gp: [N,k,chi] = [960,2,Mod(367,960)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(960, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 0, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("960.367");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [16,0,0,0,-8,0,4,0,-16,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 15 1,\beta_1,\ldots,\beta_{15} 1 , β 1 , … , β 1 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 16 − 6 x 15 + 14 x 14 − 10 x 13 − 26 x 12 + 78 x 11 − 66 x 10 − 74 x 9 + 233 x 8 + ⋯ + 256 x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 x 1 6 − 6 x 1 5 + 1 4 x 1 4 − 1 0 x 1 3 − 2 6 x 1 2 + 7 8 x 1 1 − 6 6 x 1 0 − 7 4 x 9 + 2 3 3 x 8 + ⋯ + 2 5 6
x^16 - 6*x^15 + 14*x^14 - 10*x^13 - 26*x^12 + 78*x^11 - 66*x^10 - 74*x^9 + 233*x^8 - 148*x^7 - 264*x^6 + 624*x^5 - 416*x^4 - 320*x^3 + 896*x^2 - 768*x + 256
:
β 1 \beta_{1} β 1 = = =
( 13 ν 15 − 28 ν 14 + 6 ν 13 + 74 ν 12 − 158 ν 11 + 26 ν 10 + 314 ν 9 + ⋯ + 640 ) / 256 ( 13 \nu^{15} - 28 \nu^{14} + 6 \nu^{13} + 74 \nu^{12} - 158 \nu^{11} + 26 \nu^{10} + 314 \nu^{9} + \cdots + 640 ) / 256 ( 1 3 ν 1 5 − 2 8 ν 1 4 + 6 ν 1 3 + 7 4 ν 1 2 − 1 5 8 ν 1 1 + 2 6 ν 1 0 + 3 1 4 ν 9 + ⋯ + 6 4 0 ) / 2 5 6
(13*v^15 - 28*v^14 + 6*v^13 + 74*v^12 - 158*v^11 + 26*v^10 + 314*v^9 - 430*v^8 - 39*v^7 + 918*v^6 - 964*v^5 - 248*v^4 + 1392*v^3 - 1312*v^2 + 64*v + 640) / 256
β 2 \beta_{2} β 2 = = =
( − 5 ν 15 + 36 ν 14 − 58 ν 13 + 6 ν 12 + 182 ν 11 − 322 ν 10 + 30 ν 9 + ⋯ + 1024 ) / 256 ( - 5 \nu^{15} + 36 \nu^{14} - 58 \nu^{13} + 6 \nu^{12} + 182 \nu^{11} - 322 \nu^{10} + 30 \nu^{9} + \cdots + 1024 ) / 256 ( − 5 ν 1 5 + 3 6 ν 1 4 − 5 8 ν 1 3 + 6 ν 1 2 + 1 8 2 ν 1 1 − 3 2 2 ν 1 0 + 3 0 ν 9 + ⋯ + 1 0 2 4 ) / 2 5 6
(-5*v^15 + 36*v^14 - 58*v^13 + 6*v^12 + 182*v^11 - 322*v^10 + 30*v^9 + 614*v^8 - 841*v^7 - 166*v^6 + 1728*v^5 - 1888*v^4 + 16*v^3 + 2208*v^2 - 2560*v + 1024) / 256
β 3 \beta_{3} β 3 = = =
( 4 ν 15 − 35 ν 14 + 76 ν 13 − 30 ν 12 − 190 ν 11 + 434 ν 10 − 214 ν 9 + ⋯ − 2304 ) / 128 ( 4 \nu^{15} - 35 \nu^{14} + 76 \nu^{13} - 30 \nu^{12} - 190 \nu^{11} + 434 \nu^{10} - 214 \nu^{9} + \cdots - 2304 ) / 128 ( 4 ν 1 5 − 3 5 ν 1 4 + 7 6 ν 1 3 − 3 0 ν 1 2 − 1 9 0 ν 1 1 + 4 3 4 ν 1 0 − 2 1 4 ν 9 + ⋯ − 2 3 0 4 ) / 1 2 8
