Properties

Label 240.9.c.f.209.14
Level $240$
Weight $9$
Character 240.209
Analytic conductor $97.771$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,9,Mod(209,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.209"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 240.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,2528] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(97.7708664147\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.14
Character \(\chi\) \(=\) 240.209
Dual form 240.9.c.f.209.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-51.8771 + 62.2074i) q^{3} +(254.792 - 570.707i) q^{5} -4202.69i q^{7} +(-1178.52 - 6454.29i) q^{9} -542.921i q^{11} +40742.5i q^{13} +(22284.3 + 45456.6i) q^{15} -31206.2 q^{17} +230675. q^{19} +(261439. + 218024. i) q^{21} +465190. q^{23} +(-260787. - 290823. i) q^{25} +(462643. + 261517. i) q^{27} +231259. i q^{29} +206459. q^{31} +(33773.7 + 28165.2i) q^{33} +(-2.39850e6 - 1.07081e6i) q^{35} +2.73444e6i q^{37} +(-2.53449e6 - 2.11360e6i) q^{39} -2.74391e6i q^{41} +638785. i q^{43} +(-3.98378e6 - 971909. i) q^{45} +2.05881e6 q^{47} -1.18978e7 q^{49} +(1.61889e6 - 1.94126e6i) q^{51} +1.09780e7 q^{53} +(-309848. - 138332. i) q^{55} +(-1.19668e7 + 1.43497e7i) q^{57} +5.20695e6i q^{59} -7932.68 q^{61} +(-2.71254e7 + 4.95297e6i) q^{63} +(2.32520e7 + 1.03809e7i) q^{65} -2.61289e7i q^{67} +(-2.41327e7 + 2.89383e7i) q^{69} -4.61106e7i q^{71} -3.27109e7i q^{73} +(3.16202e7 - 1.13583e6i) q^{75} -2.28173e6 q^{77} -9.49611e6 q^{79} +(-4.02689e7 + 1.52130e7i) q^{81} +6.39962e7 q^{83} +(-7.95109e6 + 1.78096e7i) q^{85} +(-1.43860e7 - 1.19971e7i) q^{87} +4.56560e7i q^{89} +1.71228e8 q^{91} +(-1.07105e7 + 1.28433e7i) q^{93} +(5.87743e7 - 1.31648e8i) q^{95} -2.57539e7i q^{97} +(-3.50417e6 + 639845. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2528 q^{9} - 132352 q^{15} + 116176 q^{21} + 56976 q^{25} - 1395648 q^{31} - 6888832 q^{39} - 4287056 q^{45} - 30813552 q^{49} + 22815168 q^{51} + 6062784 q^{55} + 14031936 q^{61} + 2522608 q^{69}+ \cdots + 21719360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −51.8771 + 62.2074i −0.640459 + 0.767993i
\(4\) 0 0
\(5\) 254.792 570.707i 0.407667 0.913131i
\(6\) 0 0
\(7\) 4202.69i 1.75039i −0.483768 0.875196i \(-0.660732\pi\)
0.483768 0.875196i \(-0.339268\pi\)
\(8\) 0 0
\(9\) −1178.52 6454.29i −0.179625 0.983735i
\(10\) 0 0
\(11\) 542.921i 0.0370822i −0.999828 0.0185411i \(-0.994098\pi\)
0.999828 0.0185411i \(-0.00590216\pi\)
\(12\) 0 0
\(13\) 40742.5i 1.42651i 0.700906 + 0.713254i \(0.252779\pi\)
−0.700906 + 0.713254i \(0.747221\pi\)
\(14\) 0 0
\(15\) 22284.3 + 45456.6i 0.440184 + 0.897908i
\(16\) 0 0
\(17\) −31206.2 −0.373633 −0.186816 0.982395i \(-0.559817\pi\)
−0.186816 + 0.982395i \(0.559817\pi\)
\(18\) 0 0
\(19\) 230675. 1.77006 0.885028 0.465538i \(-0.154139\pi\)
0.885028 + 0.465538i \(0.154139\pi\)
\(20\) 0 0
\(21\) 261439. + 218024.i 1.34429 + 1.12105i
\(22\) 0 0
\(23\) 465190. 1.66234 0.831168 0.556021i \(-0.187672\pi\)
0.831168 + 0.556021i \(0.187672\pi\)
\(24\) 0 0
\(25\) −260787. 290823.i −0.667615 0.744507i
\(26\) 0 0
\(27\) 462643. + 261517.i 0.870544 + 0.492091i
\(28\) 0 0
\(29\) 231259.i 0.326969i 0.986546 + 0.163485i \(0.0522734\pi\)
−0.986546 + 0.163485i \(0.947727\pi\)
\(30\) 0 0
\(31\) 206459. 0.223556 0.111778 0.993733i \(-0.464345\pi\)
0.111778 + 0.993733i \(0.464345\pi\)
\(32\) 0 0
\(33\) 33773.7 + 28165.2i 0.0284789 + 0.0237496i
\(34\) 0 0
\(35\) −2.39850e6 1.07081e6i −1.59834 0.713577i
\(36\) 0 0
\(37\) 2.73444e6i 1.45902i 0.683970 + 0.729510i \(0.260252\pi\)
−0.683970 + 0.729510i \(0.739748\pi\)
\(38\) 0 0
\(39\) −2.53449e6 2.11360e6i −1.09555 0.913619i
\(40\) 0 0
\(41\) 2.74391e6i 0.971036i −0.874227 0.485518i \(-0.838631\pi\)
0.874227 0.485518i \(-0.161369\pi\)
\(42\) 0 0
\(43\) 638785.i 0.186845i 0.995627 + 0.0934224i \(0.0297807\pi\)
−0.995627 + 0.0934224i \(0.970219\pi\)
\(44\) 0 0
\(45\) −3.98378e6 971909.i −0.971506 0.237015i
\(46\) 0 0
\(47\) 2.05881e6 0.421915 0.210957 0.977495i \(-0.432342\pi\)
0.210957 + 0.977495i \(0.432342\pi\)
\(48\) 0 0
\(49\) −1.18978e7 −2.06387
\(50\) 0 0
\(51\) 1.61889e6 1.94126e6i 0.239296 0.286947i
\(52\) 0 0
\(53\) 1.09780e7 1.39130 0.695649 0.718382i \(-0.255117\pi\)
0.695649 + 0.718382i \(0.255117\pi\)
\(54\) 0 0
\(55\) −309848. 138332.i −0.0338609 0.0151172i
\(56\) 0 0
\(57\) −1.19668e7 + 1.43497e7i −1.13365 + 1.35939i
\(58\) 0 0
\(59\) 5.20695e6i 0.429710i 0.976646 + 0.214855i \(0.0689279\pi\)
−0.976646 + 0.214855i \(0.931072\pi\)
\(60\) 0 0
\(61\) −7932.68 −0.000572929 −0.000286464 1.00000i \(-0.500091\pi\)
−0.000286464 1.00000i \(0.500091\pi\)
\(62\) 0 0
\(63\) −2.71254e7 + 4.95297e6i −1.72192 + 0.314415i
\(64\) 0 0
\(65\) 2.32520e7 + 1.03809e7i 1.30259 + 0.581540i
\(66\) 0 0
\(67\) 2.61289e7i 1.29665i −0.761364 0.648325i \(-0.775470\pi\)
0.761364 0.648325i \(-0.224530\pi\)
\(68\) 0 0
\(69\) −2.41327e7 + 2.89383e7i −1.06466 + 1.27666i
\(70\) 0 0
\(71\) 4.61106e7i 1.81454i −0.420546 0.907271i \(-0.638161\pi\)
0.420546 0.907271i \(-0.361839\pi\)
\(72\) 0 0
\(73\) 3.27109e7i 1.15186i −0.817497 0.575932i \(-0.804639\pi\)
