135608 0.430984i
\(430\) 0 0
\(431\) 1.13346e10i 0.328470i −0.986421 0.164235i \(-0.947484\pi\)
0.986421 0.164235i \(-0.0525156\pi\)
\(432\) 0 0
\(433\) 4.20265e10i 1.19556i −0.801660 0.597780i \(-0.796050\pi\)
0.801660 0.597780i \(-0.203950\pi\)
\(434\) 0 0
\(435\) 4.50119e10 + 9.09132e9i 1.25710 + 0.253904i
\(436\) 0 0
\(437\) 2.14818e10 0.589041
\(438\) 0 0
\(439\) −9.92180e9 −0.267136 −0.133568 0.991040i \(-0.542643\pi\)
−0.133568 + 0.991040i \(0.542643\pi\)
\(440\) 0 0
\(441\) −1.83125e10 + 1.27901e10i −0.484164 + 0.338159i
\(442\) 0 0
\(443\) 5.28626e10 1.37257 0.686284 0.727334i \(-0.259241\pi\)
0.686284 + 0.727334i \(0.259241\pi\)
\(444\) 0 0
\(445\) 3.37488e9 6.11743e9i 0.0860634 0.156002i
\(446\) 0 0
\(447\) −6.72025e10 + 2.11450e10i −1.68328 + 0.529637i
\(448\) 0 0
\(449\) 7.83301e10i 1.92727i −0.267216 0.963637i \(-0.586104\pi\)
0.267216 0.963637i \(-0.413896\pi\)
\(450\) 0 0
\(451\) −2.55941e9 −0.0618634
\(452\) 0 0
\(453\) −1.62273e10 5.15731e10i −0.385348 1.22470i
\(454\) 0 0
\(455\) −2.04649e10 1.12901e10i −0.477489 0.263422i
\(456\) 0 0
\(457\) 2.09261e10i 0.479759i −0.970803 0.239879i \(-0.922892\pi\)
0.970803 0.239879i \(-0.0771079\pi\)
\(458\) 0 0
\(459\) 3.53588e10 + 2.72320e10i 0.796613 + 0.613519i
\(460\) 0 0
\(461\) 6.62131e10i 1.46602i −0.680217 0.733011i \(-0.738114\pi\)
0.680217 0.733011i \(-0.261886\pi\)
\(462\) 0 0
\(463\) 9.21885e9i 0.200610i −0.994957 0.100305i \(-0.968018\pi\)
0.994957 0.100305i \(-0.0319819\pi\)
\(464\) 0 0
\(465\) −1.09124e10 + 5.40281e10i −0.233404 + 1.15560i
\(466\) 0 0
\(467\) −1.06274e10 −0.223438 −0.111719 0.993740i \(-0.535636\pi\)
−0.111719 + 0.993740i \(0.535636\pi\)
\(468\) 0 0
\(469\) 4.82400e10 0.997048
\(470\) 0 0
\(471\) 5.46353e10 1.71908e10i 1.11017 0.349311i
\(472\) 0 0
\(473\) 3.47939e10 0.695117
\(474\) 0 0
\(475\) 2.40249e10 + 3.81058e10i 0.471940 + 0.748543i
\(476\) 0 0
\(477\) −6.37448e10 + 4.45219e10i −1.23132 + 0.860003i
\(478\) 0 0
\(479\) 2.18080e10i 0.414261i −0.978313 0.207131i \(-0.933587\pi\)
0.978313 0.207131i \(-0.0664125\pi\)
\(480\) 0 0
\(481\) −1.44327e9 −0.0269630
\(482\) 0 0
\(483\) −2.21123e10 + 6.95757e9i −0.406299 + 0.127841i
\(484\) 0 0
\(485\) 1.53955e10 2.79065e10i 0.278245 0.504358i
\(486\) 0 0
\(487\) 5.62626e10i 1.00024i 0.865956 + 0.500120i \(0.166711\pi\)
−0.865956 + 0.500120i \(0.833289\pi\)
\(488\) 0 0
\(489\) −8.70733e10 + 2.73973e10i −1.52282 + 0.479151i
\(490\) 0 0
\(491\) 9.30039e10i 1.60020i −0.599865 0.800101i \(-0.704779\pi\)
0.599865 0.800101i \(-0.295221\pi\)
\(492\) 0 0
\(493\) 7.61755e10i 1.28952i
\(494\) 0 0
\(495\) −3.35306e9 3.16512e10i −0.0558496 0.527193i
\(496\) 0 0
\(497\) 1.44440e10 0.236734
\(498\) 0 0
\(499\) 1.67310e10 0.269849 0.134924 0.990856i \(-0.456921\pi\)
