Properties

Label 240.2.y.e.187.6
Level $240$
Weight $2$
Character 240.187
Analytic conductor $1.916$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,2,Mod(163,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 240.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.91640964851\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.6
Root \(1.28040 - 0.600471i\) of defining polynomial
Character \(\chi\) \(=\) 240.187
Dual form 240.2.y.e.163.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.812425 - 1.15757i) q^{2} +1.00000 q^{3} +(-0.679932 - 1.88088i) q^{4} +(1.45639 - 1.69674i) q^{5} +(0.812425 - 1.15757i) q^{6} +(1.12791 + 1.12791i) q^{7} +(-2.72964 - 0.741001i) q^{8} +1.00000 q^{9} +(-0.780893 - 3.06434i) q^{10} +(-4.05250 + 4.05250i) q^{11} +(-0.679932 - 1.88088i) q^{12} +1.51085i q^{13} +(2.22197 - 0.389291i) q^{14} +(1.45639 - 1.69674i) q^{15} +(-3.07538 + 2.55774i) q^{16} +(-1.61725 - 1.61725i) q^{17} +(0.812425 - 1.15757i) q^{18} +(3.09584 - 3.09584i) q^{19} +(-4.18161 - 1.58561i) q^{20} +(1.12791 + 1.12791i) q^{21} +(1.39870 + 7.98340i) q^{22} +(1.55774 - 1.55774i) q^{23} +(-2.72964 - 0.741001i) q^{24} +(-0.757876 - 4.94223i) q^{25} +(1.74892 + 1.22746i) q^{26} +1.00000 q^{27} +(1.35455 - 2.88835i) q^{28} +(0.425907 + 0.425907i) q^{29} +(-0.780893 - 3.06434i) q^{30} +9.02889i q^{31} +(0.462239 + 5.63794i) q^{32} +(-4.05250 + 4.05250i) q^{33} +(-3.18598 + 0.558186i) q^{34} +(3.55644 - 0.271100i) q^{35} +(-0.679932 - 1.88088i) q^{36} +7.76193i q^{37} +(-1.06851 - 6.09878i) q^{38} +1.51085i q^{39} +(-5.23269 + 3.55231i) q^{40} -7.27238i q^{41} +(2.22197 - 0.389291i) q^{42} +9.30484i q^{43} +(10.3777 + 4.86682i) q^{44} +(1.45639 - 1.69674i) q^{45} +(-0.537644 - 3.06873i) q^{46} +(-1.13932 + 1.13932i) q^{47} +(-3.07538 + 2.55774i) q^{48} -4.45565i q^{49} +(-6.33669 - 3.13789i) q^{50} +(-1.61725 - 1.61725i) q^{51} +(2.84173 - 1.02728i) q^{52} -8.27183 q^{53} +(0.812425 - 1.15757i) q^{54} +(0.974046 + 12.7781i) q^{55} +(-2.24300 - 3.91456i) q^{56} +(3.09584 - 3.09584i) q^{57} +(0.839034 - 0.146999i) q^{58} +(-9.12504 - 9.12504i) q^{59} +(-4.18161 - 1.58561i) q^{60} +(4.89881 - 4.89881i) q^{61} +(10.4516 + 7.33529i) q^{62} +(1.12791 + 1.12791i) q^{63} +(6.90184 + 4.04533i) q^{64} +(2.56353 + 2.20039i) q^{65} +(1.39870 + 7.98340i) q^{66} +2.17068i q^{67} +(-1.94223 + 4.14147i) q^{68} +(1.55774 - 1.55774i) q^{69} +(2.57552 - 4.33707i) q^{70} +13.5937 q^{71} +(-2.72964 - 0.741001i) q^{72} +(-1.11750 - 1.11750i) q^{73} +(8.98497 + 6.30598i) q^{74} +(-0.757876 - 4.94223i) q^{75} +(-7.92785 - 3.71792i) q^{76} -9.14169 q^{77} +(1.74892 + 1.22746i) q^{78} +1.68922 q^{79} +(-0.139126 + 8.94319i) q^{80} +1.00000 q^{81} +(-8.41829 - 5.90826i) q^{82} -5.64544 q^{83} +(1.35455 - 2.88835i) q^{84} +(-5.09941 + 0.388718i) q^{85} +(10.7710 + 7.55948i) q^{86} +(0.425907 + 0.425907i) q^{87} +(14.0648 - 8.05895i) q^{88} +10.4975 q^{89} +(-0.780893 - 3.06434i) q^{90} +(-1.70410 + 1.70410i) q^{91} +(-3.98906 - 1.87075i) q^{92} +9.02889i q^{93} +(0.393229 + 2.24445i) q^{94} +(-0.744106 - 9.76158i) q^{95} +(0.462239 + 5.63794i) q^{96} +(-6.26114 - 6.26114i) q^{97} +(-5.15772 - 3.61988i) q^{98} +(-4.05250 + 4.05250i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 16 q^{3} - 8 q^{4} - 4 q^{5} + 2 q^{6} - 4 q^{7} - 4 q^{8} + 16 q^{9} - 14 q^{10} - 8 q^{12} - 4 q^{14} - 4 q^{15} - 8 q^{16} - 8 q^{17} + 2 q^{18} + 8 q^{19} - 12 q^{20} - 4 q^{21} - 8 q^{22}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.812425 1.15757i 0.574471 0.818525i
\(3\) 1.00000 0.577350
\(4\) −0.679932 1.88088i −0.339966 0.940438i
\(5\) 1.45639 1.69674i 0.651316 0.758807i
\(6\) 0.812425 1.15757i 0.331671 0.472576i
\(7\) 1.12791 + 1.12791i 0.426309 + 0.426309i 0.887369 0.461060i \(-0.152531\pi\)
−0.461060 + 0.887369i \(0.652531\pi\)
\(8\) −2.72964 0.741001i −0.965072 0.261983i
\(9\) 1.00000 0.333333
\(10\) −0.780893 3.06434i −0.246940 0.969031i
\(11\) −4.05250 + 4.05250i −1.22188 + 1.22188i −0.254911 + 0.966965i \(0.582046\pi\)
−0.966965 + 0.254911i \(0.917954\pi\)
\(12\) −0.679932 1.88088i −0.196280 0.542962i
\(13\) 1.51085i 0.419036i 0.977805 + 0.209518i \(0.0671894\pi\)
−0.977805 + 0.209518i \(0.932811\pi\)
\(14\) 2.22197 0.389291i 0.593846 0.104042i
\(15\) 1.45639 1.69674i 0.376037 0.438097i
\(16\) −3.07538 + 2.55774i −0.768846 + 0.639434i
\(17\) −1.61725 1.61725i −0.392241 0.392241i 0.483244 0.875486i \(-0.339458\pi\)
−0.875486 + 0.483244i \(0.839458\pi\)
\(18\) 0.812425 1.15757i 0.191490 0.272842i
\(19\) 3.09584 3.09584i 0.710234 0.710234i −0.256350 0.966584i \(-0.582520\pi\)
0.966584 + 0.256350i \(0.0825200\pi\)
\(20\) −4.18161 1.58561i −0.935036 0.354553i
\(21\) 1.12791 + 1.12791i 0.246130 + 0.246130i
\(22\) 1.39870 + 7.98340i 0.298204 + 1.70207i
\(23\) 1.55774 1.55774i 0.324810 0.324810i −0.525799 0.850609i \(-0.676233\pi\)
0.850609 + 0.525799i \(0.176233\pi\)
\(24\) −2.72964 0.741001i −0.557185 0.151256i
\(25\) −0.757876 4.94223i −0.151575 0.988446i
\(26\) 1.74892 + 1.22746i 0.342991 + 0.240724i
\(27\) 1.00000 0.192450
\(28\) 1.35455 2.88835i 0.255986 0.545847i
\(29\) 0.425907 + 0.425907i 0.0790889 + 0.0790889i 0.745545 0.666456i \(-0.232189\pi\)
−0.666456 + 0.745545i \(0.732189\pi\)
\(30\) −0.780893 3.06434i −0.142571 0.559470i
\(31\) 9.02889i 1.62164i 0.585298 + 0.810818i \(0.300978\pi\)
−0.585298 + 0.810818i \(0.699022\pi\)
\(32\) 0.462239 + 5.63794i 0.0817130 + 0.996656i
\(33\) −4.05250 + 4.05250i −0.705450 + 0.705450i
\(34\) −3.18598 + 0.558186i −0.546391 + 0.0957281i
\(35\) 3.55644 0.271100i 0.601148 0.0458243i
\(36\) −0.679932 1.88088i −0.113322 0.313479i
\(37\) 7.76193i 1.27605i 0.770014 + 0.638027i \(0.220249\pi\)
−0.770014 + 0.638027i \(0.779751\pi\)
\(38\) −1.06851 6.09878i −0.173335 0.989353i
\(39\) 1.51085i 0.241930i
\(40\) −5.23269 + 3.55231i −0.827362 + 0.561670i
\(41\) 7.27238i 1.13576i −0.823113 0.567878i \(-0.807765\pi\)
0.823113 0.567878i \(-0.192235\pi\)
\(42\) 2.22197 0.389291i 0.342857 0.0600689i
\(43\) 9.30484i 1.41897i 0.704718 + 0.709487i \(0.251073\pi\)
−0.704718 + 0.709487i \(0.748927\pi\)
\(44\) 10.3777 + 4.86682i 1.56449 + 0.733701i
\(45\) 1.45639 1.69674i 0.217105 0.252936i
\(46\) −0.537644 3.06873i −0.0792713 0.452460i
\(47\) −1.13932 + 1.13932i −0.166187 + 0.166187i −0.785301 0.619114i \(-0.787492\pi\)
0.619114 + 0.785301i \(0.287492\pi\)
\(48\) −3.07538 + 2.55774i −0.443893 + 0.369177i
\(49\) 4.45565i 0.636522i
\(50\) −6.33669 3.13789i −0.896143 0.443765i
\(51\) −1.61725 1.61725i −0.226461 0.226461i
\(52\) 2.84173 1.02728i 0.394077 0.142458i
\(53\) −8.27183 −1.13622 −0.568112 0.822952i \(-0.692326\pi\)
−0.568112 + 0.822952i \(0.692326\pi\)
\(54\) 0.812425 1.15757i 0.110557 0.157525i
\(55\) 0.974046 + 12.7781i 0.131340 + 1.72299i
\(56\) −2.24300 3.91456i −0.299733 0.523105i
\(57\) 3.09584 3.09584i 0.410054 0.410054i
\(58\) 0.839034 0.146999i 0.110171 0.0193020i
\(59\) −9.12504 9.12504i −1.18798 1.18798i −0.977625 0.210354i \(-0.932538\pi\)
−0.210354 0.977625i \(-0.567462\pi\)
\(60\) −4.18161 1.58561i −0.539843 0.204701i
\(61\) 4.89881 4.89881i 0.627229 0.627229i −0.320141 0.947370i \(-0.603730\pi\)
0.947370 + 0.320141i \(0.103730\pi\)
\(62\) 10.4516 + 7.33529i 1.32735 + 0.931583i
\(63\) 1.12791 + 1.12791i 0.142103 + 0.142103i
\(64\) 6.90184 + 4.04533i 0.862729 + 0.505666i
\(65\) 2.56353 + 2.20039i 0.317967 + 0.272925i
\(66\) 1.39870 + 7.98340i 0.172168 + 0.982689i
\(67\) 2.17068i 0.265191i 0.991170 + 0.132596i \(0.0423312\pi\)
−0.991170 + 0.132596i \(0.957669\pi\)
\(68\) −1.94223 + 4.14147i −0.235530 + 0.502228i
\(69\) 1.55774 1.55774i 0.187529 0.187529i