0.817497 0.575932i \(-0.195361\pi\)
\(74\) 0 0
\(75\) 3.16202e7 1.13583e6i 0.999355 0.0358978i
\(76\) 0 0
\(77\) −2.28173e6 −0.0649084
\(78\) 0 0
\(79\) −9.49611e6 −0.243802 −0.121901 0.992542i \(-0.538899\pi\)
−0.121901 + 0.992542i \(0.538899\pi\)
\(80\) 0 0
\(81\) −4.02689e7 + 1.52130e7i −0.935469 + 0.353408i
\(82\) 0 0
\(83\) 6.39962e7 1.34847 0.674236 0.738516i \(-0.264473\pi\)
0.674236 + 0.738516i \(0.264473\pi\)
\(84\) 0 0
\(85\) −7.95109e6 + 1.78096e7i −0.152318 + 0.341176i
\(86\) 0 0
\(87\) −1.43860e7 1.19971e7i −0.251110 0.209410i
\(88\) 0 0
\(89\) 4.56560e7i 0.727675i 0.931462 + 0.363838i \(0.118534\pi\)
−0.931462 + 0.363838i \(0.881466\pi\)
\(90\) 0 0
\(91\) 1.71228e8 2.49695
\(92\) 0 0
\(93\) −1.07105e7 + 1.28433e7i −0.143178 + 0.171689i
\(94\) 0 0
\(95\) 5.87743e7 1.31648e8i 0.721594 1.61629i
\(96\) 0 0
\(97\) 2.57539e7i 0.290909i −0.989365 0.145454i \(-0.953536\pi\)
0.989365 0.145454i \(-0.0464644\pi\)
\(98\) 0 0
\(99\) −3.50417e6 + 639845.i −0.0364791 + 0.00666091i
\(100\) 0 0
\(101\) 4.86369e7i 0.467391i −0.972310 0.233695i \(-0.924918\pi\)
0.972310 0.233695i \(-0.0750819\pi\)
\(102\) 0 0
\(103\) 4.66558e7i 0.414531i −0.978285 0.207265i \(-0.933544\pi\)
0.978285 0.207265i \(-0.0664563\pi\)
\(104\) 0 0
\(105\) 1.91040e8 9.36540e7i 1.57169 0.770494i
\(106\) 0 0
\(107\) −1.00639e8 −0.767773 −0.383887 0.923380i \(-0.625415\pi\)
−0.383887 + 0.923380i \(0.625415\pi\)
\(108\) 0 0
\(109\) −1.60517e8 −1.13714 −0.568570 0.822635i \(-0.692503\pi\)
−0.568570 + 0.822635i \(0.692503\pi\)
\(110\) 0 0
\(111\) −1.70102e8 1.41855e8i −1.12052 0.934442i
\(112\) 0 0
\(113\) 2.56759e8 1.57475 0.787376 0.616473i \(-0.211439\pi\)
0.787376 + 0.616473i \(0.211439\pi\)
\(114\) 0 0
\(115\) 1.18527e8 2.65487e8i 0.677680 1.51793i
\(116\) 0 0
\(117\) 2.62964e8 4.80160e7i 1.40331 0.256237i
\(118\) 0 0
\(119\) 1.31150e8i 0.654004i
\(120\) 0 0
\(121\) 2.14064e8 0.998625
\(122\) 0 0
\(123\) 1.70692e8 + 1.42346e8i 0.745748 + 0.621908i
\(124\) 0 0
\(125\) −2.32421e8 + 7.47336e7i −0.951997 + 0.306109i
\(126\) 0 0
\(127\) 1.27490e8i 0.490074i 0.969514 + 0.245037i \(0.0788001\pi\)
−0.969514 + 0.245037i \(0.921200\pi\)
\(128\) 0 0
\(129\) −3.97372e7 3.31383e7i −0.143495 0.119666i
\(130\) 0 0
\(131\) 2.57502e8i 0.874369i 0.899372 + 0.437185i \(0.144024\pi\)
−0.899372 + 0.437185i \(0.855976\pi\)
\(132\) 0 0
\(133\) 9.69458e8i 3.09829i
\(134\) 0 0
\(135\) 2.67127e8 1.97401e8i 0.804235 0.594311i
\(136\) 0 0
\(137\) 4.60197e7 0.130636 0.0653178 0.997865i \(-0.479194\pi\)
0.0653178 + 0.997865i \(0.479194\pi\)
\(138\) 0 0
\(139\) −4.30317e8 −1.15274 −0.576368 0.817190i \(-0.695530\pi\)
−0.576368 + 0.817190i \(0.695530\pi\)
\(140\) 0 0
\(141\) −1.06805e8 + 1.28073e8i −0.270219 + 0.324027i
\(142\) 0 0
\(143\) 2.21199e7 0.0528981
\(144\) 0 0
\(145\) 1.31981e8 + 5.89230e7i 0.298566 + 0.133295i
\(146\) 0 0
\(147\) 6.17225e8 7.40132e8i 1.32183 1.58504i
\(148\) 0 0
\(149\) 6.09562e6i 0.0123672i −0.999981 0.00618362i \(-0.998032\pi\)
0.999981 0.00618362i \(-0.00196832\pi\)
\(150\) 0 0
\(151\) −6.59787e8 −1.26910 −0.634550 0.772882i \(-0.718815\pi\)
−0.634550 + 0.772882i \(0.718815\pi\)
\(152\) 0 0
\(153\) 3.67772e7 + 2.01414e8i 0.0671140 + 0.367556i
\(154\) 0 0
\(155\) 5.26040e7 1.17827e8i 0.0911364 0.204136i
\(156\) 0 0
\(157\) 1.45497e8i 0.239472i −0.992806 0.119736i \(-0.961795\pi\)
0.992806 0.119736i \(-0.0382048\pi\)
\(158\) 0 0
\(159\) −5.69508e8 + 6.82914e8i −0.891069 + 1.06851i
\(160\) 0 0
\(161\) 1.95505e9i 2.90974i
\(162\) 0 0
\(163\) 5.62267e8i 0.796512i 0.917274 + 0.398256i \(0.130384\pi\)
−0.917274 + 0.398256i \(0.869616\pi\)
\(164\) 0 0
\(165\) 2.46793e7 1.20986e7i 0.0332964 0.0163230i
\(166\) 0 0
\(167\) 1.35010e9 1.73580 0.867900 0.496739i \(-0.165469\pi\)
0.867900 + 0.496739i \(0.165469\pi\)
\(168\) 0 0
\(169\) −8.44221e8 −1.03493
\(170\) 0 0
\(171\) −2.71856e8 1.48885e9i −0.317947 1.74127i
\(172\) 0 0
\(173\) −1.33226e8 −0.148733 −0.0743663 0.997231i \(-0.523693\pi\)
−0.0743663 + 0.997231i \(0.523693\pi\)
\(174\) 0 0
\(175\) −1.22224e9 + 1.09601e9i −1.30318 + 1.16859i
\(176\) 0 0
\(177\) −3.23911e8 2.70122e8i −0.330014 0.275211i
\(178\) 0 0
\(179\) 4.42348e8i 0.430875i −0.976518 0.215438i \(-0.930882\pi\)
0.976518 0.215438i \(-0.0691178\pi\)
\(180\) 0 0
\(181\) −2.60496e8 −0.242710 −0.121355 0.992609i \(-0.538724\pi\)
−0.121355 + 0.992609i \(0.538724\pi\)
\(182\) 0 0
\(183\) 411525. 493472.i 0.000366937 0.000440005i
\(184\) 0 0
\(185\) 1.56056e9 + 6.96713e8i 1.33228 + 0.594795i
\(186\) 0 0
\(187\) 1.69425e7i 0.0138551i
\(188\) 0 0
\(189\) 1.09908e9 1.94435e9i 0.861351 1.52379i
\(190\) 0 0
\(191\) 5.58196e8i 0.419424i −0.977763 0.209712i \(-0.932747\pi\)
0.977763 0.209712i \(-0.0672526\pi\)
\(192\) 0 0
\(193\) 1.45829e9i 1.05103i −0.850784 0.525515i \(-0.823873\pi\)
0.850784 0.525515i \(-0.176127\pi\)
\(194\) 0 0
\(195\) −1.85201e9 + 9.07918e8i −1.28087 + 0.627926i
\(196\) 0 0
\(197\) 1.09018e9 0.723823 0.361911 0.932212i \(-0.382124\pi\)
0.361911 + 0.932212i \(0.382124\pi\)
\(198\) 0 0
\(199\) 1.15779e9 0.738276 0.369138 0.929375i \(-0.379653\pi\)
0.369138 + 0.929375i \(0.379653\pi\)
\(200\) 0 0
\(201\) 1.62541e9 + 1.35549e9i 0.995817 + 0.830450i