0.134924 + 0.990856i \(0.456921\pi\)
\(500\) 0 0
\(501\) −1.98737e10 6.31620e10i −0.315448 1.00255i
\(502\) 0 0
\(503\) −5.19116e10 −0.810946 −0.405473 0.914107i \(-0.632893\pi\)
−0.405473 + 0.914107i \(0.632893\pi\)
\(504\) 0 0
\(505\) −4.84636e9 + 8.78469e9i −0.0745161 + 0.135071i
\(506\) 0 0
\(507\) −5.42722e9 1.72487e10i −0.0821383 0.261050i
\(508\) 0 0
\(509\) 1.26142e11i 1.87927i −0.342176 0.939636i \(-0.611164\pi\)
0.342176 0.939636i \(-0.388836\pi\)
\(510\) 0 0
\(511\) −5.60567e10 −0.822137
\(512\) 0 0
\(513\) 4.85551e10 + 3.73952e10i 0.701076 + 0.539941i
\(514\) 0 0
\(515\) 3.44308e10 6.24106e10i 0.489461 0.887216i
\(516\) 0 0
\(517\) 3.67193e9i 0.0513963i
\(518\) 0 0
\(519\) 1.67129e10 + 5.31165e10i 0.230347 + 0.732083i
\(520\) 0 0
\(521\) 2.83866e10i 0.385268i −0.981271 0.192634i \(-0.938297\pi\)
0.981271 0.192634i \(-0.0617030\pi\)
\(522\) 0 0
\(523\) 8.97597e10i 1.19971i −0.800110 0.599853i \(-0.795226\pi\)
0.800110 0.599853i \(-0.204774\pi\)
\(524\) 0 0
\(525\) −3.70718e10 3.14430e10i −0.487985 0.413892i
\(526\) 0 0
\(527\) 9.14340e10 1.18540
\(528\) 0 0
\(529\) −4.36111e10 −0.556897
\(530\) 0 0
\(531\) 1.23019e10 + 1.76134e10i 0.154737 + 0.221547i
\(532\) 0 0
\(533\) 8.02633e9 0.0994508
\(534\) 0 0
\(535\) 1.00110e11 + 5.52291e10i 1.22198 + 0.674144i
\(536\) 0 0
\(537\) 1.25328e10 3.94340e9i 0.150713 0.0474214i
\(538\) 0 0
\(539\) 2.64250e10i 0.313084i
\(540\) 0 0
\(541\) 1.36729e10 0.159615 0.0798073 0.996810i \(-0.474569\pi\)
0.0798073 + 0.996810i \(0.474569\pi\)
\(542\) 0 0
\(543\) −1.88780e10 5.99975e10i −0.217148 0.690134i
\(544\) 0 0
\(545\) 3.08562e10 + 1.70228e10i 0.349749 + 0.192950i
\(546\) 0 0
\(547\) 9.47576e10i 1.05844i 0.848486 + 0.529218i \(0.177515\pi\)
−0.848486 + 0.529218i \(0.822485\pi\)
\(548\) 0 0
\(549\) 1.10367e11 7.70844e10i 1.21492 0.848550i
\(550\) 0 0
\(551\) 1.04605e11i 1.13487i
\(552\) 0 0
\(553\) 6.41055e10i 0.685480i
\(554\) 0 0
\(555\) −2.94232e9 5.94278e8i −0.0310111 0.00626350i
\(556\) 0 0
\(557\) −1.26174e11 −1.31083 −0.655417 0.755267i \(-0.727507\pi\)
−0.655417 + 0.755267i \(0.727507\pi\)
\(558\) 0 0
\(559\) −1.09114e11 −1.11746
\(560\) 0 0
\(561\) −5.03640e10 + 1.58468e10i −0.508474 + 0.159989i
\(562\) 0 0
\(563\) 4.22072e10 0.420100 0.210050 0.977691i \(-0.432637\pi\)
0.210050 + 0.977691i \(0.432637\pi\)
\(564\) 0 0
\(565\) 1.60304e11 + 8.84371e10i 1.57308 + 0.867842i
\(566\) 0 0
\(567\) −6.20918e10 2.27667e10i −0.600761 0.220276i
\(568\) 0 0
\(569\) 1.55177e11i 1.48040i 0.672389 + 0.740198i \(0.265268\pi\)
−0.672389 + 0.740198i \(0.734732\pi\)
\(570\) 0 0
\(571\) −1.78848e11 −1.68244 −0.841219 0.540695i \(-0.818161\pi\)
−0.841219 + 0.540695i \(0.818161\pi\)
\(572\) 0 0
\(573\) −1.23435e11 + 3.88385e10i −1.14504 + 0.360283i
\(574\) 0 0