(4*v^15 - 35*v^14 + 76*v^13 - 30*v^12 - 190*v^11 + 434*v^10 - 214*v^9 - 662*v^8 + 1262*v^7 - 263*v^6 - 2082*v^5 + 3104*v^4 - 864*v^3 - 2960*v^2 + 4512*v - 2304) / 128
β 4 \beta_{4} β 4 = = =
( 6 ν 15 − 31 ν 14 + 57 ν 13 − 10 ν 12 − 168 ν 11 + 328 ν 10 − 112 ν 9 + ⋯ − 1632 ) / 64 ( 6 \nu^{15} - 31 \nu^{14} + 57 \nu^{13} - 10 \nu^{12} - 168 \nu^{11} + 328 \nu^{10} - 112 \nu^{9} + \cdots - 1632 ) / 64 ( 6 ν 1 5 − 3 1 ν 1 4 + 5 7 ν 1 3 − 1 0 ν 1 2 − 1 6 8 ν 1 1 + 3 2 8 ν 1 0 − 1 1 2 ν 9 + ⋯ − 1 6 3 2 ) / 6 4
(6*v^15 - 31*v^14 + 57*v^13 - 10*v^12 - 168*v^11 + 328*v^10 - 112*v^9 - 552*v^8 + 930*v^7 - 69*v^6 - 1701*v^5 + 2314*v^4 - 432*v^3 - 2416*v^2 + 3280*v - 1632) / 64
β 5 \beta_{5} β 5 = = =
( 33 ν 15 − 168 ν 14 + 290 ν 13 − 6 ν 12 − 902 ν 11 + 1618 ν 10 − 366 ν 9 + ⋯ − 7680 ) / 256 ( 33 \nu^{15} - 168 \nu^{14} + 290 \nu^{13} - 6 \nu^{12} - 902 \nu^{11} + 1618 \nu^{10} - 366 \nu^{9} + \cdots - 7680 ) / 256 ( 3 3 ν 1 5 − 1 6 8 ν 1 4 + 2 9 0 ν 1 3 − 6 ν 1 2 − 9 0 2 ν 1 1 + 1 6 1 8 ν 1 0 − 3 6 6 ν 9 + ⋯ − 7 6 8 0 ) / 2 5 6
(33*v^15 - 168*v^14 + 290*v^13 - 6*v^12 - 902*v^11 + 1618*v^10 - 366*v^9 - 2966*v^8 + 4493*v^7 + 170*v^6 - 8792*v^5 + 11152*v^4 - 1488*v^3 - 12256*v^2 + 16256*v - 7680) / 256
β 6 \beta_{6} β 6 = = =
( 24 ν 15 − 117 ν 14 + 206 ν 13 − 18 ν 12 − 630 ν 11 + 1178 ν 10 − 318 ν 9 + ⋯ − 5568 ) / 128 ( 24 \nu^{15} - 117 \nu^{14} + 206 \nu^{13} - 18 \nu^{12} - 630 \nu^{11} + 1178 \nu^{10} - 318 \nu^{9} + \cdots - 5568 ) / 128 ( 2 4 ν 1 5 − 1 1 7 ν 1 4 + 2 0 6 ν 1 3 − 1 8 ν 1 2 − 6 3 0 ν 1 1 + 1 1 7 8 ν 1 0 − 3 1 8 ν 9 + ⋯ − 5 5 6 8 ) / 1 2 8
(24*v^15 - 117*v^14 + 206*v^13 - 18*v^12 - 630*v^11 + 1178*v^10 - 318*v^9 - 2094*v^8 + 3298*v^7 + 11*v^6 - 6276*v^5 + 8140*v^4 - 1152*v^3 - 8880*v^2 + 11840*v - 5568) / 128
β 7 \beta_{7} β 7 = = =
( 87 ν 15 − 378 ν 14 + 582 ν 13 + 130 ν 12 − 2094 ν 11 + 3290 ν 10 + ⋯ − 12544 ) / 256 ( 87 \nu^{15} - 378 \nu^{14} + 582 \nu^{13} + 130 \nu^{12} - 2094 \nu^{11} + 3290 \nu^{10} + \cdots - 12544 ) / 256 ( 8 7 ν 1 5 − 3 7 8 ν 1 4 + 5 8 2 ν 1 3 + 1 3 0 ν 1 2 − 2 0 9 4 ν 1 1 + 3 2 9 0 ν 1 0 + ⋯ − 1 2 5 4 4 ) / 2 5 6
(87*v^15 - 378*v^14 + 582*v^13 + 130*v^12 - 2094*v^11 + 3290*v^10 - 86*v^9 - 6830*v^8 + 8807*v^7 + 2428*v^6 - 19540*v^5 + 21248*v^4 + 912*v^3 - 27584*v^2 + 31296*v - 12544) / 256