\(202\) 0 0
\(203\) 9.71911e8 0.572325
\(204\) 0 0
\(205\) −1.56597e9 6.99127e8i −0.886682 0.395859i
\(206\) 0 0
\(207\) −5.48237e8 3.00247e9i −0.298598 1.63530i
\(208\) 0 0
\(209\) 1.25239e8i 0.0656376i
\(210\) 0 0
\(211\) 2.41066e9 1.21620 0.608101 0.793860i \(-0.291932\pi\)
0.608101 + 0.793860i \(0.291932\pi\)
\(212\) 0 0
\(213\) 2.86842e9 + 2.39209e9i 1.39356 + 1.16214i
\(214\) 0 0
\(215\) 3.64559e8 + 1.62757e8i 0.170614 + 0.0761704i
\(216\) 0 0
\(217\) 8.67682e8i 0.391311i
\(218\) 0 0
\(219\) 2.03486e9 + 1.69695e9i 0.884623 + 0.737721i
\(220\) 0 0
\(221\) 1.27142e9i 0.532990i
\(222\) 0 0
\(223\) 1.81420e9i 0.733610i −0.930298 0.366805i \(-0.880452\pi\)
0.930298 0.366805i \(-0.119548\pi\)
\(224\) 0 0
\(225\) −1.56971e9 + 2.02594e9i −0.612477 + 0.790489i
\(226\) 0 0
\(227\) −6.98312e8 −0.262994 −0.131497 0.991317i \(-0.541978\pi\)
−0.131497 + 0.991317i \(0.541978\pi\)
\(228\) 0 0
\(229\) 7.29412e8 0.265235 0.132618 0.991167i \(-0.457662\pi\)
0.132618 + 0.991167i \(0.457662\pi\)
\(230\) 0 0
\(231\) 1.18370e8 1.41940e8i 0.0415712 0.0498492i
\(232\) 0 0
\(233\) −6.15946e8 −0.208987 −0.104493 0.994526i \(-0.533322\pi\)
−0.104493 + 0.994526i \(0.533322\pi\)
\(234\) 0 0
\(235\) 5.24568e8 1.17498e9i 0.172001 0.385263i
\(236\) 0 0
\(237\) 4.92631e8 5.90729e8i 0.156145 0.187238i
\(238\) 0 0
\(239\) 1.63622e9i 0.501477i −0.968055 0.250739i \(-0.919327\pi\)
0.968055 0.250739i \(-0.0806735\pi\)
\(240\) 0 0
\(241\) −3.65311e9 −1.08292 −0.541458 0.840727i \(-0.682128\pi\)
−0.541458 + 0.840727i \(0.682128\pi\)
\(242\) 0 0
\(243\) 1.14267e9 3.29423e9i 0.327715 0.944777i
\(244\) 0 0
\(245\) −3.03147e9 + 6.79016e9i −0.841373 + 1.88459i
\(246\) 0 0
\(247\) 9.39830e9i 2.52500i
\(248\) 0 0
\(249\) −3.31994e9 + 3.98104e9i −0.863641 + 1.03562i
\(250\) 0 0
\(251\) 6.67710e9i 1.68226i −0.540833 0.841130i \(-0.681891\pi\)
0.540833 0.841130i \(-0.318109\pi\)
\(252\) 0 0
\(253\) 2.52561e8i 0.0616431i
\(254\) 0 0
\(255\) −6.95408e8 1.41853e9i −0.164467 0.335488i
\(256\) 0 0
\(257\) 9.63439e8 0.220847 0.110424 0.993885i \(-0.464779\pi\)
0.110424 + 0.993885i \(0.464779\pi\)
\(258\) 0 0
\(259\) 1.14920e10 2.55386
\(260\) 0 0
\(261\) 1.49261e9 2.72544e8i 0.321651 0.0587320i
\(262\) 0 0
\(263\) −2.69617e9 −0.563539 −0.281769 0.959482i \(-0.590921\pi\)
−0.281769 + 0.959482i \(0.590921\pi\)
\(264\) 0 0
\(265\) 2.79711e9 6.26522e9i 0.567187 1.27044i
\(266\) 0 0
\(267\) −2.84014e9 2.36850e9i −0.558849 0.466046i
\(268\) 0 0
\(269\) 7.93905e9i 1.51621i −0.652132 0.758105i \(-0.726125\pi\)
0.652132 0.758105i \(-0.273875\pi\)
\(270\) 0 0
\(271\) −7.64024e9 −1.41654 −0.708272 0.705940i \(-0.750525\pi\)
−0.708272 + 0.705940i \(0.750525\pi\)
\(272\) 0 0
\(273\) −8.88283e9 + 1.06517e10i −1.59919 + 1.91764i
\(274\) 0 0
\(275\) −1.57894e8 + 1.41587e8i −0.0276080 + 0.0247566i
\(276\) 0 0
\(277\) 2.23691e9i 0.379952i 0.981789 + 0.189976i \(0.0608411\pi\)
−0.981789 + 0.189976i \(0.939159\pi\)
\(278\) 0 0
\(279\) −2.43316e8 1.33254e9i −0.0401564 0.219920i
\(280\) 0 0
\(281\) 2.15743e9i 0.346028i 0.984919 + 0.173014i \(0.0553507\pi\)
−0.984919 + 0.173014i \(0.944649\pi\)
\(282\) 0 0
\(283\) 3.23888e9i 0.504952i −0.967603 0.252476i \(-0.918755\pi\)
0.967603 0.252476i \(-0.0812448\pi\)
\(284\) 0 0
\(285\) 5.14044e9 + 1.04857e10i 0.779150 + 1.58935i
\(286\) 0 0
\(287\) −1.15318e10 −1.69969
\(288\) 0 0
\(289\) −6.00193e9 −0.860398
\(290\) 0 0
\(291\) 1.60209e9 + 1.33604e9i 0.223416 + 0.186315i
\(292\) 0 0
\(293\) 2.51931e8 0.0341831 0.0170916 0.999854i \(-0.494559\pi\)
0.0170916 + 0.999854i \(0.494559\pi\)
\(294\) 0 0
\(295\) 2.97164e9 + 1.32669e9i 0.392381 + 0.175179i
\(296\) 0 0
\(297\) 1.41983e8 2.51178e8i 0.0182478 0.0322817i
\(298\) 0 0
\(299\) 1.89530e10i 2.37134i
\(300\) 0 0
\(301\) 2.68462e9 0.327052
\(302\) 0 0
\(303\) 3.02557e9 + 2.52314e9i 0.358953 + 0.299345i
\(304\) 0 0
\(305\) −2.02118e6 + 4.52723e6i −0.000233564 + 0.000523159i
\(306\) 0 0
\(307\) 9.85077e9i 1.10896i 0.832196 + 0.554481i \(0.187083\pi\)
−0.832196 + 0.554481i \(0.812917\pi\)
\(308\) 0 0
\(309\) 2.90233e9 + 2.42037e9i 0.318356 + 0.265490i
\(310\) 0 0
\(311\) 1.01536e10i 1.08538i −0.839934 0.542688i \(-0.817407\pi\)
0.839934 0.542688i \(-0.182593\pi\)
\(312\) 0 0
\(313\) 8.43663e9i 0.879005i 0.898241 + 0.439503i \(0.144845\pi\)
−0.898241 + 0.439503i \(0.855155\pi\)
\(314\) 0 0
\(315\) −4.08463e9 + 1.67426e10i −0.414869 + 1.70052i
\(316\) 0 0
\(317\) −1.97605e10 −1.95687 −0.978433 0.206564i \(-0.933772\pi\)
−0.978433 + 0.206564i \(0.933772\pi\)
\(318\) 0 0
\(319\) 1.25555e8 0.0121247
\(320\) 0 0
\(321\) 5.22088e9 6.26052e9i 0.491727 0.589644i
\(322\) 0 0
\(323\) −7.19850e9 −0.661351
\(324\) 0 0
\(325\) 1.18489e10 1.06251e10i 1.06204 0.952358i
\(326\) 0 0
\(327\) 8.32714e9 9.98532e9i 0.728291 0.873315i
\(328\) 0 0
\(329\) 8.65254e9i 0.738516i
\(330\) 0 0
\(331\) 1.59240e10 1.32660 0.663300 0.748354i \(-0.269156\pi\)
0.663300 + 0.748354i \(0.269156\pi\)
\(332\) 0 0
\(333\) 1.76489e10 3.22260e9i 1.43529 0.262077i
\(334\) 0 0
\(335\) −1.49120e10 6.65744e9i −1.18401 0.528601i
\(336\) 0 0
\(337\) 1.46724e10i 1.13758i 0.822483 + 0.568790i \(0.192588\pi\)