\(575\) 3.88076e10 + 6.15528e10i 0.355014 + 0.563088i
\(576\) 0 0
\(577\) 8.78895e10i 0.792928i 0.918050 + 0.396464i \(0.129763\pi\)
−0.918050 + 0.396464i \(0.870237\pi\)
\(578\) 0 0
\(579\) 1.28691e10 4.04922e9i 0.114508 0.0360294i
\(580\) 0 0
\(581\) 4.35040e10i 0.381790i
\(582\) 0 0
\(583\) 9.19842e10i 0.796231i
\(584\) 0 0
\(585\) 1.05152e10 + 9.92585e10i 0.0897832 + 0.847509i
\(586\) 0 0
\(587\) −4.83034e10 −0.406842 −0.203421 0.979091i \(-0.565206\pi\)
−0.203421 + 0.979091i \(0.565206\pi\)
\(588\) 0 0
\(589\) 1.25558e11 1.04324
\(590\) 0 0
\(591\) 6.27880e9 + 1.99551e10i 0.0514667 + 0.163570i
\(592\) 0 0
\(593\) 2.31582e11 1.87278 0.936389 0.350964i \(-0.114146\pi\)
0.936389 + 0.350964i \(0.114146\pi\)
\(594\) 0 0
\(595\) −3.89518e10 + 7.06054e10i −0.310785 + 0.563340i
\(596\) 0 0
\(597\) −1.69871e10 5.39878e10i −0.133728 0.425009i
\(598\) 0 0
\(599\) 5.43950e10i 0.422524i −0.977429 0.211262i \(-0.932243\pi\)
0.977429 0.211262i \(-0.0677574\pi\)
\(600\) 0 0
\(601\) −1.22003e11 −0.935134 −0.467567 0.883958i \(-0.654869\pi\)
−0.467567 + 0.883958i \(0.654869\pi\)
\(602\) 0 0
\(603\) −1.17963e11 1.68895e11i −0.892231 1.27746i
\(604\) 0 0
\(605\) −8.43377e10 4.65276e10i −0.629506 0.347288i
\(606\) 0 0
\(607\) 1.16739e11i 0.859926i −0.902847 0.429963i \(-0.858527\pi\)
0.902847 0.429963i \(-0.141473\pi\)
\(608\) 0 0
\(609\) 3.38796e10 + 1.07675e11i 0.246302 + 0.782791i
\(610\) 0 0
\(611\) 1.15152e10i 0.0826241i
\(612\) 0 0
\(613\) 7.33615e10i 0.519549i 0.965669 + 0.259774i \(0.0836482\pi\)
−0.965669 + 0.259774i \(0.916352\pi\)
\(614\) 0 0
\(615\) 1.63628e10 + 3.30490e9i 0.114382 + 0.0231025i
\(616\) 0 0
\(617\) −7.75475e10 −0.535091 −0.267545 0.963545i \(-0.586213\pi\)
−0.267545 + 0.963545i \(0.586213\pi\)
\(618\) 0 0
\(619\) 1.23023e11 0.837961 0.418981 0.907995i \(-0.362387\pi\)
0.418981 + 0.907995i \(0.362387\pi\)
\(620\) 0 0
\(621\) 7.84316e10 + 6.04049e10i 0.527381 + 0.406168i
\(622\) 0 0
\(623\) 1.71740e10 0.114004
\(624\) 0 0
\(625\) −6.57845e10 + 1.37679e11i −0.431125 + 0.902292i
\(626\) 0 0
\(627\) −6.91603e10 + 2.17610e10i −0.447494 + 0.140802i
\(628\) 0 0
\(629\) 4.97941e9i 0.0318108i
\(630\) 0 0
\(631\) 9.08957e10 0.573358 0.286679 0.958027i \(-0.407449\pi\)
0.286679 + 0.958027i \(0.407449\pi\)
\(632\) 0 0
\(633\) −5.83277e10 1.85375e11i −0.363295 1.15461i
\(634\) 0 0
\(635\) −7.91974e10 + 1.43556e11i −0.487097 + 0.882931i
\(636\) 0 0
\(637\) 8.28691e10i 0.503309i
\(638\) 0 0
\(639\) −3.53204e10 5.05705e10i −0.211847 0.303315i
\(640\) 0 0
\(641\) 9.47742e10i 0.561381i 0.959798 + 0.280691i \(0.0905635\pi\)
−0.959798 + 0.280691i \(0.909436\pi\)
\(642\) 0 0
\(643\) 3.36793e11i 1.97024i −0.171872 0.985119i \(-0.554982\pi\)
0.171872 0.985119i \(-0.445018\pi\)
\(644\) 0 0
\(645\) −2.22444e11 4.49284e10i −1.28524 0.259587i