β 8 \beta_{8} β 8 = = =
( − 33 ν 15 + 138 ν 14 − 203 ν 13 − 66 ν 12 + 768 ν 11 − 1152 ν 10 − 48 ν 9 + ⋯ + 4128 ) / 64 ( - 33 \nu^{15} + 138 \nu^{14} - 203 \nu^{13} - 66 \nu^{12} + 768 \nu^{11} - 1152 \nu^{10} - 48 \nu^{9} + \cdots + 4128 ) / 64 ( − 3 3 ν 1 5 + 1 3 8 ν 1 4 − 2 0 3 ν 1 3 − 6 6 ν 1 2 + 7 6 8 ν 1 1 − 1 1 5 2 ν 1 0 − 4 8 ν 9 + ⋯ + 4 1 2 8 ) / 6 4
(-33*v^15 + 138*v^14 - 203*v^13 - 66*v^12 + 768*v^11 - 1152*v^10 - 48*v^9 + 2496*v^8 - 3059*v^7 - 1090*v^6 + 7055*v^5 - 7342*v^4 - 744*v^3 + 10000*v^2 - 10832*v + 4128) / 64
β 9 \beta_{9} β 9 = = =
( 109 ν 15 − 578 ν 14 + 1062 ν 13 − 146 ν 12 − 3130 ν 11 + 6014 ν 10 + ⋯ − 29056 ) / 256 ( 109 \nu^{15} - 578 \nu^{14} + 1062 \nu^{13} - 146 \nu^{12} - 3130 \nu^{11} + 6014 \nu^{10} + \cdots - 29056 ) / 256 ( 1 0 9 ν 1 5 − 5 7 8 ν 1 4 + 1 0 6 2 ν 1 3 − 1 4 6 ν 1 2 − 3 1 3 0 ν 1 1 + 6 0 1 4 ν 1 0 + ⋯ − 2 9 0 5 6 ) / 2 5 6
(109*v^15 - 578*v^14 + 1062*v^13 - 146*v^12 - 3130*v^11 + 6014*v^10 - 1842*v^9 - 10394*v^8 + 17021*v^7 - 728*v^6 - 31408*v^5 + 41832*v^4 - 7216*v^3 - 44544*v^2 + 60800*v - 29056) / 256
β 10 \beta_{10} β 1 0 = = =
( − 67 ν 15 + 316 ν 14 − 530 ν 13 − 14 ν 12 + 1714 ν 11 − 2998 ν 10 + ⋯ + 13184 ) / 128 ( - 67 \nu^{15} + 316 \nu^{14} - 530 \nu^{13} - 14 \nu^{12} + 1714 \nu^{11} - 2998 \nu^{10} + \cdots + 13184 ) / 128 ( − 6 7 ν 1 5 + 3 1 6 ν 1 4 − 5 3 0 ν 1 3 − 1 4 ν 1 2 + 1 7 1 4 ν 1 1 − 2 9 9 8 ν 1 0 + ⋯ + 1 3 1 8 4 ) / 1 2 8
(-67*v^15 + 316*v^14 - 530*v^13 - 14*v^12 + 1714*v^11 - 2998*v^10 + 554*v^9 + 5634*v^8 - 8295*v^7 - 754*v^6 + 16612*v^5 - 20304*v^4 + 1744*v^3 + 23520*v^2 - 29632*v + 13184) / 128
β 11 \beta_{11} β 1 1 = = =
( − 40 ν 15 + 182 ν 14 − 297 ν 13 − 28 ν 12 + 1002 ν 11 − 1678 ν 10 + ⋯ + 7008 ) / 64 ( - 40 \nu^{15} + 182 \nu^{14} - 297 \nu^{13} - 28 \nu^{12} + 1002 \nu^{11} - 1678 \nu^{10} + \cdots + 7008 ) / 64 ( − 4 0 ν 1 5 + 1 8 2 ν 1 4 − 2 9 7 ν 1 3 − 2 8 ν 1 2 + 1 0 0 2 ν 1 1 − 1 6 7 8 ν 1 0 + ⋯ + 7 0 0 8 ) / 6 4
(-40*v^15 + 182*v^14 - 297*v^13 - 28*v^12 + 1002*v^11 - 1678*v^10 + 210*v^9 + 3290*v^8 - 4590*v^7 - 748*v^6 + 9575*v^5 - 11178*v^4 + 360*v^3 + 13536*v^2 - 16272*v + 7008) / 64
β 12 \beta_{12} β 1 2 = = =