−0.822483 + 0.568790i \(0.807412\pi\)
\(338\) 0 0
\(339\) −1.33199e10 + 1.59723e10i −1.00856 + 1.20940i
\(340\) 0 0
\(341\) 1.12091e8i 0.00828995i
\(342\) 0 0
\(343\) 2.57752e10i 1.86219i
\(344\) 0 0
\(345\) 1.03664e10 + 2.11459e10i 0.731734 + 1.49263i
\(346\) 0 0
\(347\) 3.39960e9 0.234482 0.117241 0.993103i \(-0.462595\pi\)
0.117241 + 0.993103i \(0.462595\pi\)
\(348\) 0 0
\(349\) −2.59863e10 −1.75163 −0.875817 0.482643i \(-0.839677\pi\)
−0.875817 + 0.482643i \(0.839677\pi\)
\(350\) 0 0
\(351\) −1.06549e10 + 1.88492e10i −0.701971 + 1.24184i
\(352\) 0 0
\(353\) −1.50600e10 −0.969895 −0.484948 0.874543i \(-0.661161\pi\)
−0.484948 + 0.874543i \(0.661161\pi\)
\(354\) 0 0
\(355\) −2.63156e10 1.17486e10i −1.65691 0.739729i
\(356\) 0 0
\(357\) −8.15850e9 6.80369e9i −0.502270 0.418863i
\(358\) 0 0
\(359\) 2.73218e10i 1.64487i 0.568860 + 0.822435i \(0.307385\pi\)
−0.568860 + 0.822435i \(0.692615\pi\)
\(360\) 0 0
\(361\) 3.62276e10 2.13310
\(362\) 0 0
\(363\) −1.11050e10 + 1.33164e10i −0.639578 + 0.766937i
\(364\) 0 0
\(365\) −1.86683e10 8.33448e9i −1.05180 0.469577i
\(366\) 0 0
\(367\) 5.36389e9i 0.295675i −0.989012 0.147838i \(-0.952769\pi\)
0.989012 0.147838i \(-0.0472313\pi\)
\(368\) 0 0
\(369\) −1.77100e10 + 3.23377e9i −0.955242 + 0.174423i
\(370\) 0 0
\(371\) 4.61372e10i 2.43532i
\(372\) 0 0
\(373\) 1.30694e10i 0.675183i −0.941293 0.337592i \(-0.890388\pi\)
0.941293 0.337592i \(-0.109612\pi\)
\(374\) 0 0
\(375\) 7.40836e9 1.83353e10i 0.374625 0.927176i
\(376\) 0 0
\(377\) −9.42208e9 −0.466424
\(378\) 0 0
\(379\) −2.04087e10 −0.989140 −0.494570 0.869138i \(-0.664674\pi\)
−0.494570 + 0.869138i \(0.664674\pi\)
\(380\) 0 0
\(381\) −7.93083e9 6.61382e9i −0.376373 0.313872i
\(382\) 0 0
\(383\) 2.41777e10 1.12362 0.561810 0.827267i \(-0.310105\pi\)
0.561810 + 0.827267i \(0.310105\pi\)
\(384\) 0 0
\(385\) −5.81366e8 + 1.30220e9i −0.0264610 + 0.0592699i
\(386\) 0 0
\(387\) 4.12290e9 7.52823e8i 0.183806 0.0335621i
\(388\) 0 0
\(389\) 1.99256e10i 0.870187i −0.900385 0.435094i \(-0.856715\pi\)
0.900385 0.435094i \(-0.143285\pi\)
\(390\) 0 0
\(391\) −1.45168e10 −0.621104
\(392\) 0 0
\(393\) −1.60185e10 1.33585e10i −0.671509 0.559997i
\(394\) 0 0
\(395\) −2.41953e9 + 5.41949e9i −0.0993901 + 0.222623i
\(396\) 0 0
\(397\) 1.33592e9i 0.0537798i −0.999638 0.0268899i \(-0.991440\pi\)
0.999638 0.0268899i \(-0.00856035\pi\)
\(398\) 0 0
\(399\) 6.03075e10 + 5.02927e10i 2.37947 + 1.98433i
\(400\) 0 0
\(401\) 9.38673e9i 0.363025i −0.983389 0.181513i \(-0.941901\pi\)
0.983389 0.181513i \(-0.0580994\pi\)
\(402\) 0 0
\(403\) 8.41164e9i 0.318904i
\(404\) 0 0
\(405\) −1.57800e9 + 2.68579e10i −0.0586526 + 0.998278i
\(406\) 0 0
\(407\) 1.48458e9 0.0541037
\(408\) 0 0
\(409\) 2.11317e10 0.755164 0.377582 0.925976i \(-0.376756\pi\)
0.377582 + 0.925976i \(0.376756\pi\)
\(410\) 0 0
\(411\) −2.38737e9 + 2.86277e9i −0.0836667 + 0.100327i
\(412\) 0 0
\(413\) 2.18832e10 0.752161
\(414\) 0 0
\(415\) 1.63057e10 3.65231e10i 0.549728 1.23133i
\(416\) 0 0
\(417\) 2.23236e10 2.67689e10i 0.738279 0.885292i
\(418\) 0 0
\(419\) 2.46365e10i 0.799324i −0.916663 0.399662i \(-0.869127\pi\)
0.916663 0.399662i \(-0.130873\pi\)
\(420\) 0 0
\(421\) 1.46468e10 0.466244 0.233122 0.972447i \(-0.425106\pi\)
0.233122 + 0.972447i \(0.425106\pi\)
\(422\) 0 0
\(423\) −2.42635e9 1.32881e10i −0.0757867 0.415052i
\(424\) 0 0
\(425\) 8.13817e9 + 9.07548e9i 0.249443 + 0.278172i
\(426\) 0 0
\(427\) 3.33386e7i 0.00100285i
\(428\) 0 0
\(429\) −1.14752e9 + 1.37602e9i −0.0338790 + 0.0406253i
\(430\) 0 0
\(431\) 3.06739e10i 0.888913i 0.895800 + 0.444457i \(0.146603\pi\)
−0.895800 + 0.444457i \(0.853397\pi\)
\(432\) 0 0
\(433\) 4.75808e10i 1.35357i 0.736182 + 0.676784i \(0.236627\pi\)
−0.736182 + 0.676784i \(0.763373\pi\)
\(434\) 0 0
\(435\) −1.05123e10 + 5.15345e9i −0.293588 + 0.143927i
\(436\) 0 0
\(437\) 1.07308e11 2.94243
\(438\) 0 0
\(439\) 6.10565e10 1.64389 0.821947 0.569563i \(-0.192888\pi\)
0.821947 + 0.569563i \(0.192888\pi\)
\(440\) 0 0
\(441\) 1.40218e10 + 7.67919e10i 0.370724 + 2.03030i
\(442\) 0 0
\(443\) −1.70403e10 −0.442448 −0.221224 0.975223i \(-0.571005\pi\)
−0.221224 + 0.975223i \(0.571005\pi\)
\(444\) 0 0
\(445\) 2.60562e10 + 1.16328e10i 0.664462 + 0.296649i
\(446\) 0 0
\(447\) 3.79193e8 + 3.16223e8i 0.00949795 + 0.00792070i
\(448\) 0 0
\(449\) 7.20427e10i 1.77257i −0.463136 0.886287i \(-0.653276\pi\)
0.463136 0.886287i \(-0.346724\pi\)
\(450\) 0 0
\(451\) −1.48973e9 −0.0360082
\(452\) 0 0
\(453\) 3.42279e10 4.10436e10i 0.812806 0.974659i
\(454\) 0 0
\(455\) 4.36276e10 9.77211e10i 1.01792 2.28004i
\(456\) 0 0
\(457\) 4.05546e10i 0.929770i 0.885371 + 0.464885i \(0.153904\pi\)
−0.885371 + 0.464885i \(0.846096\pi\)
\(458\) 0 0
\(459\) −1.44373e10 8.16095e9i −0.325264 0.183861i
\(460\) 0 0
\(461\) 4.20374e9i 0.0930748i 0.998917 + 0.0465374i \(0.0148187\pi\)
−0.998917 + 0.0465374i \(0.985181\pi\)
\(462\) 0 0
\(463\) 1.04672e10i 0.227775i −0.993494 0.113888i \(-0.963670\pi\)
0.993494 0.113888i \(-0.0363304\pi\)
\(464\) 0 0
\(465\) 4.60079e9 + 9.38490e9i 0.0984057 + 0.200733i
\(466\) 0 0
\(467\) −4.59596e10 −0.966293 −0.483146 0.875540i \(-0.660506\pi\)