\(646\) 0 0
\(647\) 2.21687e11 1.26509 0.632547 0.774522i \(-0.282010\pi\)
0.632547 + 0.774522i \(0.282010\pi\)
\(648\) 0 0
\(649\) −2.54163e10 −0.143263
\(650\) 0 0
\(651\) −1.29243e11 + 4.06659e10i −0.719588 + 0.226416i
\(652\) 0 0
\(653\) 9.67862e10 0.532305 0.266153 0.963931i \(-0.414247\pi\)
0.266153 + 0.963931i \(0.414247\pi\)
\(654\) 0 0
\(655\) −1.21656e11 + 2.20518e11i −0.660950 + 1.19806i
\(656\) 0 0
\(657\) 1.37078e11 + 1.96263e11i 0.735708 + 1.05336i
\(658\) 0 0
\(659\) 3.02636e11i 1.60464i 0.596891 + 0.802322i \(0.296402\pi\)
−0.596891 + 0.802322i \(0.703598\pi\)
\(660\) 0 0
\(661\) −9.96172e10 −0.521829 −0.260915 0.965362i \(-0.584024\pi\)
−0.260915 + 0.965362i \(0.584024\pi\)
\(662\) 0 0
\(663\) 1.57942e11 4.96959e10i 0.817417 0.257197i
\(664\) 0 0
\(665\) −5.34890e10 + 9.69561e10i −0.273513 + 0.495779i
\(666\) 0 0
\(667\) 1.68969e11i 0.853699i
\(668\) 0 0
\(669\) −1.13718e11 + 3.57809e10i −0.567707 + 0.178627i
\(670\) 0 0
\(671\) 1.59260e11i 0.785627i
\(672\) 0 0
\(673\) 9.69292e10i 0.472492i −0.971693 0.236246i \(-0.924083\pi\)
0.971693 0.236246i \(-0.0759171\pi\)
\(674\) 0 0
\(675\) −1.94336e10 + 2.06683e11i −0.0936136 + 0.995609i
\(676\) 0 0
\(677\) 5.33776e10 0.254100 0.127050 0.991896i \(-0.459449\pi\)
0.127050 + 0.991896i \(0.459449\pi\)
\(678\) 0 0
\(679\) 7.83445e10 0.368578
\(680\) 0 0
\(681\) 2.64194e10 + 8.39655e10i 0.122839 + 0.390402i
\(682\) 0 0
\(683\) 8.56243e10 0.393472 0.196736 0.980456i \(-0.436966\pi\)
0.196736 + 0.980456i \(0.436966\pi\)
\(684\) 0 0
\(685\) −1.03711e11 5.72153e10i −0.471044 0.259866i
\(686\) 0 0
\(687\) 1.01616e11 + 3.22953e11i 0.456178 + 1.44981i
\(688\) 0 0
\(689\) 2.88464e11i 1.28001i
\(690\) 0 0
\(691\) 7.57374e10 0.332199 0.166100 0.986109i \(-0.446883\pi\)
0.166100 + 0.986109i \(0.446883\pi\)
\(692\) 0 0
\(693\) 6.41422e10 4.47995e10i 0.278106 0.194241i
\(694\) 0 0
\(695\) −7.35946e9 4.06008e9i −0.0315433 0.0174019i
\(696\) 0 0
\(697\) 2.76915e10i 0.117332i
\(698\) 0 0
\(699\) −6.60667e10 2.09971e11i −0.276741 0.879531i
\(700\) 0 0
\(701\) 3.12777e11i 1.29528i −0.761948 0.647638i \(-0.775757\pi\)
0.761948 0.647638i \(-0.224243\pi\)
\(702\) 0 0
\(703\) 6.83777e9i 0.0279958i
\(704\) 0 0
\(705\) 4.74147e9 2.34754e10i 0.0191936 0.0950291i
\(706\) 0 0
\(707\) −2.46621e10 −0.0987078
\(708\) 0 0
\(709\) −3.38964e11 −1.34143 −0.670716 0.741715i \(-0.734013\pi\)
−0.670716 + 0.741715i \(0.734013\pi\)
\(710\) 0 0
\(711\) −2.24443e11 + 1.56760e11i −0.878268 + 0.613417i
\(712\) 0 0
\(713\) 2.02815e11 0.784771
\(714\) 0 0
\(715\) −1.03392e11 5.70396e10i −0.395606 0.218249i
\(716\) 0 0
\(717\) 2.28336e11 7.18450e10i 0.863968 0.271844i
\(718\) 0 0
\(719\) 4.77464e11i 1.78659i −0.449470 0.893296i \(-0.648387\pi\)
0.449470 0.893296i \(-0.351613\pi\)