\(70\) 2.57552 4.33707i 0.307834 0.518379i
\(71\) 13.5937 1.61328 0.806641 0.591042i \(-0.201283\pi\)
0.806641 + 0.591042i \(0.201283\pi\)
\(72\) −2.72964 0.741001i −0.321691 0.0873278i
\(73\) −1.11750 1.11750i −0.130793 0.130793i 0.638680 0.769473i \(-0.279481\pi\)
−0.769473 + 0.638680i \(0.779481\pi\)
\(74\) 8.98497 + 6.30598i 1.04448 + 0.733056i
\(75\) −0.757876 4.94223i −0.0875120 0.570679i
\(76\) −7.92785 3.71792i −0.909386 0.426475i
\(77\) −9.14169 −1.04179
\(78\) 1.74892 + 1.22746i 0.198026 + 0.138982i
\(79\) 1.68922 0.190052 0.0950261 0.995475i \(-0.469707\pi\)
0.0950261 + 0.995475i \(0.469707\pi\)
\(80\) −0.139126 + 8.94319i −0.0155548 + 0.999879i
\(81\) 1.00000 0.111111
\(82\) −8.41829 5.90826i −0.929644 0.652459i
\(83\) −5.64544 −0.619668 −0.309834 0.950791i \(-0.600273\pi\)
−0.309834 + 0.950791i \(0.600273\pi\)
\(84\) 1.35455 2.88835i 0.147794 0.315145i
\(85\) −5.09941 + 0.388718i −0.553109 + 0.0421624i
\(86\) 10.7710 + 7.55948i 1.16147 + 0.815160i
\(87\) 0.425907 + 0.425907i 0.0456620 + 0.0456620i
\(88\) 14.0648 8.05895i 1.49931 0.859087i
\(89\) 10.4975 1.11273 0.556365 0.830938i \(-0.312196\pi\)
0.556365 + 0.830938i \(0.312196\pi\)
\(90\) −0.780893 3.06434i −0.0823134 0.323010i
\(91\) −1.70410 + 1.70410i −0.178639 + 0.178639i
\(92\) −3.98906 1.87075i −0.415889 0.195039i
\(93\) 9.02889i 0.936252i
\(94\) 0.393229 + 2.24445i 0.0405585 + 0.231497i
\(95\) −0.744106 9.76158i −0.0763436 1.00152i
\(96\) 0.462239 + 5.63794i 0.0471770 + 0.575420i
\(97\) −6.26114 6.26114i −0.635722 0.635722i 0.313775 0.949497i \(-0.398406\pi\)
−0.949497 + 0.313775i \(0.898406\pi\)
\(98\) −5.15772 3.61988i −0.521009 0.365663i
\(99\) −4.05250 + 4.05250i −0.407292 + 0.407292i
\(100\) −8.78041 + 4.78585i −0.878041 + 0.478585i
\(101\) 1.36593 + 1.36593i 0.135915 + 0.135915i 0.771791 0.635876i \(-0.219361\pi\)
−0.635876 + 0.771791i \(0.719361\pi\)
\(102\) −3.18598 + 0.558186i −0.315459 + 0.0552686i
\(103\) −0.00181474 + 0.00181474i −0.000178812 + 0.000178812i −0.707196 0.707017i \(-0.750040\pi\)
0.707017 + 0.707196i \(0.250040\pi\)
\(104\) 1.11954 4.12408i 0.109780 0.404400i
\(105\) 3.55644 0.271100i 0.347073 0.0264567i
\(106\) −6.72024 + 9.57521i −0.652727 + 0.930027i
\(107\) −14.5410 −1.40573 −0.702863 0.711325i \(-0.748096\pi\)
−0.702863 + 0.711325i \(0.748096\pi\)
\(108\) −0.679932 1.88088i −0.0654265 0.180987i
\(109\) −11.1313 11.1313i −1.06619 1.06619i −0.997649 0.0685378i \(-0.978167\pi\)
−0.0685378 0.997649i \(-0.521833\pi\)
\(110\) 15.5828 + 9.25369i 1.48576 + 0.882305i
\(111\) 7.76193i 0.736730i
\(112\) −6.35364 0.583859i −0.600362 0.0551695i
\(113\) 9.54820 9.54820i 0.898219 0.898219i −0.0970594 0.995279i \(-0.530944\pi\)
0.995279 + 0.0970594i \(0.0309437\pi\)
\(114\) −1.06851 6.09878i −0.100075 0.571203i
\(115\) −0.374412 4.91174i −0.0349141 0.458023i
\(116\) 0.511490 1.09067i 0.0474906 0.101266i
\(117\) 1.51085i 0.139679i
\(118\) −17.9763 + 3.14946i −1.65485 + 0.289931i
\(119\) 3.64822i 0.334432i
\(120\) −5.23269 + 3.55231i −0.477677 + 0.324280i
\(121\) 21.8455i 1.98596i
\(122\) −1.69080 9.65063i −0.153078 0.873727i
\(123\) 7.27238i 0.655729i
\(124\) 16.9822 6.13903i 1.52505 0.551302i
\(125\) −9.48945 5.91187i −0.848763 0.528774i
\(126\) 2.22197 0.389291i 0.197949 0.0346808i
\(127\) 7.29219 7.29219i 0.647077 0.647077i −0.305209 0.952286i \(-0.598726\pi\)
0.952286 + 0.305209i \(0.0987262\pi\)
\(128\) 10.2900 4.70283i 0.909513 0.415675i
\(129\) 9.30484i 0.819246i
\(130\) 4.62978 1.17982i 0.406058 0.103477i
\(131\) −2.59824 2.59824i −0.227009 0.227009i 0.584433 0.811442i \(-0.301317\pi\)
−0.811442 + 0.584433i \(0.801317\pi\)
\(132\) 10.3777 + 4.86682i 0.903261 + 0.423603i
\(133\) 6.98363 0.605558
\(134\) 2.51272 + 1.76352i 0.217066 + 0.152345i
\(135\) 1.45639 1.69674i 0.125346 0.146032i
\(136\) 3.21613 + 5.61290i 0.275781 + 0.481302i
\(137\) −13.6691 + 13.6691i −1.16783 + 1.16783i −0.185115 + 0.982717i \(0.559266\pi\)
−0.982717 + 0.185115i \(0.940734\pi\)
\(138\) −0.537644 3.06873i −0.0457673 0.261228i
\(139\) −4.06432 4.06432i −0.344731 0.344731i 0.513412 0.858143i \(-0.328381\pi\)
−0.858143 + 0.513412i \(0.828381\pi\)
\(140\) −2.92804 6.50489i −0.247465 0.549763i
\(141\) −1.13932 + 1.13932i −0.0959479 + 0.0959479i
\(142\) 11.0439 15.7357i 0.926783 1.32051i
\(143\) −6.12274 6.12274i −0.512009 0.512009i
\(144\) −3.07538 + 2.55774i −0.256282 + 0.213145i
\(145\) 1.34294 0.102370i 0.111525 0.00850133i
\(146\) −2.20146 + 0.385698i −0.182194 + 0.0319206i
\(147\) 4.45565i 0.367496i
\(148\) 14.5992 5.27759i 1.20005 0.433815i
\(149\) −7.44842 + 7.44842i −0.610199 + 0.610199i −0.942998 0.332799i \(-0.892007\pi\)
0.332799 + 0.942998i \(0.392007\pi\)
\(150\) −6.33669 3.13789i −0.517388 0.256208i
\(151\) −7.91377 −0.644013 −0.322007 0.946737i \(-0.604357\pi\)
−0.322007 + 0.946737i \(0.604357\pi\)
\(152\) −10.7445 + 6.15650i −0.871497 + 0.499358i
\(153\) −1.61725 1.61725i −0.130747 0.130747i
\(154\) −7.42694 + 10.5821i −0.598479 + 0.852733i
\(155\) 15.3197 + 13.1496i 1.23051 + 1.05620i
\(156\) 2.84173 1.02728i 0.227520 0.0822481i
\(157\) 9.30731 0.742804 0.371402 0.928472i \(-0.378877\pi\)
0.371402 + 0.928472i \(0.378877\pi\)
\(158\) 1.37236 1.95539i 0.109179 0.155562i
\(159\) −8.27183 −0.655999
\(160\) 10.2393 + 7.42672i 0.809490 + 0.587133i
\(161\) 3.51396 0.276939
\(162\) 0.812425 1.15757i 0.0638301 0.0909472i
\(163\) −3.08826 −0.241891 −0.120946 0.992659i \(-0.538593\pi\)
−0.120946 + 0.992659i \(0.538593\pi\)
\(164\) −13.6784 + 4.94473i −1.06811 + 0.386118i
\(165\) 0.974046 + 12.7781i 0.0758294 + 0.994771i
\(166\) −4.58650 + 6.53499i −0.355981 + 0.507213i
\(167\) −4.67681 4.67681i −0.361902 0.361902i 0.502611 0.864513i \(-0.332373\pi\)
−0.864513 + 0.502611i \(0.832373\pi\)
\(168\) −2.24300 3.91456i −0.173051 0.302015i
\(169\) 10.7173 0.824409
\(170\) −3.69292 + 6.21872i −0.283234 + 0.476954i
\(171\) 3.09584 3.09584i 0.236745 0.236745i
\(172\) 17.5012 6.32666i 1.33446 0.482403i
\(173\) 22.7032i 1.72609i 0.505124 + 0.863047i \(0.331447\pi\)
−0.505124 + 0.863047i \(0.668553\pi\)
\(174\) 0.839034 0.146999i 0.0636070 0.0111440i
\(175\) 4.71956 6.42919i 0.356765 0.486001i
\(176\) 2.09777 22.8282i 0.158125 1.72074i
\(177\) −9.12504 9.12504i −0.685880 0.685880i
\(178\) 8.52840 12.1515i 0.639231 0.910797i
\(179\) 5.21450 5.21450i 0.389750 0.389750i −0.484848 0.874598i \(-0.661125\pi\)
0.874598 + 0.484848i \(0.161125\pi\)
\(180\) −4.18161 1.58561i −0.311679 0.118184i
\(181\) 14.5282 + 14.5282i 1.07987 + 1.07987i 0.996520 + 0.0833500i \(0.0265620\pi\)
0.0833500 + 0.996520i \(0.473438\pi\)
\(182\) 0.588162 + 3.35707i 0.0435975 + 0.248843i
\(183\) 4.89881 4.89881i 0.362131 0.362131i
\(184\) −5.40634 + 3.09777i −0.398560 + 0.228371i
\(185\) 13.1700 + 11.3044i 0.968278 + 0.831114i
\(186\) 10.4516 + 7.33529i 0.766346 + 0.537850i
\(187\) 13.1078 0.958540
\(188\) 2.91758 + 1.36826i 0.212786 + 0.0997904i
\(189\) 1.12791 + 1.12791i 0.0820432 + 0.0820432i
\(190\) −11.9042 7.06919i −0.863624 0.512853i
\(191\) 21.5118i 1.55654i −0.627929 0.778271i \(-0.716097\pi\)
0.627929 0.778271i \(-0.283903\pi\)
\(192\) 6.90184 + 4.04533i 0.498097 + 0.291946i
\(193\) −14.7523 + 14.7523i −1.06189 + 1.06189i −0.0639410 + 0.997954i \(0.520367\pi\)
−0.997954 + 0.0639410i \(0.979633\pi\)
\(194\) −12.3344 + 2.16100i −0.885559 + 0.155151i
\(195\) 2.56353 + 2.20039i 0.183578 + 0.157573i
\(196\) −8.38052 + 3.02954i −0.598609 + 0.216396i
\(197\) 6.41499i 0.457049i −0.973538 0.228524i \(-0.926610\pi\)
0.973538 0.228524i \(-0.0733901\pi\)
\(198\) 1.39870 + 7.98340i 0.0994012 + 0.567356i
\(199\) 9.01442i 0.639015i −0.947584 0.319508i \(-0.896482\pi\)