−0.483146 + 0.875540i \(0.660506\pi\)
\(468\) 0 0
\(469\) −1.09812e11 −2.26964
\(470\) 0 0
\(471\) 9.05096e9 + 7.54795e9i 0.183912 + 0.153372i
\(472\) 0 0
\(473\) 3.46810e8 0.00692862
\(474\) 0 0
\(475\) −6.01572e10 6.70857e10i −1.18172 1.31782i
\(476\) 0 0
\(477\) −1.29378e10 7.08552e10i −0.249913 1.36867i
\(478\) 0 0
\(479\) 7.44346e10i 1.41395i −0.707241 0.706973i \(-0.750060\pi\)
0.707241 0.706973i \(-0.249940\pi\)
\(480\) 0 0
\(481\) −1.11408e11 −2.08131
\(482\) 0 0
\(483\) 1.21619e11 + 1.01422e11i 2.23466 + 1.86357i
\(484\) 0 0
\(485\) −1.46979e10 6.56189e9i −0.265638 0.118594i
\(486\) 0 0
\(487\) 7.50739e10i 1.33467i −0.744759 0.667334i \(-0.767435\pi\)
0.744759 0.667334i \(-0.232565\pi\)
\(488\) 0 0
\(489\) −3.49772e10 2.91688e10i −0.611715 0.510133i
\(490\) 0 0
\(491\) 2.16105e10i 0.371825i −0.982566 0.185913i \(-0.940476\pi\)
0.982566 0.185913i \(-0.0595241\pi\)
\(492\) 0 0
\(493\) 7.21672e9i 0.122167i
\(494\) 0 0
\(495\) −5.27670e8 + 2.16288e9i −0.00878904 + 0.0360256i
\(496\) 0 0
\(497\) −1.93789e11 −3.17616
\(498\) 0 0
\(499\) 5.73579e10 0.925105 0.462552 0.886592i \(-0.346934\pi\)
0.462552 + 0.886592i \(0.346934\pi\)
\(500\) 0 0
\(501\) −7.00393e10 + 8.39861e10i −1.11171 + 1.33308i
\(502\) 0 0
\(503\) −2.74629e10 −0.429017 −0.214508 0.976722i \(-0.568815\pi\)
−0.214508 + 0.976722i \(0.568815\pi\)
\(504\) 0 0
\(505\) −2.77574e10 1.23923e10i −0.426789 0.190540i
\(506\) 0 0
\(507\) 4.37958e10 5.25168e10i 0.662827 0.794815i
\(508\) 0 0
\(509\) 9.69537e10i 1.44442i −0.691674 0.722210i \(-0.743126\pi\)
0.691674 0.722210i \(-0.256874\pi\)
\(510\) 0 0
\(511\) −1.37474e11 −2.01621
\(512\) 0 0
\(513\) 1.06720e11 + 6.03256e10i 1.54091 + 0.871028i
\(514\) 0 0
\(515\) −2.66268e10 1.18875e10i −0.378521 0.168990i
\(516\) 0 0
\(517\) 1.11777e9i 0.0156455i
\(518\) 0 0
\(519\) 6.91141e9 8.28767e9i 0.0952570 0.114226i
\(520\) 0 0
\(521\) 8.75326e10i 1.18801i 0.804462 + 0.594003i \(0.202453\pi\)
−0.804462 + 0.594003i \(0.797547\pi\)
\(522\) 0 0
\(523\) 7.58510e10i 1.01380i −0.862003 0.506902i \(-0.830790\pi\)
0.862003 0.506902i \(-0.169210\pi\)
\(524\) 0 0
\(525\) −4.77353e9 1.32890e11i −0.0628352 1.74926i
\(526\) 0 0
\(527\) −6.44279e9 −0.0835279
\(528\) 0 0
\(529\) 1.38091e11 1.76336
\(530\) 0 0
\(531\) 3.36072e10 6.13651e9i 0.422721 0.0771869i
\(532\) 0 0
\(533\) 1.11794e11 1.38519
\(534\) 0 0
\(535\) −2.56421e10 + 5.74356e10i −0.312996 + 0.701077i
\(536\) 0 0
\(537\) 2.75173e10 + 2.29477e10i 0.330909 + 0.275958i
\(538\) 0 0
\(539\) 6.45957e9i 0.0765330i
\(540\) 0 0
\(541\) 3.55918e10 0.415490 0.207745 0.978183i \(-0.433388\pi\)
0.207745 + 0.978183i \(0.433388\pi\)
\(542\) 0 0
\(543\) 1.35138e10 1.62048e10i 0.155445 0.186399i
\(544\) 0 0
\(545\) −4.08983e10 + 9.16079e10i −0.463575 + 1.03836i
\(546\) 0 0
\(547\) 4.06308e10i 0.453843i −0.973913 0.226922i \(-0.927134\pi\)
0.973913 0.226922i \(-0.0728661\pi\)
\(548\) 0 0
\(549\) 9.34885e6 + 5.11998e7i 0.000102913 + 0.000563610i
\(550\) 0 0
\(551\) 5.33458e10i 0.578754i
\(552\) 0 0
\(553\) 3.99092e10i 0.426749i
\(554\) 0 0
\(555\) −1.24298e11 + 6.09351e10i −1.31007 + 0.642237i
\(556\) 0 0
\(557\) 1.01469e11 1.05417 0.527087 0.849811i \(-0.323284\pi\)
0.527087 + 0.849811i \(0.323284\pi\)
\(558\) 0 0
\(559\) −2.60257e10 −0.266536
\(560\) 0 0
\(561\) −1.05395e9 8.78928e8i −0.0106406 0.00887364i
\(562\) 0 0
\(563\) 1.88086e11 1.87208 0.936039 0.351897i \(-0.114463\pi\)
0.936039 + 0.351897i \(0.114463\pi\)
\(564\) 0 0
\(565\) 6.54202e10 1.46534e11i 0.641975 1.43795i
\(566\) 0 0
\(567\) 6.39357e10 + 1.69238e11i 0.618602 + 1.63744i
\(568\) 0 0
\(569\) 1.25370e10i 0.119604i −0.998210 0.0598018i \(-0.980953\pi\)
0.998210 0.0598018i \(-0.0190469\pi\)
\(570\) 0 0
\(571\) 5.63208e10 0.529816 0.264908 0.964274i \(-0.414658\pi\)
0.264908 + 0.964274i \(0.414658\pi\)
\(572\) 0 0
\(573\) 3.47239e10 + 2.89576e10i 0.322114 + 0.268624i
\(574\) 0 0
\(575\) −1.21316e11 1.35288e11i −1.10980 1.23762i
\(576\) 0 0
\(577\) 3.29296e10i 0.297087i −0.988906 0.148544i \(-0.952541\pi\)
0.988906 0.148544i \(-0.0474585\pi\)
\(578\) 0 0
\(579\) 9.07166e10 + 7.56521e10i 0.807184 + 0.673142i
\(580\) 0 0
\(581\) 2.68957e11i 2.36036i
\(582\) 0 0
\(583\) 5.96019e9i 0.0515924i
\(584\) 0 0
\(585\) 3.95980e10 1.62309e11i 0.338104 1.38586i
\(586\) 0 0
\(587\) −1.97454e10 −0.166308 −0.0831541 0.996537i \(-0.526499\pi\)
−0.0831541 + 0.996537i \(0.526499\pi\)
\(588\) 0 0
\(589\) 4.76249e10 0.395707
\(590\) 0 0
\(591\) −5.65553e10 + 6.78171e10i −0.463579 + 0.555891i
\(592\) 0 0
\(593\) −1.66098e11 −1.34322 −0.671609 0.740905i \(-0.734397\pi\)
−0.671609 + 0.740905i \(0.734397\pi\)
\(594\) 0 0
\(595\) 7.48482e10 + 3.34160e10i 0.597191 + 0.266616i
\(596\) 0 0
\(597\) −6.00630e10 + 7.20233e10i −0.472835 + 0.566991i
\(598\) 0 0
\(599\) 1.01300e10i 0.0786865i 0.999226 + 0.0393433i \(0.0125266\pi\)
−0.999226 + 0.0393433i \(0.987473\pi\)
\(600\) 0 0
\(601\) 1.99185e11 1.52672 0.763360 0.645974i \(-0.223549\pi\)
0.763360 + 0.645974i \(0.223549\pi\)
\(602\) 0 0
\(603\) −1.68644e11 + 3.07935e10i −1.27556 + 0.232911i
\(604\) 0 0
\(605\) 5.45418e10 1.22168e11i 0.407107 0.911875i
\(606\) 0 0
