Properties

Label 240.2.y.e
Level $240$
Weight $2$
Character orbit 240.y
Analytic conductor $1.916$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,2,Mod(163,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 240.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.91640964851\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{7} q^{2} + q^{3} + (\beta_{14} - \beta_{13} + \beta_{10} + \cdots - 1) q^{4} + (\beta_{15} + \beta_{14} - \beta_{13} + \cdots - 1) q^{5} + \beta_{7} q^{6} + ( - \beta_{15} + \beta_{12} - \beta_{10} + \cdots - 1) q^{7}+ \cdots + ( - \beta_{15} - \beta_{14} + \cdots + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 16 q^{3} - 8 q^{4} - 4 q^{5} + 2 q^{6} - 4 q^{7} - 4 q^{8} + 16 q^{9} - 14 q^{10} - 8 q^{12} - 4 q^{14} - 4 q^{15} - 8 q^{16} - 8 q^{17} + 2 q^{18} + 8 q^{19} - 12 q^{20} - 4 q^{21} - 8 q^{22}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 15 \nu^{15} + 62 \nu^{14} - 94 \nu^{13} - 26 \nu^{12} + 342 \nu^{11} - 530 \nu^{10} - 2 \nu^{9} + \cdots + 1792 ) / 256 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 13 \nu^{15} + 42 \nu^{14} - 36 \nu^{13} - 70 \nu^{12} + 238 \nu^{11} - 202 \nu^{10} - 250 \nu^{9} + \cdots + 64 ) / 128 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 27 \nu^{15} - 88 \nu^{14} + 78 \nu^{13} + 142 \nu^{12} - 498 \nu^{11} + 438 \nu^{10} + 502 \nu^{9} + \cdots - 256 ) / 256 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 11 \nu^{15} - 43 \nu^{14} + 66 \nu^{13} + 16 \nu^{12} - 232 \nu^{11} + 368 \nu^{10} - 24 \nu^{9} + \cdots - 1664 ) / 128 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 4 \nu^{15} - 21 \nu^{14} + 40 \nu^{13} - 8 \nu^{12} - 114 \nu^{11} + 226 \nu^{10} - 78 \nu^{9} + \cdots - 1120 ) / 32 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 17 \nu^{15} + 98 \nu^{14} - 192 \nu^{13} + 50 \nu^{12} + 526 \nu^{11} - 1098 \nu^{10} + 454 \nu^{9} + \cdots + 5696 ) / 128 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 81 \nu^{15} - 348 \nu^{14} + 538 \nu^{13} + 114 \nu^{12} - 1918 \nu^{11} + 3034 \nu^{10} + \cdots - 12032 ) / 256 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 87 \nu^{15} - 378 \nu^{14} + 582 \nu^{13} + 130 \nu^{12} - 2094 \nu^{11} + 3290 \nu^{10} + \cdots - 12544 ) / 256 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 50 \nu^{15} + 213 \nu^{14} - 322 \nu^{13} - 82 \nu^{12} + 1170 \nu^{11} - 1806 \nu^{10} + \cdots + 7104 ) / 128 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 81 \nu^{15} + 408 \nu^{14} - 718 \nu^{13} + 38 \nu^{12} + 2222 \nu^{11} - 4042 \nu^{10} + \cdots + 18048 ) / 256 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 105 \nu^{15} - 484 \nu^{14} + 790 \nu^{13} + 82 \nu^{12} - 2662 \nu^{11} + 4466 \nu^{10} + \cdots - 18560 ) / 256 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 117 \nu^{15} - 612 \nu^{14} + 1114 \nu^{13} - 134 \nu^{12} - 3318 \nu^{11} + 6306 \nu^{10} + \cdots - 29952 ) / 256 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 103 \nu^{15} + 474 \nu^{14} - 774 \nu^{13} - 66 \nu^{12} + 2590 \nu^{11} - 4378 \nu^{10} + \cdots + 18432 ) / 128 