\(720\) 0 0
\(721\) 1.75211e11 0.648365
\(722\) 0 0
\(723\) 1.13490e11 + 3.60692e11i 0.415342 + 1.32003i
\(724\) 0 0
\(725\) 2.99729e11 1.88972e11i 1.08487 0.683984i
\(726\) 0 0
\(727\) 2.79820e11i 1.00171i 0.865532 + 0.500854i \(0.166981\pi\)
−0.865532 + 0.500854i \(0.833019\pi\)
\(728\) 0 0
\(729\) 7.21260e10 + 2.73065e11i 0.255377 + 0.966842i
\(730\) 0 0
\(731\) 3.76452e11i 1.31838i
\(732\) 0 0
\(733\) 4.61873e11i 1.59995i −0.600033 0.799975i \(-0.704846\pi\)
0.600033 0.799975i \(-0.295154\pi\)
\(734\) 0 0
\(735\) −3.41220e10 + 1.68941e11i −0.116919 + 0.578875i
\(736\) 0 0
\(737\) 2.43717e11 0.826069
\(738\) 0 0
\(739\) 3.51955e11 1.18007 0.590036 0.807377i \(-0.299113\pi\)
0.590036 + 0.807377i \(0.299113\pi\)
\(740\) 0 0
\(741\) 2.16888e11 6.82429e10i 0.719386 0.226352i
\(742\) 0 0
\(743\) 3.68777e11 1.21006 0.605032 0.796201i \(-0.293160\pi\)
0.605032 + 0.796201i \(0.293160\pi\)
\(744\) 0 0
\(745\) −2.62586e11 + 4.75973e11i −0.852405 + 1.54510i
\(746\) 0 0
\(747\) −1.52314e11 + 1.06382e11i −0.489167 + 0.341654i
\(748\) 0 0
\(749\) 2.81049e11i 0.893006i
\(750\) 0 0
\(751\) 3.58921e11 1.12834 0.564169 0.825659i \(-0.309197\pi\)
0.564169 + 0.825659i \(0.309197\pi\)
\(752\) 0 0
\(753\) 3.69845e11 1.16370e11i 1.15038 0.361961i
\(754\) 0 0
\(755\) −3.65275e11 2.01516e11i −1.12417 0.620185i
\(756\) 0 0
\(757\) 1.44523e11i 0.440101i −0.975488 0.220051i \(-0.929378\pi\)
0.975488 0.220051i \(-0.0706223\pi\)
\(758\) 0 0
\(759\) −1.11716e11 + 3.51509e10i −0.336625 + 0.105918i
\(760\) 0 0
\(761\) 6.00551e11i 1.79065i 0.445410 + 0.895327i \(0.353058\pi\)
−0.445410 + 0.895327i \(0.646942\pi\)
\(762\) 0 0
\(763\) 8.66254e10i 0.255592i
\(764\) 0 0
\(765\) 3.42450e11 3.62784e10i 0.999889 0.105926i
\(766\) 0 0
\(767\) 7.97058e10 0.230308
\(768\) 0 0
\(769\) −1.04208e11 −0.297987 −0.148993 0.988838i \(-0.547603\pi\)
−0.148993 + 0.988838i \(0.547603\pi\)
\(770\) 0 0
\(771\) −5.54688e9 1.76289e10i −0.0156975 0.0498894i
\(772\) 0 0
\(773\) −4.76449e11 −1.33444 −0.667219 0.744861i \(-0.732516\pi\)
−0.667219 + 0.744861i \(0.732516\pi\)
\(774\) 0 0
\(775\) 2.26825e11 + 3.59767e11i 0.628758 + 0.997273i
\(776\) 0 0
\(777\) −2.21462e9 7.03846e9i −0.00607598 0.0193105i
\(778\) 0 0
\(779\) 3.80263e10i 0.103260i
\(780\) 0 0
\(781\) 7.29736e10 0.196138
\(782\) 0 0
\(783\) 2.94139e11 3.81919e11i 0.782538 1.01607i
\(784\) 0 0
\(785\) 2.13481e11 3.86963e11i 0.562186 1.01904i
\(786\) 0 0
\(787\) 1.28735e11i 0.335582i 0.985823 + 0.167791i \(0.0536633\pi\)
−0.985823 + 0.167791i \(0.946337\pi\)
\(788\) 0 0
\(789\) −4.23662e10 1.34647e11i −0.109323 0.347447i
\(790\) 0 0
\(791\) 4.50037e11i 1.14959i
\(792\) 0 0
\(793\) 4.99441e11i 1.26296i
\(794\) 0 0
\(795\) −1.18777e11 + 5.88074e11i −0.297347 + 1.47219i
\(796\) 0 0