0.947584 0.319508i \(-0.103518\pi\)
\(200\) −1.59347 + 14.0521i −0.112675 + 0.993632i
\(201\) 2.17068i 0.153108i
\(202\) 2.69087 0.471442i 0.189329 0.0331706i
\(203\) 0.960767i 0.0674326i
\(204\) −1.94223 + 4.14147i −0.135983 + 0.289961i
\(205\) −12.3394 10.5914i −0.861819 0.739736i
\(206\) 0.000626348 0.00357503i 4.36398e−5 0.000249084i
\(207\) 1.55774 1.55774i 0.108270 0.108270i
\(208\) −3.86437 4.64646i −0.267946 0.322174i
\(209\) 25.0918i 1.73563i
\(210\) 2.57552 4.33707i 0.177728 0.299286i
\(211\) −12.1263 12.1263i −0.834809 0.834809i 0.153361 0.988170i \(-0.450990\pi\)
−0.988170 + 0.153361i \(0.950990\pi\)
\(212\) 5.62428 + 15.5583i 0.386277 + 1.06855i
\(213\) 13.5937 0.931428
\(214\) −11.8134 + 16.8322i −0.807549 + 1.15062i
\(215\) 15.7879 + 13.5514i 1.07673 + 0.924201i
\(216\) −2.72964 0.741001i −0.185728 0.0504187i
\(217\) −10.1837 + 10.1837i −0.691318 + 0.691318i
\(218\) −21.9286 + 3.84191i −1.48519 + 0.260207i
\(219\) −1.11750 1.11750i −0.0755134 0.0755134i
\(220\) 23.3717 10.5203i 1.57572 0.709277i
\(221\) 2.44343 2.44343i 0.164363 0.164363i
\(222\) 8.98497 + 6.30598i 0.603032 + 0.423230i
\(223\) 9.07927 + 9.07927i 0.607993 + 0.607993i 0.942421 0.334428i \(-0.108543\pi\)
−0.334428 + 0.942421i \(0.608543\pi\)
\(224\) −5.83771 + 6.88043i −0.390048 + 0.459718i
\(225\) −0.757876 4.94223i −0.0505251 0.329482i
\(226\) −3.29551 18.8099i −0.219214 1.25122i
\(227\) 0.580888i 0.0385549i −0.999814 0.0192774i \(-0.993863\pi\)
0.999814 0.0192774i \(-0.00613658\pi\)
\(228\) −7.92785 3.71792i −0.525034 0.246226i
\(229\) 8.27674 8.27674i 0.546942 0.546942i −0.378613 0.925555i \(-0.623599\pi\)
0.925555 + 0.378613i \(0.123599\pi\)
\(230\) −5.98987 3.55701i −0.394960 0.234543i
\(231\) −9.14169 −0.601479
\(232\) −0.846974 1.47817i −0.0556066 0.0970465i
\(233\) 10.8812 + 10.8812i 0.712852 + 0.712852i 0.967131 0.254279i \(-0.0818382\pi\)
−0.254279 + 0.967131i \(0.581838\pi\)
\(234\) 1.74892 + 1.22746i 0.114330 + 0.0802413i
\(235\) 0.273843 + 3.59242i 0.0178635 + 0.234344i
\(236\) −10.9587 + 23.3675i −0.713348 + 1.52109i
\(237\) 1.68922 0.109727
\(238\) −4.22307 2.96391i −0.273741 0.192121i
\(239\) −10.3831 −0.671628 −0.335814 0.941928i \(-0.609011\pi\)
−0.335814 + 0.941928i \(0.609011\pi\)
\(240\) −0.139126 + 8.94319i −0.00898055 + 0.577280i
\(241\) 22.4691 1.44736 0.723680 0.690136i \(-0.242449\pi\)
0.723680 + 0.690136i \(0.242449\pi\)
\(242\) −25.2877 17.7479i −1.62556 1.14088i
\(243\) 1.00000 0.0641500
\(244\) −12.5449 5.88320i −0.803106 0.376633i
\(245\) −7.56010 6.48915i −0.482997 0.414577i
\(246\) −8.41829 5.90826i −0.536730 0.376697i
\(247\) 4.67736 + 4.67736i 0.297613 + 0.297613i
\(248\) 6.69041 24.6456i 0.424842 1.56500i
\(249\) −5.64544 −0.357765
\(250\) −14.5529 + 6.18175i −0.920404 + 0.390968i
\(251\) −16.2297 + 16.2297i −1.02441 + 1.02441i −0.0247152 + 0.999695i \(0.507868\pi\)
−0.999695 + 0.0247152i \(0.992132\pi\)
\(252\) 1.35455 2.88835i 0.0853288 0.181949i
\(253\) 12.6255i 0.793756i
\(254\) −2.51686 14.3656i −0.157922 0.901375i
\(255\) −5.09941 + 0.388718i −0.319337 + 0.0243424i
\(256\) 2.91597 15.7320i 0.182248 0.983253i
\(257\) −0.223380 0.223380i −0.0139341 0.0139341i 0.700105 0.714039i \(-0.253136\pi\)
−0.714039 + 0.700105i \(0.753136\pi\)
\(258\) 10.7710 + 7.55948i 0.670573 + 0.470633i
\(259\) −8.75474 + 8.75474i −0.543993 + 0.543993i
\(260\) 2.39563 6.31780i 0.148570 0.391813i
\(261\) 0.425907 + 0.425907i 0.0263630 + 0.0263630i
\(262\) −5.11851 + 0.896767i −0.316222 + 0.0554024i
\(263\) −1.01264 + 1.01264i −0.0624420 + 0.0624420i −0.737638 0.675196i \(-0.764059\pi\)
0.675196 + 0.737638i \(0.264059\pi\)
\(264\) 14.0648 8.05895i 0.865626 0.495994i
\(265\) −12.0470 + 14.0352i −0.740040 + 0.862174i
\(266\) 5.67368 8.08404i 0.347875 0.495664i
\(267\) 10.4975 0.642435
\(268\) 4.08279 1.47592i 0.249396 0.0901561i
\(269\) 12.5052 + 12.5052i 0.762455 + 0.762455i 0.976766 0.214310i \(-0.0687504\pi\)
−0.214310 + 0.976766i \(0.568750\pi\)
\(270\) −0.780893 3.06434i −0.0475237 0.186490i
\(271\) 25.2641i 1.53469i 0.641237 + 0.767343i \(0.278422\pi\)
−0.641237 + 0.767343i \(0.721578\pi\)
\(272\) 9.11018 + 0.837167i 0.552386 + 0.0507607i
\(273\) −1.70410 + 1.70410i −0.103137 + 0.103137i
\(274\) 4.71782 + 26.9281i 0.285014 + 1.62678i
\(275\) 23.0997 + 16.9571i 1.39296 + 1.02255i
\(276\) −3.98906 1.87075i −0.240113 0.112606i
\(277\) 13.1100i 0.787706i −0.919174 0.393853i \(-0.871142\pi\)
0.919174 0.393853i \(-0.128858\pi\)
\(278\) −8.00668 + 1.40278i −0.480209 + 0.0841330i
\(279\) 9.02889i 0.540546i
\(280\) −9.90867 1.89532i −0.592156 0.113267i
\(281\) 2.34999i 0.140189i 0.997540 + 0.0700944i \(0.0223301\pi\)
−0.997540 + 0.0700944i \(0.977670\pi\)
\(282\) 0.393229 + 2.24445i 0.0234165 + 0.133655i
\(283\) 16.1614i 0.960695i −0.877078 0.480348i \(-0.840510\pi\)
0.877078 0.480348i \(-0.159490\pi\)
\(284\) −9.24283 25.5681i −0.548461 1.51719i
\(285\) −0.744106 9.76158i −0.0440770 0.578226i
\(286\) −12.0618 + 2.11323i −0.713227 + 0.124958i
\(287\) 8.20257 8.20257i 0.484183 0.484183i
\(288\) 0.462239 + 5.63794i 0.0272377 + 0.332219i
\(289\) 11.7690i 0.692293i
\(290\) 0.972537 1.63771i 0.0571094 0.0961698i
\(291\) −6.26114 6.26114i −0.367035 0.367035i
\(292\) −1.34205 + 2.86169i −0.0785375 + 0.167468i
\(293\) 15.9522 0.931939 0.465969 0.884801i \(-0.345706\pi\)
0.465969 + 0.884801i \(0.345706\pi\)
\(294\) −5.15772 3.61988i −0.300805 0.211116i
\(295\) −28.7724 + 2.19327i −1.67520 + 0.127697i
\(296\) 5.75160 21.1872i 0.334305 1.23148i
\(297\) −4.05250 + 4.05250i −0.235150 + 0.235150i
\(298\) 2.57078 + 14.6733i 0.148921 + 0.850004i
\(299\) 2.35351 + 2.35351i 0.136107 + 0.136107i
\(300\) −8.78041 + 4.78585i −0.506937 + 0.276311i
\(301\) −10.4950 + 10.4950i −0.604921 + 0.604921i
\(302\) −6.42934 + 9.16073i −0.369967 + 0.527141i
\(303\) 1.36593 + 1.36593i 0.0784705 + 0.0784705i
\(304\) −1.60255 + 17.4392i −0.0919127 + 1.00021i
\(305\) −1.17746 15.4466i −0.0674213 0.884469i
\(306\) −3.18598 + 0.558186i −0.182130 + 0.0319094i
\(307\) 24.9902i 1.42627i 0.701029 + 0.713133i \(0.252724\pi\)
−0.701029 + 0.713133i \(0.747276\pi\)
\(308\) 6.21573 + 17.1944i 0.354174 + 0.979741i
\(309\) −0.00181474 + 0.00181474i −0.000103237 + 0.000103237i
\(310\) 27.6676 7.05060i 1.57142 0.400447i
\(311\) 5.55703 0.315111 0.157555 0.987510i \(-0.449639\pi\)
0.157555 + 0.987510i \(0.449639\pi\)
\(312\) 1.11954 4.12408i 0.0633817 0.233480i
\(313\) 3.12705 + 3.12705i 0.176751 + 0.176751i 0.789938 0.613187i \(-0.210113\pi\)
−0.613187 + 0.789938i \(0.710113\pi\)
\(314\) 7.56148 10.7738i 0.426719 0.608003i
\(315\) 3.55644 0.271100i 0.200383 0.0152748i
\(316\) −1.14856 3.17721i −0.0646113 0.178732i
\(317\) 33.8169 1.89935 0.949674 0.313240i \(-0.101414\pi\)
0.949674 + 0.313240i \(0.101414\pi\)
\(318\) −6.72024 + 9.57521i −0.376852 + 0.536951i
\(319\) −3.45198 −0.193274
\(320\) 16.9156 5.81909i 0.945612 0.325297i
\(321\) −14.5410 −0.811597
\(322\) 2.85483 4.06766i 0.159093 0.226682i
\(323\) −10.0135 −0.557166
\(324\) −0.679932 1.88088i −0.0377740 0.104493i
\(325\) 7.46699 1.14504i 0.414194 0.0635154i
\(326\) −2.50898 + 3.57488i −0.138960 + 0.197994i
\(327\) −11.1313 11.1313i −0.615563 0.615563i
\(328\) −5.38884 + 19.8510i −0.297549 + 1.09609i
\(329\) −2.57009 −0.141694
\(330\) 15.5828 + 9.25369i 0.857807 + 0.509399i
\(331\) 13.0748 13.0748i 0.718658 0.718658i −0.249672 0.968330i \(-0.580323\pi\)
0.968330 + 0.249672i \(0.0803229\pi\)
\(332\) 3.83852 + 10.6184i 0.210666 + 0.582759i
\(333\) 7.76193i 0.425351i
\(334\) −9.21328 + 1.61417i −0.504128 + 0.0883237i
\(335\) 3.68309 + 3.16136i 0.201229 + 0.172723i
\(336\) −6.35364 0.583859i −0.346619 0.0318521i