( 75 ν 15 − 372 ν 14 + 652 ν 13 − 34 ν 12 − 2014 ν 11 + 3674 ν 10 − 902 ν 9 + ⋯ − 17216 ) / 128 ( 75 \nu^{15} - 372 \nu^{14} + 652 \nu^{13} - 34 \nu^{12} - 2014 \nu^{11} + 3674 \nu^{10} - 902 \nu^{9} + \cdots - 17216 ) / 128 ( 7 5 ν 1 5 − 3 7 2 ν 1 4 + 6 5 2 ν 1 3 − 3 4 ν 1 2 − 2 0 1 4 ν 1 1 + 3 6 7 4 ν 1 0 − 9 0 2 ν 9 + ⋯ − 1 7 2 1 6 ) / 1 2 8
(75*v^15 - 372*v^14 + 652*v^13 - 34*v^12 - 2014*v^11 + 3674*v^10 - 902*v^9 - 6638*v^8 + 10259*v^7 + 270*v^6 - 19762*v^5 + 25268*v^4 - 3296*v^3 - 27904*v^2 + 36704*v - 17216) / 128
β 13 \beta_{13} β 1 3 = = =
( 185 ν 15 − 840 ν 14 + 1370 ν 13 + 122 ν 12 − 4582 ν 11 + 7730 ν 10 + ⋯ − 33536 ) / 256 ( 185 \nu^{15} - 840 \nu^{14} + 1370 \nu^{13} + 122 \nu^{12} - 4582 \nu^{11} + 7730 \nu^{10} + \cdots - 33536 ) / 256 ( 1 8 5 ν 1 5 − 8 4 0 ν 1 4 + 1 3 7 0 ν 1 3 + 1 2 2 ν 1 2 − 4 5 8 2 ν 1 1 + 7 7 3 0 ν 1 0 + ⋯ − 3 3 5 3 6 ) / 2 5 6
(185*v^15 - 840*v^14 + 1370*v^13 + 122*v^12 - 4582*v^11 + 7730*v^10 - 1102*v^9 - 14966*v^8 + 21237*v^7 + 2922*v^6 - 43664*v^5 + 51952*v^4 - 2960*v^3 - 61984*v^2 + 76288*v - 33536) / 256
β 14 \beta_{14} β 1 4 = = =
( 191 ν 15 − 886 ν 14 + 1454 ν 13 + 106 ν 12 − 4838 ν 11 + 8226 ν 10 + ⋯ − 35072 ) / 256 ( 191 \nu^{15} - 886 \nu^{14} + 1454 \nu^{13} + 106 \nu^{12} - 4838 \nu^{11} + 8226 \nu^{10} + \cdots - 35072 ) / 256 ( 1 9 1 ν 1 5 − 8 8 6 ν 1 4 + 1 4 5 4 ν 1 3 + 1 0 6 ν 1 2 − 4 8 3 8 ν 1 1 + 8 2 2 6 ν 1 0 + ⋯ − 3 5 0 7 2 ) / 2 5 6
(191*v^15 - 886*v^14 + 1454*v^13 + 106*v^12 - 4838*v^11 + 8226*v^10 - 1198*v^9 - 15878*v^8 + 22567*v^7 + 3088*v^6 - 46388*v^5 + 55136*v^4 - 3056*v^3 - 65664*v^2 + 80448*v - 35072) / 256
β 15 \beta_{15} β 1 5 = = =
( 146 ν 15 − 657 ν 14 + 1056 ν 13 + 130 ν 12 − 3614 ν 11 + 5970 ν 10 + ⋯ − 24192 ) / 128 ( 146 \nu^{15} - 657 \nu^{14} + 1056 \nu^{13} + 130 \nu^{12} - 3614 \nu^{11} + 5970 \nu^{10} + \cdots - 24192 ) / 128 ( 1 4 6 ν 1 5 − 6 5 7 ν 1 4 + 1 0 5 6 ν 1 3 + 1 3 0 ν 1 2 − 3 6 1 4 ν 1 1 + 5 9 7 0 ν 1 0 + ⋯ − 2 4 1 9 2 ) / 1 2 8
(146*v^15 - 657*v^14 + 1056*v^13 + 130*v^12 - 3614*v^11 + 5970*v^10 - 614*v^9 - 11862*v^8 + 16264*v^7 + 3055*v^6 - 34358*v^5 + 39472*v^4 - 720*v^3 - 48528*v^2 + 57504*v - 24192) / 128
ν \nu ν = = =
( − β 15 − β 11 + β 7 + β 6 − β 4 + β 3 + β 1 + 3 ) / 4 ( -\beta_{15} - \beta_{11} + \beta_{7} + \beta_{6} - \beta_{4} + \beta_{3} + \beta _1 + 3 ) / 4 ( − β 1 5 − β 1 1 + β 7 + β 6 − β 4 + β 3 + β 1 + 3 ) / 4