\(797\) −7.14430e11 −1.77062 −0.885312 0.464997i \(-0.846056\pi\)
−0.885312 + 0.464997i \(0.846056\pi\)
\(798\) 0 0
\(799\) −3.97284e10 −0.0974797
\(800\) 0 0
\(801\) −4.19963e10 6.01287e10i −0.102019 0.146067i
\(802\) 0 0
\(803\) −2.83209e11 −0.681153
\(804\) 0 0
\(805\) −8.64013e10 + 1.56614e11i −0.205749 + 0.372948i
\(806\) 0 0
\(807\) −5.69193e11 + 1.79094e11i −1.34204 + 0.422268i
\(808\) 0 0
\(809\) 7.05895e11i 1.64796i 0.566621 + 0.823978i \(0.308250\pi\)
−0.566621 + 0.823978i \(0.691750\pi\)
\(810\) 0 0
\(811\) 4.38265e11 1.01310 0.506551 0.862210i \(-0.330920\pi\)
0.506551 + 0.862210i \(0.330920\pi\)
\(812\) 0 0
\(813\) −2.50458e11 7.96000e11i −0.573289 1.82201i
\(814\) 0 0
\(815\) −3.40229e11 + 6.16711e11i −0.771153 + 1.39782i
\(816\) 0 0
\(817\) 5.16947e11i 1.16027i
\(818\) 0 0
\(819\) −2.01151e11 + 1.40492e11i −0.447081 + 0.312259i
\(820\) 0 0
\(821\) 4.54620e11i 1.00064i −0.865842 0.500318i \(-0.833217\pi\)
0.865842 0.500318i \(-0.166783\pi\)
\(822\) 0 0
\(823\) 3.92102e11i 0.854673i −0.904093 0.427336i \(-0.859452\pi\)
0.904093 0.427336i \(-0.140548\pi\)
\(824\) 0 0
\(825\) −1.87293e11 1.58856e11i −0.404302 0.342916i
\(826\) 0 0
\(827\) 4.22989e11 0.904289 0.452145 0.891945i \(-0.350659\pi\)
0.452145 + 0.891945i \(0.350659\pi\)
\(828\) 0 0
\(829\) −4.11878e11 −0.872068 −0.436034 0.899930i \(-0.643617\pi\)
−0.436034 + 0.899930i \(0.643617\pi\)
\(830\) 0 0
\(831\) 4.74072e11 1.49165e11i 0.994124 0.312797i
\(832\) 0 0
\(833\) 2.85905e11 0.593803
\(834\) 0 0
\(835\) −4.47355e11 2.46798e11i −0.920251 0.507686i
\(836\) 0 0
\(837\) 4.58421e11 + 3.53057e11i 0.934033 + 0.719355i
\(838\) 0 0
\(839\) 4.56672e11i 0.921630i −0.887496 0.460815i \(-0.847557\pi\)
0.887496 0.460815i \(-0.152443\pi\)
\(840\) 0 0
\(841\) −3.22543e11 −0.644768
\(842\) 0 0
\(843\) 6.59185e11 2.07410e11i 1.30526 0.410695i
\(844\) 0 0
\(845\) −1.22166e11 6.73971e10i −0.239621 0.132195i
\(846\) 0 0
\(847\) 2.36769e11i 0.460035i
\(848\) 0 0
\(849\) −3.53587e10 + 1.11255e10i −0.0680558 + 0.0214135i
\(850\) 0 0
\(851\) 1.10451e10i 0.0210597i
\(852\) 0 0
\(853\) 1.75194e11i 0.330920i 0.986216 + 0.165460i \(0.0529109\pi\)
−0.986216 + 0.165460i \(0.947089\pi\)
\(854\) 0 0
\(855\) 4.70256e11 4.98178e10i 0.879974 0.0932224i
\(856\) 0 0
\(857\) −6.30653e11 −1.16914 −0.584571 0.811343i \(-0.698737\pi\)
−0.584571 + 0.811343i \(0.698737\pi\)
\(858\) 0 0
\(859\) 5.02518e11 0.922951 0.461475 0.887153i \(-0.347320\pi\)
0.461475 + 0.887153i \(0.347320\pi\)
\(860\) 0 0
\(861\) 1.23160e10 + 3.91423e10i 0.0224108 + 0.0712253i
\(862\) 0 0
\(863\) −4.96972e11 −0.895961 −0.447981 0.894043i \(-0.647857\pi\)
−0.447981 + 0.894043i \(0.647857\pi\)
\(864\) 0 0
\(865\) 3.76206e11 + 2.07546e11i 0.671988 + 0.370724i
\(866\) 0 0
\(867\) −1.86508e9 5.92754e9i −0.00330081 0.0104906i