\(337\) −4.71773 4.71773i −0.256991 0.256991i 0.566838 0.823829i \(-0.308167\pi\)
−0.823829 + 0.566838i \(0.808167\pi\)
\(338\) 8.70701 12.4060i 0.473599 0.674799i
\(339\) 9.54820 9.54820i 0.518587 0.518587i
\(340\) 4.19838 + 9.32705i 0.227689 + 0.505830i
\(341\) −36.5896 36.5896i −1.98144 1.98144i
\(342\) −1.06851 6.09878i −0.0577785 0.329784i
\(343\) 12.9209 12.9209i 0.697664 0.697664i
\(344\) 6.89489 25.3988i 0.371748 1.36941i
\(345\) −0.374412 4.91174i −0.0201577 0.264439i
\(346\) 26.2805 + 18.4447i 1.41285 + 0.991591i
\(347\) 26.4531 1.42008 0.710039 0.704163i \(-0.248677\pi\)
0.710039 + 0.704163i \(0.248677\pi\)
\(348\) 0.511490 1.09067i 0.0274187 0.0584658i
\(349\) −7.72146 7.72146i −0.413320 0.413320i 0.469573 0.882893i \(-0.344408\pi\)
−0.882893 + 0.469573i \(0.844408\pi\)
\(350\) −3.60794 10.6864i −0.192853 0.571215i
\(351\) 1.51085i 0.0806434i
\(352\) −24.7210 20.9745i −1.31763 1.11795i
\(353\) 17.1761 17.1761i 0.914189 0.914189i −0.0824092 0.996599i \(-0.526261\pi\)
0.996599 + 0.0824092i \(0.0262615\pi\)
\(354\) −17.9763 + 3.14946i −0.955428 + 0.167392i
\(355\) 19.7978 23.0651i 1.05076 1.22417i
\(356\) −7.13757 19.7444i −0.378290 1.04645i
\(357\) 3.64822i 0.193084i
\(358\) −1.79975 10.2725i −0.0951200 0.542920i
\(359\) 13.3611i 0.705173i 0.935779 + 0.352587i \(0.114698\pi\)
−0.935779 + 0.352587i \(0.885302\pi\)
\(360\) −5.23269 + 3.55231i −0.275787 + 0.187223i
\(361\) 0.168423i 0.00886435i
\(362\) 28.6204 5.01432i 1.50426 0.263547i
\(363\) 21.8455i 1.14659i
\(364\) 4.36388 + 2.04653i 0.228730 + 0.107267i
\(365\) −3.52361 + 0.268598i −0.184434 + 0.0140591i
\(366\) −1.69080 9.65063i −0.0883794 0.504447i
\(367\) −2.07421 + 2.07421i −0.108273 + 0.108273i −0.759168 0.650895i \(-0.774394\pi\)
0.650895 + 0.759168i \(0.274394\pi\)
\(368\) −0.806359 + 8.77491i −0.0420343 + 0.457424i
\(369\) 7.27238i 0.378585i
\(370\) 23.7852 6.06124i 1.23653 0.315109i
\(371\) −9.32985 9.32985i −0.484382 0.484382i
\(372\) 16.9822 6.13903i 0.880487 0.318294i
\(373\) −31.6636 −1.63948 −0.819739 0.572737i \(-0.805882\pi\)
−0.819739 + 0.572737i \(0.805882\pi\)
\(374\) 10.6491 15.1732i 0.550654 0.784589i
\(375\) −9.48945 5.91187i −0.490033 0.305288i
\(376\) 3.95416 2.26569i 0.203920 0.116844i
\(377\) −0.643483 + 0.643483i −0.0331411 + 0.0331411i
\(378\) 2.22197 0.389291i 0.114286 0.0200230i
\(379\) −5.09306 5.09306i −0.261613 0.261613i 0.564096 0.825709i \(-0.309225\pi\)
−0.825709 + 0.564096i \(0.809225\pi\)
\(380\) −17.8544 + 8.03678i −0.915910 + 0.412278i
\(381\) 7.29219 7.29219i 0.373590 0.373590i
\(382\) −24.9014 17.4767i −1.27407 0.894188i
\(383\) −3.20359 3.20359i −0.163696 0.163696i 0.620506 0.784202i \(-0.286927\pi\)
−0.784202 + 0.620506i \(0.786927\pi\)
\(384\) 10.2900 4.70283i 0.525108 0.239990i
\(385\) −13.3138 + 15.5111i −0.678536 + 0.790519i
\(386\) 5.09168 + 29.0620i 0.259160 + 1.47922i
\(387\) 9.30484i 0.472992i
\(388\) −7.51927 + 16.0336i −0.381733 + 0.813982i
\(389\) −1.34936 + 1.34936i −0.0684155 + 0.0684155i −0.740487 0.672071i \(-0.765405\pi\)
0.672071 + 0.740487i \(0.265405\pi\)
\(390\) 4.62978 1.17982i 0.234438 0.0597423i
\(391\) −5.03851 −0.254808
\(392\) −3.30164 + 12.1623i −0.166758 + 0.614289i
\(393\) −2.59824 2.59824i −0.131064 0.131064i
\(394\) −7.42579 5.21169i −0.374106 0.262561i
\(395\) 2.46016 2.86617i 0.123784 0.144213i
\(396\) 10.3777 + 4.86682i 0.521498 + 0.244567i
\(397\) 24.4680 1.22801 0.614007 0.789301i \(-0.289557\pi\)
0.614007 + 0.789301i \(0.289557\pi\)
\(398\) −10.4348 7.32354i −0.523050 0.367096i
\(399\) 6.98363 0.349619
\(400\) 14.9717 + 13.2608i 0.748584 + 0.663040i
\(401\) 28.5323 1.42484 0.712419 0.701755i \(-0.247600\pi\)
0.712419 + 0.701755i \(0.247600\pi\)
\(402\) 2.51272 + 1.76352i 0.125323 + 0.0879563i
\(403\) −13.6413 −0.679523
\(404\) 1.64040 3.49788i 0.0816130 0.174026i
\(405\) 1.45639 1.69674i 0.0723684 0.0843119i
\(406\) 1.11215 + 0.780551i 0.0551953 + 0.0387381i
\(407\) −31.4552 31.4552i −1.55918 1.55918i
\(408\) 3.21613 + 5.61290i 0.159222 + 0.277880i
\(409\) −15.1016 −0.746726 −0.373363 0.927685i \(-0.621795\pi\)
−0.373363 + 0.927685i \(0.621795\pi\)
\(410\) −22.2851 + 5.67896i −1.10058 + 0.280464i
\(411\) −13.6691 + 13.6691i −0.674248 + 0.674248i
\(412\) 0.00464721 + 0.00217940i 0.000228951 + 0.000107371i
\(413\) 20.5844i 1.01289i
\(414\) −0.537644 3.06873i −0.0264238 0.150820i
\(415\) −8.22194 + 9.57886i −0.403599 + 0.470208i
\(416\) −8.51810 + 0.698375i −0.417634 + 0.0342407i
\(417\) −4.06432 4.06432i −0.199030 0.199030i
\(418\) 29.0455 + 20.3852i 1.42066 + 0.997072i
\(419\) 1.93018 1.93018i 0.0942953 0.0942953i −0.658386 0.752681i \(-0.728760\pi\)
0.752681 + 0.658386i \(0.228760\pi\)
\(420\) −2.92804 6.50489i −0.142874 0.317406i
\(421\) 11.3334 + 11.3334i 0.552355 + 0.552355i 0.927120 0.374765i \(-0.122277\pi\)
−0.374765 + 0.927120i \(0.622277\pi\)
\(422\) −23.8887 + 4.18533i −1.16289 + 0.203739i
\(423\) −1.13932 + 1.13932i −0.0553956 + 0.0553956i
\(424\) 22.5791 + 6.12943i 1.09654 + 0.297671i
\(425\) −6.76716 + 9.21851i −0.328255 + 0.447164i
\(426\) 11.0439 15.7357i 0.535078 0.762397i
\(427\) 11.0508 0.534786
\(428\) 9.88686 + 27.3497i 0.477900 + 1.32200i
\(429\) −6.12274 6.12274i −0.295609 0.295609i
\(430\) 28.5132 7.26609i 1.37503 0.350402i
\(431\) 23.3060i 1.12261i 0.827609 + 0.561305i \(0.189701\pi\)
−0.827609 + 0.561305i \(0.810299\pi\)
\(432\) −3.07538 + 2.55774i −0.147964 + 0.123059i
\(433\) 2.27419 2.27419i 0.109291 0.109291i −0.650347 0.759637i \(-0.725376\pi\)
0.759637 + 0.650347i \(0.225376\pi\)
\(434\) 3.51486 + 20.0619i 0.168719 + 0.963003i
\(435\) 1.34294 0.102370i 0.0643890 0.00490825i
\(436\) −13.3681 + 28.5052i −0.640214 + 1.36515i
\(437\) 9.64500i 0.461383i
\(438\) −2.20146 + 0.385698i −0.105190 + 0.0184294i
\(439\) 9.72340i 0.464073i −0.972707 0.232036i \(-0.925461\pi\)
0.972707 0.232036i \(-0.0745388\pi\)
\(440\) 6.80976 35.6012i 0.324643 1.69722i
\(441\) 4.45565i 0.212174i
\(442\) −0.843338 4.81355i −0.0401135 0.228957i
\(443\) 16.8029i 0.798332i 0.916879 + 0.399166i \(0.130700\pi\)
−0.916879 + 0.399166i \(0.869300\pi\)
\(444\) 14.5992 5.27759i 0.692848 0.250463i
\(445\) 15.2884 17.8115i 0.724738 0.844347i
\(446\) 17.8861 3.13366i 0.846932 0.148383i
\(447\) −7.44842 + 7.44842i −0.352298 + 0.352298i
\(448\) 3.22188 + 12.3474i 0.152219 + 0.583359i
\(449\) 14.6889i 0.693212i 0.938011 + 0.346606i \(0.112666\pi\)
−0.938011 + 0.346606i \(0.887334\pi\)
\(450\) −6.33669 3.13789i −0.298714 0.147922i
\(451\) 29.4713 + 29.4713i 1.38775 + 1.38775i
\(452\) −24.4511 11.4668i −1.15008 0.539355i
\(453\) −7.91377 −0.371821
\(454\) −0.672418 0.471927i −0.0315581 0.0221487i
\(455\) 0.409593 + 5.37326i 0.0192020 + 0.251902i
\(456\) −10.7445 + 6.15650i −0.503159 + 0.288304i
\(457\) −10.8605 + 10.8605i −0.508034 + 0.508034i −0.913922 0.405889i \(-0.866962\pi\)
0.405889 + 0.913922i \(0.366962\pi\)
\(458\) −2.85667 16.3051i −0.133483 0.761888i
\(459\) −1.61725 1.61725i −0.0754869 0.0754869i
\(460\) −8.98380 + 4.04388i −0.418872 + 0.188547i
\(461\) −12.2300 + 12.2300i −0.569608 + 0.569608i −0.932019 0.362411i \(-0.881954\pi\)
0.362411 + 0.932019i \(0.381954\pi\)
\(462\) −7.42694 + 10.5821i −0.345532 + 0.492326i
\(463\) −25.4819 25.4819i −1.18424 1.18424i −0.978634 0.205609i \(-0.934082\pi\)
−0.205609 0.978634i \(-0.565918\pi\)
\(464\) −2.39918 0.220470i −0.111379 0.0102351i
\(465\) 15.3197 + 13.1496i 0.710435 + 0.609796i
\(466\) 21.4359 3.75559i 0.993000 0.173974i
\(467\) 34.3316i 1.58868i 0.607475 + 0.794339i \(0.292182\pi\)
−0.607475 + 0.794339i \(0.707818\pi\)
\(468\) 2.84173 1.02728i 0.131359 0.0474860i