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 223 \nu^{15} + 1030 \nu^{14} - 1694 \nu^{13} - 122 \nu^{12} + 5638 \nu^{11} - 9602 \nu^{10} + \cdots + 40448 ) / 256 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 127 \nu^{15} - 602 \nu^{14} + 1016 \nu^{13} + 26 \nu^{12} - 3290 \nu^{11} + 5742 \nu^{10} + \cdots - 25152 ) / 128 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{15} + \beta_{14} - \beta_{13} - \beta_{12} + \beta_{11} + \beta_{10} - \beta_{8} - \beta_{7} + \cdots - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{15} + \beta_{14} - \beta_{13} - 2 \beta_{12} + 2 \beta_{11} + \beta_{10} - \beta_{9} - \beta_{8} + \cdots + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{15} + \beta_{14} - \beta_{13} - \beta_{12} - \beta_{11} - \beta_{10} + 2 \beta_{9} - \beta_{8} + \cdots - 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{15} + \beta_{14} - \beta_{13} + \beta_{10} + \beta_{9} + \beta_{8} - 2 \beta_{7} + \beta_{6} + \cdots + 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - \beta_{15} + \beta_{14} - \beta_{13} + 3 \beta_{12} - \beta_{11} + \beta_{10} + 2 \beta_{9} + \cdots - 3 \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 5 \beta_{15} + 3 \beta_{14} - 3 \beta_{13} - 2 \beta_{12} + 8 \beta_{11} + 11 \beta_{10} - 5 \beta_{9} + \cdots + 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 3 \beta_{15} - 5 \beta_{14} + 5 \beta_{13} - \beta_{12} + 5 \beta_{11} + 5 \beta_{10} - 6 \beta_{9} + \cdots - 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 9 \beta_{15} + 3 \beta_{14} + \beta_{13} + 4 \beta_{12} - 6 \beta_{11} + 11 \beta_{10} - 3 \beta_{9} + \cdots + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 7 \beta_{15} - \beta_{14} - 3 \beta_{13} + 11 \beta_{12} - 3 \beta_{11} + 3 \beta_{10} + 2 \beta_{9} + \cdots - 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 23 \beta_{15} + 17 \beta_{14} - 25 \beta_{13} + 22 \beta_{12} + 2 \beta_{11} + 17 \beta_{10} + \cdots - 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 27 \beta_{15} - 3 \beta_{14} - 29 \beta_{13} + 3 \beta_{12} + 35 \beta_{11} - 5 \beta_{10} + \cdots - 52 ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 19 \beta_{15} - 19 \beta_{14} + 35 \beta_{13} + 40 \beta_{12} + 8 \beta_{11} - 11 \beta_{10} + \cdots - 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 27 \beta_{15} - 11 \beta_{14} + 59 \beta_{13} + 47 \beta_{12} - 37 \beta_{11} - 51 \beta_{10} + \cdots - 16 ) / 2 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 49 \beta_{15} + 23 \beta_{14} + 89 \beta_{13} + 38 \beta_{12} + 40 \beta_{11} + 119 \beta_{10} + \cdots + 203 ) / 2 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 15 \beta_{15} + 71 \beta_{14} - 87 \beta_{13} - 77 \beta_{12} + 33 \beta_{11} + 113 \beta_{10} + \cdots - 2 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(-1\) \(\beta_{8}\) \(1\) \(\beta_{8}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
163.1
−1.40988 + 0.110627i
1.38194 + 0.300388i
1.40838 0.128355i
0.885279 1.10285i
0.237728 1.39409i
1.28040 + 0.600471i
−1.20803 0.735291i
0.424183 + 1.34910i
−1.40988 0.110627i
1.38194 0.300388i