\(607\) 6.67938e10i 0.492019i −0.969267 0.246009i \(-0.920881\pi\)
0.969267 0.246009i \(-0.0791194\pi\)
\(608\) 0 0
\(609\) −5.04200e10 + 6.04601e10i −0.366550 + 0.439541i
\(610\) 0 0
\(611\) 8.38811e10i 0.601865i
\(612\) 0 0
\(613\) 1.70432e11i 1.20700i 0.797362 + 0.603502i \(0.206228\pi\)
−0.797362 + 0.603502i \(0.793772\pi\)
\(614\) 0 0
\(615\) 1.24729e11 6.11462e10i 0.871900 0.427434i
\(616\) 0 0
\(617\) 6.08071e10 0.419579 0.209790 0.977747i \(-0.432722\pi\)
0.209790 + 0.977747i \(0.432722\pi\)
\(618\) 0 0
\(619\) −8.63704e10 −0.588305 −0.294152 0.955759i \(-0.595037\pi\)
−0.294152 + 0.955759i \(0.595037\pi\)
\(620\) 0 0
\(621\) 2.15217e11 + 1.21655e11i 1.44714 + 0.818020i
\(622\) 0 0
\(623\) 1.91878e11 1.27372
\(624\) 0 0
\(625\) −1.65680e10 + 1.51686e11i −0.108580 + 0.994088i
\(626\) 0 0
\(627\) 7.79076e9 + 6.49702e9i 0.0504092 + 0.0420382i
\(628\) 0 0
\(629\) 8.53315e10i 0.545138i
\(630\) 0 0
\(631\) 2.17134e10 0.136965 0.0684826 0.997652i \(-0.478184\pi\)
0.0684826 + 0.997652i \(0.478184\pi\)
\(632\) 0 0
\(633\) −1.25058e11 + 1.49961e11i −0.778927 + 0.934034i
\(634\) 0 0
\(635\) 7.27594e10 + 3.24834e10i 0.447501 + 0.199787i
\(636\) 0 0
\(637\) 4.84747e11i 2.94413i
\(638\) 0 0
\(639\) −2.97611e11 + 5.43424e10i −1.78503 + 0.325938i
\(640\) 0 0
\(641\) 2.29392e10i 0.135877i 0.997690 + 0.0679385i \(0.0216422\pi\)
−0.997690 + 0.0679385i \(0.978358\pi\)
\(642\) 0 0
\(643\) 1.27837e11i 0.747846i 0.927460 + 0.373923i \(0.121988\pi\)
−0.927460 + 0.373923i \(0.878012\pi\)
\(644\) 0 0
\(645\) −2.90370e10 + 1.42349e10i −0.167769 + 0.0822460i
\(646\) 0 0
\(647\) −2.16440e11 −1.23515 −0.617576 0.786512i \(-0.711885\pi\)
−0.617576 + 0.786512i \(0.711885\pi\)
\(648\) 0 0
\(649\) 2.82696e9 0.0159346
\(650\) 0 0
\(651\) 5.39763e10 + 4.50129e10i 0.300524 + 0.250618i
\(652\) 0 0
\(653\) 2.18939e11 1.20412 0.602061 0.798450i \(-0.294346\pi\)
0.602061 + 0.798450i \(0.294346\pi\)
\(654\) 0 0
\(655\) 1.46958e11 + 6.56094e10i 0.798414 + 0.356452i
\(656\) 0 0
\(657\) −2.11126e11 + 3.85506e10i −1.13313 + 0.206904i
\(658\) 0 0
\(659\) 1.82589e11i 0.968128i −0.875032 0.484064i \(-0.839160\pi\)
0.875032 0.484064i \(-0.160840\pi\)
\(660\) 0 0
\(661\) −2.06254e11 −1.08043 −0.540216 0.841526i \(-0.681657\pi\)
−0.540216 + 0.841526i \(0.681657\pi\)
\(662\) 0 0
\(663\) 7.90916e10 + 6.59576e10i 0.409333 + 0.341358i
\(664\) 0 0
\(665\) −5.53276e11 2.47010e11i −2.82915 1.26307i
\(666\) 0 0
\(667\) 1.07579e11i 0.543533i
\(668\) 0 0
\(669\) 1.12857e11 + 9.41155e10i 0.563407 + 0.469847i
\(670\) 0 0
\(671\) 4.30682e6i 2.12455e-5i
\(672\) 0 0
\(673\) 2.07090e11i 1.00948i 0.863270 + 0.504742i \(0.168412\pi\)
−0.863270 + 0.504742i \(0.831588\pi\)
\(674\) 0 0
\(675\) −4.45961e10 2.02747e11i −0.214824 0.976653i
\(676\) 0 0
\(677\) 1.25282e10 0.0596393 0.0298196 0.999555i \(-0.490507\pi\)
0.0298196 + 0.999555i \(0.490507\pi\)
\(678\) 0 0
\(679\) −1.08236e11 −0.509204
\(680\) 0 0
\(681\) 3.62264e10 4.34402e10i 0.168437 0.201978i
\(682\) 0 0
\(683\) −9.26965e10 −0.425971 −0.212986 0.977055i \(-0.568319\pi\)
−0.212986 + 0.977055i \(0.568319\pi\)
\(684\) 0 0
\(685\) 1.17254e10 2.62637e10i 0.0532558 0.119287i
\(686\) 0 0
\(687\) −3.78398e10 + 4.53748e10i −0.169872 + 0.203699i
\(688\) 0 0
\(689\) 4.47272e11i 1.98470i
\(690\) 0 0
\(691\) 1.04126e11 0.456716 0.228358 0.973577i \(-0.426664\pi\)
0.228358 + 0.973577i \(0.426664\pi\)
\(692\) 0 0
\(693\) 2.68907e9 + 1.47269e10i 0.0116592 + 0.0638527i
\(694\) 0 0
\(695\) −1.09641e11 + 2.45585e11i −0.469932 + 1.05260i
\(696\) 0 0
\(697\) 8.56271e10i 0.362811i
\(698\) 0 0
\(699\) 3.19535e10 3.83164e10i 0.133847 0.160500i
\(700\) 0 0
\(701\) 3.27492e11i 1.35622i 0.734962 + 0.678108i \(0.237200\pi\)
−0.734962 + 0.678108i \(0.762800\pi\)
\(702\) 0 0
\(703\) 6.30768e11i 2.58255i
\(704\) 0 0
\(705\) 4.58791e10 + 9.35864e10i 0.185720 + 0.378841i
\(706\) 0 0
\(707\) −2.04406e11 −0.818117
\(708\) 0 0
\(709\) −1.62420e11 −0.642766 −0.321383 0.946949i \(-0.604148\pi\)
−0.321383 + 0.946949i \(0.604148\pi\)
\(710\) 0 0
\(711\) 1.11914e10 + 6.12906e10i 0.0437931 + 0.239837i
\(712\) 0 0
\(713\) 9.60425e10 0.371625
\(714\) 0 0
\(715\) 5.63599e9 1.26240e10i 0.0215648 0.0483029i
\(716\) 0 0
\(717\) 1.01785e11 + 8.48826e10i 0.385131 + 0.321175i
\(718\) 0 0
\(719\) 2.33669e11i 0.874352i 0.899376 + 0.437176i \(0.144021\pi\)
−0.899376 + 0.437176i \(0.855979\pi\)
\(720\) 0 0
\(721\) −1.96080e11 −0.725591
\(722\) 0 0
\(723\) 1.89513e11 2.27251e11i 0.693564 0.831672i
\(724\) 0 0
\(725\) 6.72555e10 6.03094e10i 0.243431 0.218290i
\(726\) 0 0
\(727\) 2.99405e11i 1.07182i −0.844276 0.535909i \(-0.819969\pi\)
0.844276 0.535909i \(-0.180031\pi\)
\(728\) 0 0
\(729\) 1.45647e11 + 2.41978e11i 0.515694 + 0.856773i
\(730\) 0 0
\(731\) 1.99340e10i 0.0698113i
\(732\) 0 0
\(733\) 2.22345e11i 0.770216i 0.922872 + 0.385108i \(0.125836\pi\)
−0.922872 + 0.385108i \(0.874164\pi\)
\(734\) 0 0
\(735\) −2.65135e11 5.40834e11i −0.908483 1.85317i
\(736\) 0 0
\(737\) −1.41859e10 −0.0480826
\(738\) 0 0
\(739\) −9.52594e10 −0.319396 −0.159698 0.987166i \(-0.551052\pi\)
−0.159698 + 0.987166i \(0.551052\pi\)
\(740\) 0 0
\(741\) −5.84644e11 4.87557e11i −1.93918 1.61716i
\(742\) 0 0