\(469\) −2.44833 + 2.44833i −0.113053 + 0.113053i
\(470\) 4.38095 + 2.60158i 0.202078 + 0.120002i
\(471\) 9.30731 0.428858
\(472\) 18.1464 + 31.6697i 0.835255 + 1.45772i
\(473\) −37.7079 37.7079i −1.73381 1.73381i
\(474\) 1.37236 1.95539i 0.0630348 0.0898140i
\(475\) −17.6466 12.9541i −0.809682 0.594374i
\(476\) −6.86185 + 2.48054i −0.314512 + 0.113696i
\(477\) −8.27183 −0.378741
\(478\) −8.43550 + 12.0192i −0.385831 + 0.549744i
\(479\) 8.65519 0.395466 0.197733 0.980256i \(-0.436642\pi\)
0.197733 + 0.980256i \(0.436642\pi\)
\(480\) 10.2393 + 7.42672i 0.467359 + 0.338982i
\(481\) −11.7271 −0.534712
\(482\) 18.2544 26.0095i 0.831466 1.18470i
\(483\) 3.51396 0.159891
\(484\) −41.0887 + 14.8535i −1.86767 + 0.675159i
\(485\) −19.7422 + 1.50491i −0.896447 + 0.0683343i
\(486\) 0.812425 1.15757i 0.0368523 0.0525084i
\(487\) −7.87838 7.87838i −0.357004 0.357004i 0.505704 0.862707i \(-0.331233\pi\)
−0.862707 + 0.505704i \(0.831233\pi\)
\(488\) −17.0020 + 9.74196i −0.769645 + 0.440998i
\(489\) −3.08826 −0.139656
\(490\) −13.6536 + 3.47939i −0.616809 + 0.157183i
\(491\) −5.87690 + 5.87690i −0.265221 + 0.265221i −0.827171 0.561950i \(-0.810051\pi\)
0.561950 + 0.827171i \(0.310051\pi\)
\(492\) −13.6784 + 4.94473i −0.616672 + 0.222926i
\(493\) 1.37760i 0.0620439i
\(494\) 9.21437 1.61436i 0.414574 0.0726337i
\(495\) 0.974046 + 12.7781i 0.0437801 + 0.574331i
\(496\) −23.0935 27.7673i −1.03693 1.24679i
\(497\) 15.3325 + 15.3325i 0.687756 + 0.687756i
\(498\) −4.58650 + 6.53499i −0.205526 + 0.292840i
\(499\) 4.52232 4.52232i 0.202447 0.202447i −0.598601 0.801048i \(-0.704276\pi\)
0.801048 + 0.598601i \(0.204276\pi\)
\(500\) −4.66731 + 21.8682i −0.208728 + 0.977974i
\(501\) −4.67681 4.67681i −0.208944 0.208944i
\(502\) 5.60159 + 31.9724i 0.250011 + 1.42700i
\(503\) 7.49454 7.49454i 0.334165 0.334165i −0.520001 0.854166i \(-0.674068\pi\)
0.854166 + 0.520001i \(0.174068\pi\)
\(504\) −2.24300 3.91456i −0.0999110 0.174368i
\(505\) 4.30695 0.328310i 0.191657 0.0146096i
\(506\) 14.6148 + 10.2572i 0.649709 + 0.455990i
\(507\) 10.7173 0.475973
\(508\) −18.6739 8.75750i −0.828520 0.388551i
\(509\) 2.39069 + 2.39069i 0.105965 + 0.105965i 0.758102 0.652136i \(-0.226127\pi\)
−0.652136 + 0.758102i \(0.726127\pi\)
\(510\) −3.69292 + 6.21872i −0.163525 + 0.275370i
\(511\) 2.52086i 0.111516i
\(512\) −15.8419 16.1565i −0.700120 0.714025i
\(513\) 3.09584 3.09584i 0.136685 0.136685i
\(514\) −0.440058 + 0.0770985i −0.0194101 + 0.00340067i
\(515\) 0.000436186 0.00572212i 1.92206e−5 0.000252147i
\(516\) 17.5012 6.32666i 0.770449 0.278516i
\(517\) 9.23418i 0.406119i
\(518\) 3.02165 + 17.2468i 0.132764 + 0.757780i
\(519\) 22.7032i 0.996561i
\(520\) −5.36702 7.90584i −0.235360 0.346694i
\(521\) 27.6569i 1.21167i 0.795590 + 0.605835i \(0.207161\pi\)
−0.795590 + 0.605835i \(0.792839\pi\)
\(522\) 0.839034 0.146999i 0.0367235 0.00643399i
\(523\) 5.69218i 0.248902i 0.992226 + 0.124451i \(0.0397169\pi\)
−0.992226 + 0.124451i \(0.960283\pi\)
\(524\) −3.12033 + 6.65358i −0.136312 + 0.290663i
\(525\) 4.71956 6.42919i 0.205979 0.280593i
\(526\) 0.349507 + 1.99489i 0.0152392 + 0.0869815i
\(527\) 14.6020 14.6020i 0.636073 0.636073i
\(528\) 2.09777 22.8282i 0.0912937 0.993471i
\(529\) 18.1469i 0.788996i
\(530\) 6.45942 + 25.3477i 0.280579 + 1.10104i
\(531\) −9.12504 9.12504i −0.395993 0.395993i
\(532\) −4.74840 13.1353i −0.205869 0.569489i
\(533\) 10.9875 0.475922
\(534\) 8.52840 12.1515i 0.369060 0.525849i
\(535\) −21.1772 + 24.6723i −0.915572 + 1.06668i
\(536\) 1.60848 5.92518i 0.0694757 0.255929i
\(537\) 5.21450 5.21450i 0.225022 0.225022i
\(538\) 24.6352 4.31610i 1.06210 0.186080i
\(539\) 18.0565 + 18.0565i 0.777750 + 0.777750i
\(540\) −4.18161 1.58561i −0.179948 0.0682338i
\(541\) 8.91173 8.91173i 0.383145 0.383145i −0.489089 0.872234i \(-0.662671\pi\)
0.872234 + 0.489089i \(0.162671\pi\)
\(542\) 29.2450 + 20.5252i 1.25618 + 0.881633i
\(543\) 14.5282 + 14.5282i 0.623463 + 0.623463i
\(544\) 8.37041 9.86553i 0.358879 0.422981i
\(545\) −35.0985 + 2.67549i −1.50345 + 0.114605i
\(546\) 0.588162 + 3.35707i 0.0251710 + 0.143669i
\(547\) 16.9775i 0.725904i 0.931808 + 0.362952i \(0.118231\pi\)
−0.931808 + 0.362952i \(0.881769\pi\)
\(548\) 35.0040 + 16.4158i 1.49530 + 0.701250i
\(549\) 4.89881 4.89881i 0.209076 0.209076i
\(550\) 38.3958 12.9631i 1.63720 0.552749i
\(551\) 2.63708 0.112343
\(552\) −5.40634 + 3.09777i −0.230109 + 0.131850i
\(553\) 1.90528 + 1.90528i 0.0810209 + 0.0810209i
\(554\) −15.1758 10.6509i −0.644757 0.452514i
\(555\) 13.1700 + 11.3044i 0.559035 + 0.479844i
\(556\) −4.88101 + 10.4079i −0.207001 + 0.441395i
\(557\) 5.77429 0.244665 0.122332 0.992489i \(-0.460963\pi\)
0.122332 + 0.992489i \(0.460963\pi\)
\(558\) 10.4516 + 7.33529i 0.442450 + 0.310528i
\(559\) −14.0583 −0.594601
\(560\) −10.2440 + 9.93017i −0.432888 + 0.419626i
\(561\) 13.1078 0.553414
\(562\) 2.72028 + 1.90919i 0.114748 + 0.0805344i
\(563\) −8.76839 −0.369544 −0.184772 0.982781i \(-0.559155\pi\)
−0.184772 + 0.982781i \(0.559155\pi\)
\(564\) 2.91758 + 1.36826i 0.122852 + 0.0576140i
\(565\) −2.29497 30.1067i −0.0965503 1.26660i
\(566\) −18.7079 13.1299i −0.786353 0.551892i
\(567\) 1.12791 + 1.12791i 0.0473676 + 0.0473676i
\(568\) −37.1060 10.0730i −1.55693 0.422653i
\(569\) −6.53649 −0.274024 −0.137012 0.990569i \(-0.543750\pi\)
−0.137012 + 0.990569i \(0.543750\pi\)
\(570\) −11.9042 7.06919i −0.498613 0.296096i
\(571\) 8.51080 8.51080i 0.356166 0.356166i −0.506232 0.862397i \(-0.668962\pi\)
0.862397 + 0.506232i \(0.168962\pi\)
\(572\) −7.35306 + 15.6792i −0.307447 + 0.655579i
\(573\) 21.5118i 0.898670i
\(574\) −2.83107 16.1590i −0.118167 0.674464i
\(575\) −8.87926 6.51812i −0.370291 0.271824i
\(576\) 6.90184 + 4.04533i 0.287576 + 0.168555i
\(577\) −2.50352 2.50352i −0.104223 0.104223i 0.653072 0.757295i \(-0.273480\pi\)
−0.757295 + 0.653072i \(0.773480\pi\)
\(578\) −13.6234 9.56141i −0.566659 0.397702i
\(579\) −14.7523 + 14.7523i −0.613085 + 0.613085i
\(580\) −1.10565 2.45630i −0.0459097 0.101992i
\(581\) −6.36753 6.36753i −0.264170 0.264170i
\(582\) −12.3344 + 2.16100i −0.511278 + 0.0895762i
\(583\) 33.5216 33.5216i 1.38832 1.38832i
\(584\) 2.22229 + 3.87843i 0.0919592 + 0.160490i
\(585\) 2.56353 + 2.20039i 0.105989 + 0.0909749i
\(586\) 12.9600 18.4658i 0.535372 0.762815i
\(587\) −28.0515 −1.15781 −0.578904 0.815396i \(-0.696519\pi\)
−0.578904 + 0.815396i \(0.696519\pi\)
\(588\) −8.38052 + 3.02954i −0.345607 + 0.124936i
\(589\) 27.9520 + 27.9520i 1.15174 + 1.15174i
\(590\) −20.8366 + 35.0880i −0.857829 + 1.44455i
\(591\) 6.41499i 0.263877i
\(592\) −19.8530 23.8709i −0.815952 0.981088i
\(593\) 10.3023 10.3023i 0.423066 0.423066i −0.463192 0.886258i \(-0.653296\pi\)
0.886258 + 0.463192i \(0.153296\pi\)
\(594\) 1.39870 + 7.98340i 0.0573893 + 0.327563i
\(595\) −6.19010 5.31322i −0.253769 0.217821i
\(596\) 19.0740 + 8.94513i 0.781301 + 0.366407i
\(597\) 9.01442i 0.368936i
\(598\) 4.63640 0.812302i 0.189597 0.0332175i
\(599\) 16.5177i 0.674893i −0.941345 0.337447i \(-0.890437\pi\)
0.941345 0.337447i \(-0.109563\pi\)
\(600\) −1.59347 + 14.0521i −0.0650531 + 0.573674i
\(601\) 28.1393i 1.14783i −0.818916 0.573913i \(-0.805425\pi\)
0.818916 0.573913i \(-0.194575\pi\)
\(602\) 3.62229 + 20.6751i 0.147633 + 0.842653i
\(603\) 2.17068i 0.0883971i
\(604\) 5.38083 + 14.8848i 0.218943 + 0.605654i
\(605\) −37.0663 31.8156i −1.50696 1.29349i
\(606\) 2.69087 0.471442i 0.109309 0.0191510i
\(607\) −7.05215 + 7.05215i −0.286238 + 0.286238i −0.835591 0.549353i \(-0.814874\pi\)
0.549353 + 0.835591i \(0.314874\pi\)
\(608\) 18.8852 + 16.0231i 0.765894 + 0.649823i
\(609\) 0.960767i 0.0389322i