1.40838 + 0.128355i
0.885279 + 1.10285i
0.237728 + 1.39409i
1.28040 0.600471i
−1.20803 + 0.735291i
0.424183 1.34910i
−1.32675 + 0.489639i 1.00000 1.52051 1.29925i 2.06823 + 0.849960i −1.32675 + 0.489639i −2.08016 + 2.08016i −1.38116 + 2.46828i 1.00000 −3.16019 0.114996i
163.2 −0.677660 1.24128i 1.00000 −1.08155 + 1.68233i 0.311968 + 2.21420i −0.677660 1.24128i −1.96597 + 1.96597i 2.82117 + 0.202464i 1.00000 2.53703 1.88771i
163.3 −0.481284 1.32980i 1.00000 −1.53673 + 1.28002i −2.17005 0.539352i −0.481284 1.32980i 3.00806 3.00806i 2.44178 + 1.42749i 1.00000 0.327178 + 3.14531i
163.4 −0.0770377 + 1.41211i 1.00000 −1.98813 0.217572i −2.13688 + 0.658594i −0.0770377 + 1.41211i −3.54781 + 3.54781i 0.460397 2.79070i 1.00000 −0.765389 3.06825i
163.5 0.429059 1.34756i 1.00000 −1.63182 1.15636i 2.23531 + 0.0583995i 0.429059 1.34756i 0.747384 0.747384i −2.25841 + 1.70282i 1.00000 1.03777 2.98714i
163.6 0.812425 + 1.15757i 1.00000 −0.679932 + 1.88088i 1.45639 + 1.69674i 0.812425 + 1.15757i 1.12791 1.12791i −2.72964 + 0.741001i 1.00000 −0.780893 + 3.06434i
163.7 1.11192 0.873858i 1.00000 0.472743 1.94333i −1.61356 1.54804i 1.11192 0.873858i 0.143894 0.143894i −1.17254 2.57394i 1.00000 −3.14692 0.311271i
163.8 1.20932 + 0.733173i 1.00000 0.924916 + 1.77328i −2.15140 + 0.609492i 1.20932 + 0.733173i 0.566689 0.566689i −0.181602 + 2.82259i 1.00000 −3.04860 0.840275i
187.1 −1.32675 0.489639i 1.00000 1.52051 + 1.29925i 2.06823 0.849960i −1.32675 0.489639i −2.08016 2.08016i −1.38116 2.46828i 1.00000 −3.16019 + 0.114996i
187.2 −0.677660 + 1.24128i 1.00000 −1.08155 1.68233i 0.311968 2.21420i −0.677660 + 1.24128i −1.96597 1.96597i 2.82117 0.202464i 1.00000 2.53703 + 1.88771i
187.3 −0.481284 + 1.32980i 1.00000 −1.53673 1.28002i −2.17005 + 0.539352i −0.481284 + 1.32980i 3.00806 + 3.00806i 2.44178 1.42749i 1.00000 0.327178 3.14531i
187.4 −0.0770377 1.41211i 1.00000 −1.98813 + 0.217572i −2.13688 0.658594i −0.0770377 1.41211i −3.54781 3.54781i 0.460397 + 2.79070i 1.00000 −0.765389 + 3.06825i
187.5 0.429059 + 1.34756i 1.00000 −1.63182 + 1.15636i 2.23531 0.0583995i 0.429059 + 1.34756i 0.747384 + 0.747384i −2.25841 1.70282i 1.00000 1.03777 + 2.98714i
187.6 0.812425 1.15757i 1.00000 −0.679932 1.88088i 1.45639 1.69674i 0.812425 1.15757i 1.12791 + 1.12791i −2.72964 0.741001i 1.00000 −0.780893 3.06434i
187.7 1.11192 + 0.873858i 1.00000 0.472743 + 1.94333i −1.61356 + 1.54804i 1.11192 + 0.873858i 0.143894 + 0.143894i −1.17254 + 2.57394i 1.00000 −3.14692 + 0.311271i
187.8 1.20932 0.733173i 1.00000 0.924916 1.77328i −2.15140 0.609492i 1.20932 0.733173i 0.566689 + 0.566689i −0.181602 2.82259i 1.00000 −3.04860 + 0.840275i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 163.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
80.s even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 240.2.y.e 16
3.b odd 2 1 720.2.z.f 16
4.b odd 2 1 960.2.y.e 16
5.c odd 4 1 240.2.bc.e yes 16
8.b even 2 1 1920.2.y.i 16
8.d odd 2 1 1920.2.y.j 16
15.e even 4 1 720.2.bd.f 16
16.e even 4 1 960.2.bc.e 16
16.e even 4 1 1920.2.bc.j 16
16.f odd 4 1 240.2.bc.e yes 16
16.f odd 4 1 1920.2.bc.i 16
20.e even 4 1 960.2.bc.e 16