\(743\) −4.02306e10 −0.132008 −0.0660042 0.997819i \(-0.521025\pi\)
−0.0660042 + 0.997819i \(0.521025\pi\)
\(744\) 0 0
\(745\) −3.47881e9 1.55311e9i −0.0112929 0.00504172i
\(746\) 0 0
\(747\) −7.54210e10 4.13050e11i −0.242220 1.32654i
\(748\) 0 0
\(749\) 4.22956e11i 1.34390i
\(750\) 0 0
\(751\) 3.43224e11 1.07899 0.539496 0.841988i \(-0.318615\pi\)
0.539496 + 0.841988i \(0.318615\pi\)
\(752\) 0 0
\(753\) 4.15365e11 + 3.46389e11i 1.29196 + 1.07742i
\(754\) 0 0
\(755\) −1.68108e11 + 3.76545e11i −0.517370 + 1.15885i
\(756\) 0 0
\(757\) 2.06609e10i 0.0629167i −0.999505 0.0314584i \(-0.989985\pi\)
0.999505 0.0314584i \(-0.0100152\pi\)
\(758\) 0 0
\(759\) 1.57112e10 + 1.31022e10i 0.0473415 + 0.0394799i
\(760\) 0 0
\(761\) 2.18213e11i 0.650643i −0.945604 0.325321i \(-0.894528\pi\)
0.945604 0.325321i \(-0.105472\pi\)
\(762\) 0 0
\(763\) 6.74602e11i 1.99044i
\(764\) 0 0
\(765\) 1.24319e11 + 3.03296e10i 0.362987 + 0.0885566i
\(766\) 0 0
\(767\) −2.12144e11 −0.612985
\(768\) 0 0
\(769\) −4.24678e10 −0.121438 −0.0607189 0.998155i \(-0.519339\pi\)
−0.0607189 + 0.998155i \(0.519339\pi\)
\(770\) 0 0
\(771\) −4.99805e10 + 5.99330e10i −0.141443 + 0.169609i
\(772\) 0 0
\(773\) −2.27245e11 −0.636468 −0.318234 0.948012i \(-0.603090\pi\)
−0.318234 + 0.948012i \(0.603090\pi\)
\(774\) 0 0
\(775\) −5.38418e10 6.00429e10i −0.149249 0.166439i
\(776\) 0 0
\(777\) −5.96173e11 + 7.14888e11i −1.63564 + 1.96134i
\(778\) 0 0
\(779\) 6.32954e11i 1.71879i
\(780\) 0 0
\(781\) −2.50344e10 −0.0672873
\(782\) 0 0
\(783\) −6.04782e10 + 1.06990e11i −0.160899 + 0.284641i
\(784\) 0 0
\(785\) −8.30359e10 3.70714e10i −0.218669 0.0976247i
\(786\) 0 0
\(787\) 3.13820e11i 0.818055i 0.912522 + 0.409027i \(0.134132\pi\)
−0.912522 + 0.409027i \(0.865868\pi\)
\(788\) 0 0
\(789\) 1.39869e11 1.67721e11i 0.360923 0.432793i
\(790\) 0 0
\(791\) 1.07908e12i 2.75643i
\(792\) 0 0
\(793\) 3.23197e8i 0.000817288i
\(794\) 0 0
\(795\) 2.44637e11 + 4.99023e11i 0.612427 + 1.24926i
\(796\) 0 0
\(797\) −2.89741e11 −0.718085 −0.359043 0.933321i \(-0.616897\pi\)
−0.359043 + 0.933321i \(0.616897\pi\)
\(798\) 0 0
\(799\) −6.42476e10 −0.157641
\(800\) 0 0
\(801\) 2.94677e11 5.38066e10i 0.715839 0.130709i
\(802\) 0 0
\(803\) −1.77594e10 −0.0427137
\(804\) 0 0
\(805\) −1.11576e12 4.98131e11i −2.65697 1.18621i
\(806\) 0 0
\(807\) 4.93868e11 + 4.11855e11i 1.16444 + 0.971070i
\(808\) 0 0
\(809\) 3.41840e11i 0.798048i 0.916940 + 0.399024i \(0.130651\pi\)
−0.916940 + 0.399024i \(0.869349\pi\)
\(810\) 0 0
\(811\) 7.64414e10 0.176703 0.0883517 0.996089i \(-0.471840\pi\)
0.0883517 + 0.996089i \(0.471840\pi\)
\(812\) 0 0
\(813\) 3.96354e11 4.75280e11i 0.907238 1.08790i
\(814\) 0 0
\(815\) 3.20890e11 + 1.43261e11i 0.727319 + 0.324712i
\(816\) 0 0
\(817\) 1.47352e11i 0.330726i
\(818\) 0 0
\(819\) −2.01796e11 1.10516e12i −0.448516 2.45634i
\(820\) 0 0
\(821\) 4.25765e9i 0.00937126i 0.999989 + 0.00468563i \(0.00149149\pi\)
−0.999989 + 0.00468563i \(0.998509\pi\)
\(822\) 0 0
\(823\) 5.40923e11i 1.17906i 0.807746 + 0.589530i \(0.200687\pi\)
−0.807746 + 0.589530i \(0.799313\pi\)
\(824\) 0 0
\(825\) −6.16665e8 1.71673e10i −0.00133117 0.0370583i
\(826\) 0 0
\(827\) 9.84358e10 0.210441 0.105221 0.994449i \(-0.466445\pi\)
0.105221 + 0.994449i \(0.466445\pi\)
\(828\) 0 0
\(829\) 7.11242e11 1.50591 0.752955 0.658072i \(-0.228628\pi\)
0.752955 + 0.658072i \(0.228628\pi\)
\(830\) 0 0
\(831\) −1.39152e11 1.16044e11i −0.291801 0.243344i
\(832\) 0 0
\(833\) 3.71286e11 0.771131
\(834\) 0 0
\(835\) 3.43994e11 7.70510e11i 0.707629 1.58501i
\(836\) 0 0
\(837\) 9.55166e10 + 5.39925e10i 0.194615 + 0.110010i
\(838\) 0 0
\(839\) 5.35247e11i 1.08021i 0.841599 + 0.540103i \(0.181615\pi\)
−0.841599 + 0.540103i \(0.818385\pi\)
\(840\) 0 0
\(841\) 4.46766e11 0.893091
\(842\) 0 0
\(843\) −1.34208e11 1.11921e11i −0.265747 0.221617i
\(844\) 0 0
\(845\) −2.15101e11 + 4.81802e11i −0.421905 + 0.945022i
\(846\) 0 0
\(847\) 8.99646e11i 1.74799i
\(848\) 0 0
\(849\) 2.01483e11 + 1.68024e11i 0.387799 + 0.323401i
\(850\) 0 0
\(851\) 1.27203e12i 2.42538i
\(852\) 0 0
\(853\) 1.89556e10i 0.0358048i 0.999840 + 0.0179024i \(0.00569882\pi\)
−0.999840 + 0.0179024i \(0.994301\pi\)
\(854\) 0 0
\(855\) −9.18961e11 2.24196e11i −1.71962 0.419530i
\(856\) 0 0
\(857\) 4.12084e11 0.763946 0.381973 0.924174i \(-0.375245\pi\)
0.381973 + 0.924174i \(0.375245\pi\)
\(858\) 0 0
\(859\) 3.75424e11 0.689524 0.344762 0.938690i \(-0.387960\pi\)
0.344762 + 0.938690i \(0.387960\pi\)
\(860\) 0 0
\(861\) 5.98238e11 7.17365e11i 1.08858 1.30535i
\(862\) 0 0
\(863\) 9.56584e11 1.72457 0.862283 0.506427i \(-0.169034\pi\)
0.862283 + 0.506427i \(0.169034\pi\)
\(864\) 0 0
\(865\) −3.39450e10 + 7.60332e10i −0.0606334 + 0.135812i
\(866\) 0 0
\(867\) 3.11363e11 3.73365e11i 0.551050 0.660780i
\(868\) 0 0
\(869\) 5.15564e9i 0.00904072i
\(870\) 0 0
\(871\) 1.06456e12 1.84968
\(872\) 0 0
\(873\) −1.66223e11 + 3.03516e10i −0.286177 + 0.0522546i
\(874\) 0 0
\(875\) 3.14082e11 + 9.76794e11i 0.535811 + 1.66637i
\(876\) 0 0
\(877\) 1.01432e12i 1.71466i −0.514768 0.857329i \(-0.672122\pi\)
0.514768 0.857329i \(-0.327878\pi\)
\(878\) 0 0
\(879\) −1.30695e10 + 1.56720e10i −0.0218929 + 0.0262524i