\(610\) −18.8371 11.1862i −0.762692 0.452916i
\(611\) −1.72134 1.72134i −0.0696381 0.0696381i
\(612\) −1.94223 + 4.14147i −0.0785099 + 0.167409i
\(613\) 9.16257 0.370073 0.185036 0.982732i \(-0.440760\pi\)
0.185036 + 0.982732i \(0.440760\pi\)
\(614\) 28.9279 + 20.3027i 1.16743 + 0.819348i
\(615\) −12.3394 10.5914i −0.497571 0.427087i
\(616\) 24.9535 + 6.77400i 1.00541 + 0.272932i
\(617\) 1.80126 1.80126i 0.0725161 0.0725161i −0.669919 0.742435i \(-0.733671\pi\)
0.742435 + 0.669919i \(0.233671\pi\)
\(618\) 0.000626348 0.00357503i 2.51954e−5 0.000143809i
\(619\) 22.8596 + 22.8596i 0.918804 + 0.918804i 0.996943 0.0781384i \(-0.0248976\pi\)
−0.0781384 + 0.996943i \(0.524898\pi\)
\(620\) 14.3163 37.7553i 0.574957 1.51629i
\(621\) 1.55774 1.55774i 0.0625098 0.0625098i
\(622\) 4.51467 6.43265i 0.181022 0.257926i
\(623\) 11.8402 + 11.8402i 0.474366 + 0.474366i
\(624\) −3.86437 4.64646i −0.154698 0.186007i
\(625\) −23.8512 + 7.49119i −0.954050 + 0.299648i
\(626\) 6.16027 1.07928i 0.246214 0.0431369i
\(627\) 25.0918i 1.00207i
\(628\) −6.32834 17.5059i −0.252528 0.698561i
\(629\) 12.5530 12.5530i 0.500521 0.500521i
\(630\) 2.57552 4.33707i 0.102611 0.172793i
\(631\) −5.25748 −0.209297 −0.104648 0.994509i \(-0.533372\pi\)
−0.104648 + 0.994509i \(0.533372\pi\)
\(632\) −4.61096 1.25171i −0.183414 0.0497905i
\(633\) −12.1263 12.1263i −0.481977 0.481977i
\(634\) 27.4737 39.1454i 1.09112 1.55466i
\(635\) −1.75273 22.9932i −0.0695548 0.912458i
\(636\) 5.62428 + 15.5583i 0.223017 + 0.616926i
\(637\) 6.73184 0.266725
\(638\) −2.80447 + 3.99590i −0.111030 + 0.158199i
\(639\) 13.5937 0.537760
\(640\) 7.00667 24.3086i 0.276963 0.960881i
\(641\) −13.7980 −0.544989 −0.272494 0.962157i \(-0.587849\pi\)
−0.272494 + 0.962157i \(0.587849\pi\)
\(642\) −11.8134 + 16.8322i −0.466239 + 0.664312i
\(643\) −10.3483 −0.408098 −0.204049 0.978961i \(-0.565410\pi\)
−0.204049 + 0.978961i \(0.565410\pi\)
\(644\) −2.38926 6.60933i −0.0941499 0.260444i
\(645\) 15.7879 + 13.5514i 0.621649 + 0.533588i
\(646\) −8.13522 + 11.5913i −0.320076 + 0.456055i
\(647\) 5.33727 + 5.33727i 0.209830 + 0.209830i 0.804195 0.594365i \(-0.202597\pi\)
−0.594365 + 0.804195i \(0.702597\pi\)
\(648\) −2.72964 0.741001i −0.107230 0.0291093i
\(649\) 73.9585 2.90312
\(650\) 4.74090 9.57381i 0.185953 0.375516i
\(651\) −10.1837 + 10.1837i −0.399133 + 0.399133i
\(652\) 2.09981 + 5.80864i 0.0822349 + 0.227484i
\(653\) 30.3415i 1.18735i −0.804703 0.593677i \(-0.797676\pi\)
0.804703 0.593677i \(-0.202324\pi\)
\(654\) −21.9286 + 3.84191i −0.857477 + 0.150231i
\(655\) −8.19258 + 0.624504i −0.320110 + 0.0244014i
\(656\) 18.6008 + 22.3654i 0.726241 + 0.873221i
\(657\) −1.11750 1.11750i −0.0435977 0.0435977i
\(658\) −2.08801 + 2.97506i −0.0813989 + 0.115980i
\(659\) 22.0703 22.0703i 0.859738 0.859738i −0.131569 0.991307i \(-0.542002\pi\)
0.991307 + 0.131569i \(0.0420016\pi\)
\(660\) 23.3717 10.5203i 0.909741 0.409501i
\(661\) 12.8058 + 12.8058i 0.498089 + 0.498089i 0.910843 0.412753i \(-0.135433\pi\)
−0.412753 + 0.910843i \(0.635433\pi\)
\(662\) −4.51271 25.7574i −0.175391 1.00109i
\(663\) 2.44343 2.44343i 0.0948951 0.0948951i
\(664\) 15.4100 + 4.18328i 0.598024 + 0.162343i
\(665\) 10.1709 11.8494i 0.394409 0.459501i
\(666\) 8.98497 + 6.30598i 0.348161 + 0.244352i
\(667\) 1.32690 0.0513778
\(668\) −5.61658 + 11.9764i −0.217312 + 0.463381i
\(669\) 9.07927 + 9.07927i 0.351025 + 0.351025i
\(670\) 6.65172 1.69507i 0.256979 0.0654864i
\(671\) 39.7049i 1.53279i
\(672\) −5.83771 + 6.88043i −0.225194 + 0.265418i
\(673\) 5.19258 5.19258i 0.200159 0.200159i −0.599909 0.800068i \(-0.704797\pi\)
0.800068 + 0.599909i \(0.204797\pi\)
\(674\) −9.29391 + 1.62830i −0.357988 + 0.0627198i
\(675\) −0.757876 4.94223i −0.0291707 0.190226i
\(676\) −7.28705 20.1579i −0.280271 0.775305i
\(677\) 34.5001i 1.32595i 0.748643 + 0.662973i \(0.230706\pi\)
−0.748643 + 0.662973i \(0.769294\pi\)
\(678\) −3.29551 18.8099i −0.126563 0.722390i
\(679\) 14.1240i 0.542028i
\(680\) 14.2076 + 2.71761i 0.544836 + 0.104215i
\(681\) 0.580888i 0.0222597i
\(682\) −72.0813 + 12.6287i −2.76013 + 0.483578i
\(683\) 16.4252i 0.628494i 0.949341 + 0.314247i \(0.101752\pi\)
−0.949341 + 0.314247i \(0.898248\pi\)
\(684\) −7.92785 3.71792i −0.303129 0.142158i
\(685\) 3.28547 + 43.1005i 0.125531 + 1.64679i
\(686\) −4.45958 25.4541i −0.170268 0.971843i
\(687\) 8.27674 8.27674i 0.315777 0.315777i
\(688\) −23.7993 28.6160i −0.907341 1.09097i
\(689\) 12.4975i 0.476118i
\(690\) −5.98987 3.55701i −0.228030 0.135413i
\(691\) −9.38248 9.38248i −0.356926 0.356926i 0.505752 0.862679i \(-0.331215\pi\)
−0.862679 + 0.505752i \(0.831215\pi\)
\(692\) 42.7019 15.4367i 1.62328 0.586814i
\(693\) −9.14169 −0.347264
\(694\) 21.4912 30.6213i 0.815793 1.16237i
\(695\) −12.8153 + 0.976886i −0.486113 + 0.0370554i
\(696\) −0.846974 1.47817i −0.0321045 0.0560298i
\(697\) −11.7613 + 11.7613i −0.445490 + 0.445490i
\(698\) −15.2112 + 2.66502i −0.575753 + 0.100872i
\(699\) 10.8812 + 10.8812i 0.411565 + 0.411565i
\(700\) −15.3015 4.50549i −0.578342 0.170292i
\(701\) −9.83481 + 9.83481i −0.371455 + 0.371455i −0.868007 0.496552i \(-0.834599\pi\)
0.496552 + 0.868007i \(0.334599\pi\)
\(702\) 1.74892 + 1.22746i 0.0660087 + 0.0463273i
\(703\) 24.0297 + 24.0297i 0.906296 + 0.906296i
\(704\) −44.3634 + 11.5760i −1.67201 + 0.436287i
\(705\) 0.273843 + 3.59242i 0.0103135 + 0.135298i
\(706\) −5.92822 33.8367i −0.223112 1.27346i
\(707\) 3.08128i 0.115883i
\(708\) −10.9587 + 23.3675i −0.411851 + 0.878204i
\(709\) −23.8550 + 23.8550i −0.895894 + 0.895894i −0.995070 0.0991761i \(-0.968379\pi\)
0.0991761 + 0.995070i \(0.468379\pi\)
\(710\) −10.6153 41.6559i −0.398384 1.56332i
\(711\) 1.68922 0.0633507
\(712\) −28.6543 7.77863i −1.07386 0.291517i
\(713\) 14.0646 + 14.0646i 0.526724 + 0.526724i
\(714\) −4.22307 2.96391i −0.158044 0.110921i
\(715\) −19.3058 + 1.47164i −0.721996 + 0.0550363i
\(716\) −13.3533 6.26231i −0.499037 0.234034i
\(717\) −10.3831 −0.387765
\(718\) 15.4664 + 10.8549i 0.577202 + 0.405101i
\(719\) −15.7928 −0.588971 −0.294485 0.955656i \(-0.595148\pi\)
−0.294485 + 0.955656i \(0.595148\pi\)
\(720\) −0.139126 + 8.94319i −0.00518492 + 0.333293i
\(721\) −0.00409372 −0.000152458
\(722\) −0.194961 0.136831i −0.00725569 0.00509231i
\(723\) 22.4691 0.835634
\(724\) 17.4475 37.2038i 0.648431 1.38267i
\(725\) 1.78214 2.42771i 0.0661872 0.0901630i
\(726\) −25.2877 17.7479i −0.938515 0.658685i
\(727\) 2.18456 + 2.18456i 0.0810208 + 0.0810208i 0.746456 0.665435i \(-0.231754\pi\)
−0.665435 + 0.746456i \(0.731754\pi\)
\(728\) 5.91433 3.38884i 0.219199 0.125599i
\(729\) 1.00000 0.0370370
\(730\) −2.55175 + 4.29704i −0.0944445 + 0.159041i
\(731\) 15.0483 15.0483i 0.556581 0.556581i
\(732\) −12.5449 5.88320i −0.463674 0.217449i
\(733\) 27.2805i 1.00763i 0.863812 + 0.503815i \(0.168071\pi\)
−0.863812 + 0.503815i \(0.831929\pi\)
\(734\) 0.715901 + 4.08618i 0.0264244 + 0.150824i
\(735\) −7.56010 6.48915i −0.278858 0.239356i
\(736\) 9.50246 + 8.06237i 0.350265 + 0.297183i
\(737\) −8.79670 8.79670i −0.324031 0.324031i
\(738\) −8.41829 5.90826i −0.309881 0.217486i
\(739\) 35.5998 35.5998i 1.30956 1.30956i 0.387826 0.921733i \(-0.373226\pi\)
0.921733 0.387826i \(-0.126774\pi\)
\(740\) 12.3074 32.4573i 0.452429 1.19316i
\(741\) 4.67736 + 4.67736i 0.171827 + 0.171827i
\(742\) −18.3798 + 3.22015i −0.674742 + 0.118215i
\(743\) −25.0052 + 25.0052i −0.917352 + 0.917352i −0.996836 0.0794841i \(-0.974673\pi\)
0.0794841 + 0.996836i \(0.474673\pi\)
\(744\) 6.69041 24.6456i 0.245282 0.903551i
\(745\) 1.79028 + 23.4858i 0.0655907 + 0.860455i
\(746\) −25.7243 + 36.6528i −0.941833 + 1.34195i