\(868\) 0 0
\(869\) 3.23872e11i 0.567930i
\(870\) 0 0
\(871\) −7.64300e11 −1.32798
\(872\) 0 0
\(873\) −1.91579e11 2.74296e11i −0.329830 0.472239i
\(874\) 0 0
\(875\) −3.74442e11 + 2.18902e10i −0.638781 + 0.0373438i
\(876\) 0 0
\(877\) 1.97015e11i 0.333044i 0.986038 + 0.166522i \(0.0532537\pi\)
−0.986038 + 0.166522i \(0.946746\pi\)
\(878\) 0 0
\(879\) −3.02035e11 9.59920e11i −0.505944 1.60798i
\(880\) 0 0
\(881\) 1.40330e11i 0.232942i 0.993194 + 0.116471i \(0.0371581\pi\)
−0.993194 + 0.116471i \(0.962842\pi\)
\(882\) 0 0
\(883\) 1.03460e12i 1.70188i −0.525266 0.850938i \(-0.676034\pi\)
0.525266 0.850938i \(-0.323966\pi\)
\(884\) 0 0
\(885\) 1.62492e11 + 3.28195e10i 0.264886 + 0.0535006i
\(886\) 0 0
\(887\) −7.73307e11 −1.24927 −0.624637 0.780915i \(-0.714753\pi\)
−0.624637 + 0.780915i \(0.714753\pi\)
\(888\) 0 0
\(889\) −4.03018e11 −0.645234
\(890\) 0 0
\(891\) −3.13699e11 1.15021e11i −0.497740 0.182502i
\(892\) 0 0
\(893\) −5.45554e10 −0.0857891
\(894\) 0 0
\(895\) 4.89705e10 8.87657e10i 0.0763207 0.138342i
\(896\) 0 0
\(897\) 3.50341e11 1.10233e11i 0.541154 0.170272i
\(898\) 0 0
\(899\) 9.87601e11i 1.51197i
\(900\) 0 0
\(901\) 9.95223e11 1.51015
\(902\) 0 0
\(903\) −1.67430e11 5.32120e11i −0.251815 0.800311i
\(904\) 0 0
\(905\) −4.24942e11 2.34433e11i −0.633483 0.349482i
\(906\) 0 0
\(907\) 5.62860e11i 0.831709i 0.909431 + 0.415854i \(0.136517\pi\)
−0.909431 + 0.415854i \(0.863483\pi\)
\(908\) 0 0
\(909\) 6.03071e10 + 8.63454e10i 0.0883309 + 0.126469i
\(910\) 0 0
\(911\) 2.29424e11i 0.333093i 0.986034 + 0.166546i \(0.0532616\pi\)
−0.986034 + 0.166546i \(0.946738\pi\)
\(912\) 0 0
\(913\) 2.19790e11i 0.316319i
\(914\) 0 0
\(915\) 2.05648e11 1.01818e12i 0.293387 1.45258i
\(916\) 0 0
\(917\) −6.19081e11 −0.875528
\(918\) 0 0
\(919\) −1.24790e12 −1.74952 −0.874760 0.484556i \(-0.838981\pi\)
−0.874760 + 0.484556i \(0.838981\pi\)
\(920\) 0 0
\(921\) 7.68956e11 2.41949e11i 1.06872 0.336268i
\(922\) 0 0
\(923\) −2.28846e11 −0.315309
\(924\) 0 0
\(925\) −1.95925e10 + 1.23527e10i −0.0267623 + 0.0168730i
\(926\) 0 0
\(927\) −4.28450e11 6.13438e11i −0.580204 0.830715i
\(928\) 0 0
\(929\) 1.95910e11i 0.263024i −0.991315 0.131512i \(-0.958017\pi\)
0.991315 0.131512i \(-0.0419831\pi\)
\(930\) 0 0
\(931\) 3.92608e11 0.522589
\(932\) 0 0
\(933\) 2.29445e11 7.21942e10i 0.302798 0.0952742i
\(934\) 0 0
\(935\) −1.96791e11 + 3.56711e11i −0.257490 + 0.466735i
\(936\) 0 0
\(937\) 2.83389e10i 0.0367641i 0.999831 + 0.0183821i \(0.00585152\pi\)
−0.999831 + 0.0183821i \(0.994148\pi\)
\(938\) 0 0
\(939\) 9.44518e11 2.97189e11i 1.21492 0.382270i
\(940\) 0 0
\(941\) 1.29493e11i 0.165153i −0.996585 0.0825766i \(-0.973685\pi\)
0.996585 0.0825766i \(-0.0263149\pi\)
\(942\) 0 0
\(943\) 6.14243e10i 0.0776771i