40.i odd 4 1 1920.2.bc.i 16
40.k even 4 1 1920.2.bc.j 16
48.k even 4 1 720.2.bd.f 16
80.i odd 4 1 960.2.y.e 16
80.j even 4 1 1920.2.y.i 16
80.s even 4 1 inner 240.2.y.e 16
80.t odd 4 1 1920.2.y.j 16
240.z odd 4 1 720.2.z.f 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
240.2.y.e 16 1.a even 1 1 trivial
240.2.y.e 16 80.s even 4 1 inner
240.2.bc.e yes 16 5.c odd 4 1
240.2.bc.e yes 16 16.f odd 4 1
720.2.z.f 16 3.b odd 2 1
720.2.z.f 16 240.z odd 4 1
720.2.bd.f 16 15.e even 4 1
720.2.bd.f 16 48.k even 4 1
960.2.y.e 16 4.b odd 2 1
960.2.y.e 16 80.i odd 4 1
960.2.bc.e 16 16.e even 4 1
960.2.bc.e 16 20.e even 4 1
1920.2.y.i 16 8.b even 2 1
1920.2.y.i 16 80.j even 4 1
1920.2.y.j 16 8.d odd 2 1
1920.2.y.j 16 80.t odd 4 1
1920.2.bc.i 16 16.f odd 4 1
1920.2.bc.i 16 40.i odd 4 1
1920.2.bc.j 16 16.e even 4 1
1920.2.bc.j 16 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(240, [\chi])\):

\( T_{7}^{16} + 4 T_{7}^{15} + 8 T_{7}^{14} - 32 T_{7}^{13} + 392 T_{7}^{12} + 1264 T_{7}^{11} + \cdots + 2304 \) Copy content Toggle raw display
\( T_{11}^{16} - 8 T_{11}^{13} + 1288 T_{11}^{12} - 400 T_{11}^{11} + 32 T_{11}^{10} + 4864 T_{11}^{9} + \cdots + 952576 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} - 2 T^{15} + \cdots + 256 \) Copy content Toggle raw display
$3$ \( (T - 1)^{16} \) Copy content Toggle raw display
$5$ \( T^{16} + 4 T^{15} + \cdots + 390625 \) Copy content Toggle raw display
$7$ \( T^{16} + 4 T^{15} + \cdots + 2304 \) Copy content Toggle raw display
$11$ \( T^{16} - 8 T^{13} + \cdots + 952576 \) Copy content Toggle raw display
$13$ \( T^{16} + 120 T^{14} + \cdots + 8386816 \) Copy content Toggle raw display
$17$ \( T^{16} + 8 T^{15} + \cdots + 9339136 \) Copy content Toggle raw display
$19$ \( T^{16} - 8 T^{15} + \cdots + 5308416 \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 330366976 \) Copy content Toggle raw display
$29$ \( T^{16} - 12 T^{15} + \cdots + 45373696 \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 1655277803776 \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots + 793886976 \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 177209344 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 37555339264 \) Copy content Toggle raw display
$47$ \( T^{16} + 32 T^{15} + \cdots + 65536 \) Copy content Toggle raw display
$53$ \( (T^{8} - 8 T^{7} + \cdots + 189328)^{2} \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 8785580546304 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 55857327698176 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 330366976 \) Copy content Toggle raw display
$71$ \( (T^{8} - 392 T^{6} + \cdots + 3900672)^{2} \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 2179567984896 \) Copy content Toggle raw display
$79$ \( (T^{8} + 24 T^{7} + \cdots - 1507376)^{2} \) Copy content Toggle raw display
$83$ \( (T^{8} + 4 T^{7} + \cdots - 5888)^{2} \) Copy content Toggle raw display
$89$ \( (T^{8} - 344 T^{6} + \cdots - 3899136)^{2} \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 16602430353664 \) Copy content Toggle raw display
show more
show less