\(747\) −5.64544 −0.206556
\(748\) −8.91245 24.6542i −0.325871 0.901447i
\(749\) −16.4008 16.4008i −0.599274 0.599274i
\(750\) −14.5529 + 6.18175i −0.531396 + 0.225725i
\(751\) 35.0837i 1.28022i −0.768283 0.640111i \(-0.778888\pi\)
0.768283 0.640111i \(-0.221112\pi\)
\(752\) 0.589766 6.41792i 0.0215065 0.234037i
\(753\) −16.2297 + 16.2297i −0.591443 + 0.591443i
\(754\) 0.222095 + 1.26766i 0.00808821 + 0.0461654i
\(755\) −11.5255 + 13.4276i −0.419456 + 0.488682i
\(756\) 1.35455 2.88835i 0.0492646 0.105048i
\(757\) 18.8071i 0.683554i −0.939781 0.341777i \(-0.888971\pi\)
0.939781 0.341777i \(-0.111029\pi\)
\(758\) −10.0333 + 1.75784i −0.364426 + 0.0638477i
\(759\) 12.6255i 0.458275i
\(760\) −5.20220 + 27.1969i −0.188704 + 0.986537i
\(761\) 0.986222i 0.0357505i −0.999840 0.0178753i \(-0.994310\pi\)
0.999840 0.0178753i \(-0.00569017\pi\)
\(762\) −2.51686 14.3656i −0.0911761 0.520409i
\(763\) 25.1102i 0.909049i
\(764\) −40.4611 + 14.6266i −1.46383 + 0.529172i
\(765\) −5.09941 + 0.388718i −0.184370 + 0.0140541i
\(766\) −6.31106 + 1.10570i −0.228028 + 0.0399506i
\(767\) 13.7866 13.7866i 0.497806 0.497806i
\(768\) 2.91597 15.7320i 0.105221 0.567681i
\(769\) 43.7365i 1.57718i −0.614921 0.788589i \(-0.710812\pi\)
0.614921 0.788589i \(-0.289188\pi\)
\(770\) 7.13869 + 28.0133i 0.257260 + 1.00953i
\(771\) −0.223380 0.223380i −0.00804485 0.00804485i
\(772\) 37.7778 + 17.7167i 1.35965 + 0.637637i
\(773\) 33.7211 1.21286 0.606431 0.795136i \(-0.292601\pi\)
0.606431 + 0.795136i \(0.292601\pi\)
\(774\) 10.7710 + 7.55948i 0.387155 + 0.271720i
\(775\) 44.6228 6.84278i 1.60290 0.245800i
\(776\) 12.4511 + 21.7302i 0.446970 + 0.780067i
\(777\) −8.75474 + 8.75474i −0.314074 + 0.314074i
\(778\) 0.465725 + 2.65824i 0.0166971 + 0.0953025i
\(779\) −22.5141 22.5141i −0.806652 0.806652i
\(780\) 2.39563 6.31780i 0.0857772 0.226214i
\(781\) −55.0887 + 55.0887i −1.97123 + 1.97123i
\(782\) −4.09341 + 5.83242i −0.146380 + 0.208567i
\(783\) 0.425907 + 0.425907i 0.0152207 + 0.0152207i
\(784\) 11.3964 + 13.7028i 0.407014 + 0.489387i
\(785\) 13.5550 15.7921i 0.483800 0.563645i
\(786\) −5.11851 + 0.896767i −0.182571 + 0.0319866i
\(787\) 27.5235i 0.981106i −0.871411 0.490553i \(-0.836795\pi\)
0.871411 0.490553i \(-0.163205\pi\)
\(788\) −12.0658 + 4.36176i −0.429826 + 0.155381i
\(789\) −1.01264 + 1.01264i −0.0360509 + 0.0360509i
\(790\) −1.31910 5.17635i −0.0469315 0.184166i
\(791\) 21.5390 0.765838
\(792\) 14.0648 8.05895i 0.499770 0.286362i
\(793\) 7.40139 + 7.40139i 0.262831 + 0.262831i
\(794\) 19.8784 28.3234i 0.705458 1.00516i
\(795\) −12.0470 + 14.0352i −0.427262 + 0.497776i
\(796\) −16.9550 + 6.12920i −0.600954 + 0.217244i
\(797\) 21.0022 0.743937 0.371969 0.928245i \(-0.378683\pi\)
0.371969 + 0.928245i \(0.378683\pi\)
\(798\) 5.67368 8.08404i 0.200846 0.286172i
\(799\) 3.68513 0.130371
\(800\) 27.5137 6.55735i 0.972755 0.231837i
\(801\) 10.4975 0.370910
\(802\) 23.1804 33.0282i 0.818528 1.16627i
\(803\) 9.05731 0.319626
\(804\) 4.08279 1.47592i 0.143989 0.0520516i
\(805\) 5.11769 5.96229i 0.180375 0.210143i
\(806\) −11.0826 + 15.7908i −0.390367 + 0.556207i
\(807\) 12.5052 + 12.5052i 0.440204 + 0.440204i
\(808\) −2.71633 4.74064i −0.0955602 0.166775i
\(809\) −17.2682 −0.607117 −0.303559 0.952813i \(-0.598175\pi\)
−0.303559 + 0.952813i \(0.598175\pi\)
\(810\) −0.780893 3.06434i −0.0274378 0.107670i
\(811\) 12.8011 12.8011i 0.449507 0.449507i −0.445683 0.895191i \(-0.647039\pi\)
0.895191 + 0.445683i \(0.147039\pi\)
\(812\) 1.80708 0.653256i 0.0634162 0.0229248i
\(813\) 25.2641i 0.886052i
\(814\) −61.9666 + 10.8566i −2.17193 + 0.380524i
\(815\) −4.49770 + 5.23999i −0.157548 + 0.183549i
\(816\) 9.11018 + 0.837167i 0.318920 + 0.0293067i
\(817\) 28.8063 + 28.8063i 1.00780 + 1.00780i
\(818\) −12.2689 + 17.4811i −0.428972 + 0.611214i
\(819\) −1.70410 + 1.70410i −0.0595462 + 0.0595462i
\(820\) −11.5312 + 30.4102i −0.402686 + 1.06197i
\(821\) 25.3693 + 25.3693i 0.885395 + 0.885395i 0.994077 0.108682i \(-0.0346629\pi\)
−0.108682 + 0.994077i \(0.534663\pi\)
\(822\) 4.71782 + 26.9281i 0.164553 + 0.939225i
\(823\) −12.8031 + 12.8031i −0.446288 + 0.446288i −0.894119 0.447830i \(-0.852197\pi\)
0.447830 + 0.894119i \(0.352197\pi\)
\(824\) 0.00629832 0.00360886i 0.000219412 0.000125721i
\(825\) 23.0997 + 16.9571i 0.804228 + 0.590370i
\(826\) −23.8279 16.7233i −0.829077 0.581877i
\(827\) −22.8624 −0.795005 −0.397502 0.917601i \(-0.630123\pi\)
−0.397502 + 0.917601i \(0.630123\pi\)
\(828\) −3.98906 1.87075i −0.138630 0.0650131i
\(829\) −32.1620 32.1620i −1.11703 1.11703i −0.992175 0.124857i \(-0.960153\pi\)
−0.124857 0.992175i \(-0.539847\pi\)
\(830\) 4.40849 + 17.2996i 0.153021 + 0.600477i
\(831\) 13.1100i 0.454782i
\(832\) −6.11190 + 10.4277i −0.211892 + 0.361514i
\(833\) −7.20592 + 7.20592i −0.249670 + 0.249670i
\(834\) −8.00668 + 1.40278i −0.277249 + 0.0485742i
\(835\) −14.7466 + 1.12410i −0.510326 + 0.0389012i
\(836\) 47.1945 17.0607i 1.63226 0.590057i
\(837\) 9.02889i 0.312084i
\(838\) −0.666189 3.80243i −0.0230131 0.131353i
\(839\) 19.2953i 0.666147i 0.942901 + 0.333073i \(0.108086\pi\)
−0.942901 + 0.333073i \(0.891914\pi\)
\(840\) −9.90867 1.89532i −0.341882 0.0653947i
\(841\) 28.6372i 0.987490i
\(842\) 22.3267 3.91165i 0.769428 0.134804i
\(843\) 2.34999i 0.0809381i
\(844\) −14.5630 + 31.0531i −0.501279 + 1.06889i
\(845\) 15.6086 18.1845i 0.536951 0.625567i
\(846\) 0.393229 + 2.24445i 0.0135195 + 0.0771658i
\(847\) 24.6397 24.6397i 0.846631 0.846631i
\(848\) 25.4390 21.1572i 0.873580 0.726540i
\(849\) 16.1614i 0.554658i
\(850\) 5.17326 + 15.3228i 0.177441 + 0.525568i
\(851\) 12.0910 + 12.0910i 0.414475 + 0.414475i
\(852\) −9.24283 25.5681i −0.316654 0.875950i
\(853\) −42.4336 −1.45290 −0.726449 0.687220i \(-0.758831\pi\)
−0.726449 + 0.687220i \(0.758831\pi\)
\(854\) 8.97795 12.7921i 0.307219 0.437736i
\(855\) −0.744106 9.76158i −0.0254479 0.333839i
\(856\) 39.6915 + 10.7749i 1.35663 + 0.368277i
\(857\) 7.60830 7.60830i 0.259894 0.259894i −0.565117 0.825011i \(-0.691169\pi\)
0.825011 + 0.565117i \(0.191169\pi\)
\(858\) −12.0618 + 2.11323i −0.411782 + 0.0721445i
\(859\) 11.8598 + 11.8598i 0.404651 + 0.404651i 0.879869 0.475217i \(-0.157631\pi\)
−0.475217 + 0.879869i \(0.657631\pi\)
\(860\) 14.7539 38.9092i 0.503102 1.32679i
\(861\) 8.20257 8.20257i 0.279543 0.279543i
\(862\) 26.9783 + 18.9344i 0.918884 + 0.644907i
\(863\) 5.07126 + 5.07126i 0.172628 + 0.172628i 0.788133 0.615505i \(-0.211048\pi\)
−0.615505 + 0.788133i \(0.711048\pi\)
\(864\) 0.462239 + 5.63794i 0.0157257 + 0.191807i
\(865\) 38.5215 + 33.0647i 1.30977 + 1.12423i
\(866\) −0.784924 4.48014i −0.0266728 0.152241i
\(867\) 11.7690i 0.399696i
\(868\) 26.0786 + 12.2301i 0.885166 + 0.415117i
\(869\) −6.84557 + 6.84557i −0.232220 + 0.232220i
\(870\) 0.972537 1.63771i 0.0329721 0.0555237i
\(871\) −3.27959 −0.111125
\(872\) 22.1361 + 38.6328i 0.749624 + 1.30827i
\(873\) −6.26114 6.26114i −0.211907 0.211907i
\(874\) −11.1647 7.83583i −0.377653 0.265051i
\(875\) −4.03518 17.3713i −0.136414 0.587256i
\(876\) −1.34205 + 2.86169i −0.0453437 + 0.0966877i
\(877\) 10.2891 0.347437 0.173719 0.984795i \(-0.444422\pi\)
0.173719 + 0.984795i \(0.444422\pi\)
\(878\) −11.2555 7.89953i −0.379855 0.266596i
\(879\) 15.9522 0.538055
\(880\) −35.6785 36.8061i −1.20272 1.24073i
\(881\) −11.5441 −0.388932 −0.194466 0.980909i \(-0.562297\pi\)
−0.194466 + 0.980909i \(0.562297\pi\)
\(882\) −5.15772 3.61988i −0.173670 0.121888i
\(883\) −38.5099 −1.29596 −0.647981 0.761657i \(-0.724386\pi\)
−0.647981 + 0.761657i \(0.724386\pi\)
\(884\) −6.25716 2.93442i −0.210451 0.0986954i