\(944\) 0 0
\(945\) −4.67923e11 + 2.03587e11i −0.586742 + 0.255284i
\(946\) 0 0
\(947\) 1.02713e11 0.127710 0.0638548 0.997959i \(-0.479661\pi\)
0.0638548 + 0.997959i \(0.479661\pi\)
\(948\) 0 0
\(949\) 8.88145e11 1.09501
\(950\) 0 0
\(951\) 2.72812e10 + 8.67044e10i 0.0333535 + 0.106003i
\(952\) 0 0
\(953\) −6.30533e11 −0.764428 −0.382214 0.924074i \(-0.624838\pi\)
−0.382214 + 0.924074i \(0.624838\pi\)
\(954\) 0 0
\(955\) −4.82309e11 + 8.74251e11i −0.579845 + 1.05105i
\(956\) 0 0
\(957\) 1.71166e11 + 5.43994e11i 0.204065 + 0.648554i
\(958\) 0 0
\(959\) 2.91156e11i 0.344232i
\(960\) 0 0
\(961\) 3.32534e11 0.389891
\(962\) 0 0
\(963\) 9.83992e11 6.87259e11i 1.14416 0.799126i
\(964\) 0 0
\(965\) 5.02845e10 9.11476e10i 0.0579862 0.105108i
\(966\) 0 0
\(967\) 3.98318e11i 0.455538i −0.973715 0.227769i \(-0.926857\pi\)
0.973715 0.227769i \(-0.0731431\pi\)
\(968\) 0 0
\(969\) −2.35443e11 7.48280e11i −0.267049 0.848729i
\(970\) 0 0
\(971\) 6.28862e10i 0.0707422i −0.999374 0.0353711i \(-0.988739\pi\)
0.999374 0.0353711i \(-0.0112613\pi\)
\(972\) 0 0
\(973\) 2.06609e10i 0.0230514i
\(974\) 0 0
\(975\) 5.87353e11 + 4.98174e11i 0.649952 + 0.551267i
\(976\) 0 0
\(977\) −7.52369e11 −0.825758 −0.412879 0.910786i \(-0.635477\pi\)
−0.412879 + 0.910786i \(0.635477\pi\)
\(978\) 0 0
\(979\) 8.67662e10 0.0944539
\(980\) 0 0
\(981\) 3.03288e11 2.11828e11i 0.327476 0.228722i
\(982\) 0 0
\(983\) −1.78809e11 −0.191503 −0.0957514 0.995405i \(-0.530525\pi\)
−0.0957514 + 0.995405i \(0.530525\pi\)
\(984\) 0 0
\(985\) 1.41335e11 + 7.79722e10i 0.150143 + 0.0828314i
\(986\) 0 0
\(987\) 5.61566e10 1.76695e10i 0.0591742 0.0186189i
\(988\) 0 0
\(989\) 8.35031e11i 0.872806i
\(990\) 0 0
\(991\) 6.12252e10 0.0634798 0.0317399 0.999496i \(-0.489895\pi\)
0.0317399 + 0.999496i \(0.489895\pi\)
\(992\) 0 0
\(993\) 3.46800e11 + 1.10219e12i 0.356683 + 1.13360i
\(994\) 0 0
\(995\) −3.82377e11 2.10951e11i −0.390121 0.215223i
\(996\) 0 0
\(997\) 1.06525e12i 1.07813i 0.842264 + 0.539066i \(0.181223\pi\)
−0.842264 + 0.539066i \(0.818777\pi\)
\(998\) 0 0
\(999\) −1.92272e10 + 2.49651e10i −0.0193043 + 0.0250652i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.9.c.f.209.19 48
3.2 odd 2 inner 240.9.c.f.209.29 48
4.3 odd 2 120.9.c.a.89.30 yes 48
5.4 even 2 inner 240.9.c.f.209.30 48
12.11 even 2 120.9.c.a.89.20 yes 48
15.14 odd 2 inner 240.9.c.f.209.20 48
20.19 odd 2 120.9.c.a.89.19 48
60.59 even 2 120.9.c.a.89.29 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.9.c.a.89.19 48 20.19 odd 2
120.9.c.a.89.20 yes 48 12.11 even 2
120.9.c.a.89.29 yes 48 60.59 even 2
120.9.c.a.89.30 yes 48 4.3 odd 2
240.9.c.f.209.19 48 1.1 even 1 trivial
240.9.c.f.209.20 48 15.14 odd 2 inner
240.9.c.f.209.29 48 3.2 odd 2 inner
240.9.c.f.209.30 48 5.4 even 2 inner