\(880\) 0 0
\(881\) 4.70566e10i 0.0781119i 0.999237 + 0.0390560i \(0.0124351\pi\)
−0.999237 + 0.0390560i \(0.987565\pi\)
\(882\) 0 0
\(883\) 3.17311e11i 0.521965i 0.965343 + 0.260983i \(0.0840465\pi\)
−0.965343 + 0.260983i \(0.915953\pi\)
\(884\) 0 0
\(885\) −2.36690e11 + 1.16033e11i −0.385840 + 0.189151i
\(886\) 0 0
\(887\) −1.01566e12 −1.64080 −0.820399 0.571792i \(-0.806249\pi\)
−0.820399 + 0.571792i \(0.806249\pi\)
\(888\) 0 0
\(889\) 5.35801e11 0.857821
\(890\) 0 0
\(891\) 8.25948e9 + 2.18628e10i 0.0131051 + 0.0346893i
\(892\) 0 0
\(893\) 4.74917e11 0.746813
\(894\) 0 0
\(895\) −2.52451e11 1.12707e11i −0.393445 0.175654i
\(896\) 0 0
\(897\) −1.17902e12 9.83228e11i −1.82117 1.51874i
\(898\) 0 0
\(899\) 4.77455e10i 0.0730960i
\(900\) 0 0
\(901\) −3.42582e11 −0.519835
\(902\) 0 0
\(903\) −1.39270e11 + 1.67003e11i −0.209463 + 0.251173i
\(904\) 0 0
\(905\) −6.63723e10 + 1.48667e11i −0.0989447 + 0.221626i
\(906\) 0 0
\(907\) 3.14031e10i 0.0464027i −0.999731 0.0232013i \(-0.992614\pi\)
0.999731 0.0232013i \(-0.00738588\pi\)
\(908\) 0 0
\(909\) −3.13916e11 + 5.73197e10i −0.459789 + 0.0839553i
\(910\) 0 0
\(911\) 5.50154e10i 0.0798750i −0.999202 0.0399375i \(-0.987284\pi\)
0.999202 0.0399375i \(-0.0127159\pi\)
\(912\) 0 0
\(913\) 3.47449e10i 0.0500044i
\(914\) 0 0
\(915\) −1.76774e8 3.60593e8i −0.000252194 0.000514437i
\(916\) 0 0
\(917\) 1.08220e12 1.53049
\(918\) 0 0
\(919\) −7.71768e11 −1.08199 −0.540997 0.841025i \(-0.681953\pi\)
−0.540997 + 0.841025i \(0.681953\pi\)
\(920\) 0 0
\(921\) −6.12791e11 5.11030e11i −0.851675 0.710245i
\(922\) 0 0
\(923\) 1.87866e12 2.58846
\(924\) 0 0
\(925\) 7.95238e11 7.13107e11i 1.08625 0.974064i
\(926\) 0 0
\(927\) −3.01130e11 + 5.49849e10i −0.407788 + 0.0744603i
\(928\) 0 0
\(929\) 5.72128e11i 0.768122i −0.923308 0.384061i \(-0.874525\pi\)
0.923308 0.384061i \(-0.125475\pi\)
\(930\) 0 0
\(931\) −2.74453e12 −3.65317
\(932\) 0 0
\(933\) 6.31632e11 + 5.26742e11i 0.833561 + 0.695139i
\(934\) 0 0
\(935\) 9.66919e9 + 4.31681e9i 0.0126515 + 0.00564828i
\(936\) 0 0
\(937\) 9.35700e11i 1.21389i −0.794745 0.606944i \(-0.792395\pi\)
0.794745 0.606944i \(-0.207605\pi\)
\(938\) 0 0
\(939\) −5.24821e11 4.37668e11i −0.675070 0.562967i
\(940\) 0 0
\(941\) 1.04933e12i 1.33829i −0.743130 0.669147i \(-0.766660\pi\)
0.743130 0.669147i \(-0.233340\pi\)
\(942\) 0 0
\(943\) 1.27644e12i 1.61419i
\(944\) 0 0
\(945\) −8.29615e11 1.12265e12i −1.04028 1.40773i
\(946\) 0 0
\(947\) −1.00880e12 −1.25431 −0.627156 0.778893i \(-0.715781\pi\)
−0.627156 + 0.778893i \(0.715781\pi\)
\(948\) 0 0
\(949\) 1.33272e12 1.64314
\(950\) 0 0
\(951\) 1.02512e12 1.22925e12i 1.25329 1.50286i
\(952\) 0 0
\(953\) 7.00790e11 0.849604 0.424802 0.905286i \(-0.360344\pi\)
0.424802 + 0.905286i \(0.360344\pi\)
\(954\) 0 0
\(955\) −3.18566e11 1.42224e11i −0.382989 0.170985i
\(956\) 0 0
\(957\) −6.51346e9 + 7.81048e9i −0.00776540 + 0.00931172i
\(958\) 0 0
\(959\) 1.93407e11i 0.228663i
\(960\) 0 0
\(961\) −8.10266e11 −0.950023
\(962\) 0 0
\(963\) 1.18606e11 + 6.49555e11i 0.137912 + 0.755285i
\(964\) 0 0
\(965\) −8.32257e11 3.71561e11i −0.959728 0.428471i
\(966\) 0 0
\(967\) 7.69052e11i 0.879528i 0.898113 + 0.439764i \(0.144938\pi\)
−0.898113 + 0.439764i \(0.855062\pi\)
\(968\) 0 0
\(969\) 3.73438e11 4.47800e11i 0.423568 0.507913i
\(970\) 0 0
\(971\) 3.00192e11i 0.337694i 0.985642 + 0.168847i \(0.0540043\pi\)
−0.985642 + 0.168847i \(0.945996\pi\)
\(972\) 0 0
\(973\) 1.80849e12i 2.01774i
\(974\) 0 0
\(975\) 4.62765e10 + 1.28829e12i 0.0512085 + 1.42559i
\(976\) 0 0
\(977\) 1.35705e12 1.48942 0.744712 0.667386i \(-0.232587\pi\)
0.744712 + 0.667386i \(0.232587\pi\)
\(978\) 0 0
\(979\) 2.47876e10 0.0269838
\(980\) 0 0
\(981\) 1.89172e11 + 1.03602e12i 0.204259 + 1.11864i
\(982\) 0 0
\(983\) 6.50185e11 0.696342 0.348171 0.937431i \(-0.386803\pi\)
0.348171 + 0.937431i \(0.386803\pi\)
\(984\) 0 0
\(985\) 2.77768e11 6.22171e11i 0.295079 0.660945i
\(986\) 0 0
\(987\) 5.38252e11 + 4.48869e11i 0.567175 + 0.472989i
\(988\) 0 0
\(989\) 2.97156e11i 0.310599i
\(990\) 0 0
\(991\) 5.99394e10 0.0621467 0.0310734 0.999517i \(-0.490107\pi\)
0.0310734 + 0.999517i \(0.490107\pi\)
\(992\) 0 0
\(993\) −8.26091e11 + 9.90590e11i −0.849632 + 1.01882i
\(994\) 0 0
\(995\) 2.94996e11 6.60760e11i 0.300971 0.674143i
\(996\) 0 0
\(997\) 1.05035e12i 1.06305i 0.847042 + 0.531526i \(0.178381\pi\)
−0.847042 + 0.531526i \(0.821619\pi\)
\(998\) 0 0
\(999\) −7.15103e11 + 1.26507e12i −0.717970 + 1.27014i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.9.c.f.209.14 48
3.2 odd 2 inner 240.9.c.f.209.36 48
4.3 odd 2 120.9.c.a.89.35 yes 48
5.4 even 2 inner 240.9.c.f.209.35 48
12.11 even 2 120.9.c.a.89.13 48
15.14 odd 2 inner 240.9.c.f.209.13 48
20.19 odd 2 120.9.c.a.89.14 yes 48
60.59 even 2 120.9.c.a.89.36 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.9.c.a.89.13 48 12.11 even 2
120.9.c.a.89.14 yes 48 20.19 odd 2
120.9.c.a.89.35 yes 48 4.3 odd 2
120.9.c.a.89.36 yes 48 60.59 even 2
240.9.c.f.209.13 48 15.14 odd 2 inner
240.9.c.f.209.14 48 1.1 even 1 trivial
240.9.c.f.209.35 48 5.4 even 2 inner
240.9.c.f.209.36 48 3.2 odd 2 inner