\(885\) −28.7724 + 2.19327i −0.967175 + 0.0737258i
\(886\) 19.4506 + 13.6511i 0.653455 + 0.458618i
\(887\) −5.56002 5.56002i −0.186687 0.186687i 0.607575 0.794262i \(-0.292142\pi\)
−0.794262 + 0.607575i \(0.792142\pi\)
\(888\) 5.75160 21.1872i 0.193011 0.710998i
\(889\) 16.4498 0.551709
\(890\) −8.19740 32.1679i −0.274778 1.07827i
\(891\) −4.05250 + 4.05250i −0.135764 + 0.135764i
\(892\) 10.9037 23.2503i 0.365082 0.778477i
\(893\) 7.05429i 0.236063i
\(894\) 2.57078 + 14.6733i 0.0859798 + 0.490750i
\(895\) −1.25334 16.4420i −0.0418945 0.549595i
\(896\) 16.9105 + 6.30177i 0.564939 + 0.210527i
\(897\) 2.35351 + 2.35351i 0.0785815 + 0.0785815i
\(898\) 17.0034 + 11.9336i 0.567411 + 0.398230i
\(899\) −3.84547 + 3.84547i −0.128253 + 0.128253i
\(900\) −8.78041 + 4.78585i −0.292680 + 0.159528i
\(901\) 13.3776 + 13.3776i 0.445674 + 0.445674i
\(902\) 58.0584 10.1719i 1.93313 0.338686i
\(903\) −10.4950 + 10.4950i −0.349252 + 0.349252i
\(904\) −33.1383 + 18.9879i −1.10216 + 0.631528i
\(905\) 45.8092 3.49194i 1.52275 0.116076i
\(906\) −6.42934 + 9.16073i −0.213601 + 0.304345i
\(907\) −30.0758 −0.998649 −0.499325 0.866415i \(-0.666419\pi\)
−0.499325 + 0.866415i \(0.666419\pi\)
\(908\) −1.09258 + 0.394964i −0.0362584 + 0.0131074i
\(909\) 1.36593 + 1.36593i 0.0453049 + 0.0453049i
\(910\) 6.55268 + 3.89124i 0.217219 + 0.128993i
\(911\) 39.1493i 1.29707i −0.761183 0.648537i \(-0.775381\pi\)
0.761183 0.648537i \(-0.224619\pi\)
\(912\) −1.60255 + 17.4392i −0.0530658 + 0.577470i
\(913\) 22.8782 22.8782i 0.757157 0.757157i
\(914\) 3.74845 + 21.3951i 0.123988 + 0.707689i
\(915\) −1.17746 15.4466i −0.0389257 0.510649i
\(916\) −21.1951 9.93989i −0.700307 0.328423i
\(917\) 5.86114i 0.193552i
\(918\) −3.18598 + 0.558186i −0.105153 + 0.0184229i
\(919\) 49.7130i 1.63988i 0.572448 + 0.819941i \(0.305994\pi\)
−0.572448 + 0.819941i \(0.694006\pi\)
\(920\) −2.61760 + 13.6847i −0.0862996 + 0.451172i
\(921\) 24.9902i 0.823455i
\(922\) 4.22112 + 24.0930i 0.139015 + 0.793461i
\(923\) 20.5382i 0.676022i
\(924\) 6.21573 + 17.1944i 0.204483 + 0.565654i
\(925\) 38.3612 5.88258i 1.26131 0.193418i
\(926\) −50.1991 + 8.79493i −1.64965 + 0.289019i
\(927\) −0.00181474 + 0.00181474i −5.96040e−5 + 5.96040e-5i
\(928\) −2.20437 + 2.59811i −0.0723618 + 0.0852870i
\(929\) 0.175895i 0.00577094i 0.999996 + 0.00288547i \(0.000918475\pi\)
−0.999996 + 0.00288547i \(0.999082\pi\)
\(930\) 27.6676 7.05060i 0.907257 0.231198i
\(931\) −13.7940 13.7940i −0.452079 0.452079i
\(932\) 13.0677 27.8647i 0.428047 0.912738i
\(933\) 5.55703 0.181929
\(934\) 39.7412 + 27.8918i 1.30037 + 0.912649i
\(935\) 19.0901 22.2406i 0.624313 0.727347i
\(936\) 1.11954 4.12408i 0.0365934 0.134800i
\(937\) −30.8310 + 30.8310i −1.00720 + 1.00720i −0.00722969 + 0.999974i \(0.502301\pi\)
−0.999974 + 0.00722969i \(0.997699\pi\)
\(938\) 0.845028 + 4.82320i 0.0275911 + 0.157483i
\(939\) 3.12705 + 3.12705i 0.102048 + 0.102048i
\(940\) 6.57070 2.95767i 0.214313 0.0964685i
\(941\) −38.5292 + 38.5292i −1.25602 + 1.25602i −0.303037 + 0.952979i \(0.598000\pi\)
−0.952979 + 0.303037i \(0.902000\pi\)
\(942\) 7.56148 10.7738i 0.246366 0.351031i
\(943\) −11.3285 11.3285i −0.368905 0.368905i
\(944\) 51.4025 + 4.72356i 1.67301 + 0.153739i
\(945\) 3.55644 0.271100i 0.115691 0.00881889i
\(946\) −74.2843 + 13.0147i −2.41519 + 0.423143i
\(947\) 57.6451i 1.87321i −0.350382 0.936607i \(-0.613948\pi\)
0.350382 0.936607i \(-0.386052\pi\)
\(948\) −1.14856 3.17721i −0.0373033 0.103191i
\(949\) 1.68837 1.68837i 0.0548070 0.0548070i
\(950\) −29.3318 + 9.90295i −0.951648 + 0.321294i
\(951\) 33.8169 1.09659
\(952\) −2.70334 + 9.95832i −0.0876156 + 0.322751i
\(953\) −31.1076 31.1076i −1.00767 1.00767i −0.999970 0.00770207i \(-0.997548\pi\)
−0.00770207 0.999970i \(-0.502452\pi\)
\(954\) −6.72024 + 9.57521i −0.217576 + 0.310009i
\(955\) −36.5001 31.3296i −1.18111 1.01380i
\(956\) 7.05982 + 19.5293i 0.228331 + 0.631624i
\(957\) −3.45198 −0.111587
\(958\) 7.03169 10.0190i 0.227184 0.323699i
\(959\) −30.8350 −0.995714
\(960\) 16.9156 5.81909i 0.545949 0.187810i
\(961\) −50.5209 −1.62971
\(962\) −9.52742 + 13.5750i −0.307176 + 0.437675i
\(963\) −14.5410 −0.468576
\(964\) −15.2775 42.2615i −0.492054 1.36115i
\(965\) 3.54582 + 46.5160i 0.114144 + 1.49740i
\(966\) 2.85483 4.06766i 0.0918527 0.130875i
\(967\) 37.9194 + 37.9194i 1.21941 + 1.21941i 0.967840 + 0.251567i \(0.0809460\pi\)
0.251567 + 0.967840i \(0.419054\pi\)
\(968\) −16.1876 + 59.6304i −0.520288 + 1.91659i
\(969\) −10.0135 −0.321680
\(970\) −14.2970 + 24.0756i −0.459049 + 0.773020i
\(971\) 26.9668 26.9668i 0.865404 0.865404i −0.126555 0.991960i \(-0.540392\pi\)
0.991960 + 0.126555i \(0.0403921\pi\)
\(972\) −0.679932 1.88088i −0.0218088 0.0603291i
\(973\) 9.16835i 0.293924i
\(974\) −15.5204 + 2.71918i −0.497305 + 0.0871282i
\(975\) 7.46699 1.14504i 0.239135 0.0366706i
\(976\) −2.53586 + 27.5956i −0.0811709 + 0.883314i
\(977\) −13.1778 13.1778i −0.421596 0.421596i 0.464157 0.885753i \(-0.346357\pi\)
−0.885753 + 0.464157i \(0.846357\pi\)
\(978\) −2.50898 + 3.57488i −0.0802283 + 0.114312i
\(979\) −42.5410 + 42.5410i −1.35962 + 1.35962i
\(980\) −7.06493 + 18.6318i −0.225681 + 0.595170i
\(981\) −11.1313 11.1313i −0.355395 0.355395i
\(982\) 2.02838 + 11.5775i 0.0647282 + 0.369452i
\(983\) −33.1704 + 33.1704i −1.05797 + 1.05797i −0.0597600 + 0.998213i \(0.519034\pi\)
−0.998213 + 0.0597600i \(0.980966\pi\)
\(984\) −5.38884 + 19.8510i −0.171790 + 0.632826i
\(985\) −10.8846 9.34270i −0.346812 0.297683i
\(986\) −1.59467 1.11919i −0.0507845 0.0356424i
\(987\) −2.57009 −0.0818069
\(988\) 5.61724 11.9778i 0.178708 0.381065i
\(989\) 14.4945 + 14.4945i 0.460898 + 0.460898i
\(990\) 15.5828 + 9.25369i 0.495255 + 0.294102i
\(991\) 10.3297i 0.328135i −0.986449 0.164067i \(-0.947539\pi\)
0.986449 0.164067i \(-0.0524615\pi\)
\(992\) −50.9043 + 4.17350i −1.61621 + 0.132509i
\(993\) 13.0748 13.0748i 0.414917 0.414917i
\(994\) 30.2049 5.29192i 0.958041 0.167850i
\(995\) −15.2952 13.1285i −0.484889 0.416201i
\(996\) 3.83852 + 10.6184i 0.121628 + 0.336456i
\(997\) 37.9110i 1.20065i 0.799755 + 0.600327i \(0.204963\pi\)
−0.799755 + 0.600327i \(0.795037\pi\)
\(998\) −1.56085 8.90894i −0.0494079 0.282008i
\(999\) 7.76193i 0.245577i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.2.y.e.187.6 yes 16
3.2 odd 2 720.2.z.f.667.3 16
4.3 odd 2 960.2.y.e.847.6 16
5.3 odd 4 240.2.bc.e.43.2 yes 16
8.3 odd 2 1920.2.y.j.1567.3 16
8.5 even 2 1920.2.y.i.1567.3 16
15.8 even 4 720.2.bd.f.523.7 16
16.3 odd 4 240.2.bc.e.67.2 yes 16
16.5 even 4 1920.2.bc.j.607.7 16
16.11 odd 4 1920.2.bc.i.607.7 16
16.13 even 4 960.2.bc.e.367.2 16
20.3 even 4 960.2.bc.e.463.2 16
40.3 even 4 1920.2.bc.j.1183.7 16
40.13 odd 4 1920.2.bc.i.1183.7 16
48.35 even 4 720.2.bd.f.307.7 16
80.3 even 4 inner 240.2.y.e.163.6 16
80.13 odd 4 960.2.y.e.943.6 16
80.43 even 4 1920.2.y.i.223.3 16
80.53 odd 4 1920.2.y.j.223.3 16
240.83 odd 4 720.2.z.f.163.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.e.163.6 16 80.3 even 4 inner
240.2.y.e.187.6 yes 16 1.1 even 1 trivial
240.2.bc.e.43.2 yes 16 5.3 odd 4
240.2.bc.e.67.2 yes 16 16.3 odd 4
720.2.z.f.163.3 16 240.83 odd 4
720.2.z.f.667.3 16 3.2 odd 2
720.2.bd.f.307.7 16 48.35 even 4
720.2.bd.f.523.7 16 15.8 even 4
960.2.y.e.847.6 16 4.3 odd 2
960.2.y.e.943.6 16 80.13 odd 4
960.2.bc.e.367.2 16 16.13 even 4
960.2.bc.e.463.2 16 20.3 even 4
1920.2.y.i.223.3 16 80.43 even 4
1920.2.y.i.1567.3 16 8.5 even 2
1920.2.y.j.223.3 16 80.53 odd 4
1920.2.y.j.1567.3 16 8.3 odd 2
1920.2.bc.i.607.7 16 16.11 odd 4
1920.2.bc.i.1183.7 16 40.13 odd 4
1920.2.bc.j.607.7 16 16.5 even 4
1920.2.bc.j.1183.7 16 40.3 even 4