(-b15 - b11 + b7 + b6 - b4 + b3 + b1 + 3) / 4
ν 2 \nu^{2} ν 2 = = =
( − β 14 − β 13 + β 12 − β 8 + β 6 + β 5 + β 1 + 2 ) / 2 ( -\beta_{14} - \beta_{13} + \beta_{12} - \beta_{8} + \beta_{6} + \beta_{5} + \beta _1 + 2 ) / 2 ( − β 1 4 − β 1 3 + β 1 2 − β 8 + β 6 + β 5 + β 1 + 2 ) / 2
(-b14 - b13 + b12 - b8 + b6 + b5 + b1 + 2) / 2
ν 3 \nu^{3} ν 3 = = =
( − 3 β 15 − 2 β 14 − 5 β 11 − 2 β 10 − 2 β 8 − β 7 + β 6 + ⋯ + 3 ) / 4 ( - 3 \beta_{15} - 2 \beta_{14} - 5 \beta_{11} - 2 \beta_{10} - 2 \beta_{8} - \beta_{7} + \beta_{6} + \cdots + 3 ) / 4 ( − 3 β 1 5 − 2 β 1 4 − 5 β 1 1 − 2 β 1 0 − 2 β 8 − β 7 + β 6 + ⋯ + 3 ) / 4
(-3*b15 - 2*b14 - 5*b11 - 2*b10 - 2*b8 - b7 + b6 - b4 - b3 - 2*b2 - b1 + 3) / 4
ν 4 \nu^{4} ν 4 = = =
( − β 15 + 3 β 14 − 2 β 13 + β 12 − β 11 + β 10 − β 8 + ⋯ + 2 ) / 2 ( - \beta_{15} + 3 \beta_{14} - 2 \beta_{13} + \beta_{12} - \beta_{11} + \beta_{10} - \beta_{8} + \cdots + 2 ) / 2 ( − β 1 5 + 3 β 1 4 − 2 β 1 3 + β 1 2 − β 1 1 + β 1 0 − β 8 + ⋯ + 2 ) / 2
(-b15 + 3*b14 - 2*b13 + b12 - b11 + b10 - b8 - 2*b7 - b4 - 2*b3 + b2 + 2) / 2
ν 5 \nu^{5} ν 5 = = =
( − β 15 + 6 β 14 + 2 β 13 + 2 β 12 + β 11 + 8 β 10 + 2 β 9 + ⋯ + 3 ) / 4 ( - \beta_{15} + 6 \beta_{14} + 2 \beta_{13} + 2 \beta_{12} + \beta_{11} + 8 \beta_{10} + 2 \beta_{9} + \cdots + 3 ) / 4 ( − β 1 5 + 6 β 1 4 + 2 β 1 3 + 2 β 1 2 + β 1 1 + 8 β 1 0 + 2 β 9 + ⋯ + 3 ) / 4
(-b15 + 6*b14 + 2*b13 + 2*b12 + b11 + 8*b10 + 2*b9 - 2*b8 - 5*b7 + b6 - 6*b5 - 5*b4 - 5*b3 - 2*b2 - 3*b1 + 3) / 4
ν 6 \nu^{6} ν 6 = = =
( β 15 + 4 β 14 − 4 β 13 + 6 β 12 + 4 β 11 − 3 β 9 − 2 β 6 + ⋯ − 1 ) / 2 ( \beta_{15} + 4 \beta_{14} - 4 \beta_{13} + 6 \beta_{12} + 4 \beta_{11} - 3 \beta_{9} - 2 \beta_{6} + \cdots - 1 ) / 2 ( β 1 5 + 4 β 1 4 − 4 β 1 3 + 6 β 1 2 + 4 β 1 1 − 3 β 9 − 2 β 6 + ⋯ − 1 ) / 2
(b15 + 4*b14 - 4*b13 + 6*b12 + 4*b11 - 3*b9 - 2*b6 - 6*b5 - b4 + 4*b3 + 3*b2 + 4*b1 - 1) / 2
ν 7 \nu^{7} ν 7 = = =
( 3 β 15 − 4 β 14 − 6 β 13 + 6 β 12 + 3 β 11 − 6 β 10 + 2 β 9 + ⋯ − 7 ) / 4 ( 3 \beta_{15} - 4 \beta_{14} - 6 \beta_{13} + 6 \beta_{12} + 3 \beta_{11} - 6 \beta_{10} + 2 \beta_{9} + \cdots - 7 ) / 4 ( 3 β 1 5 − 4 β 1 4 − 6 β 1 3 + 6 β 1 2 + 3 β 1 1 − 6 β 1 0 + 2 β 9 + ⋯ − 7 ) / 4
(3*b15 - 4*b14 - 6*b13 + 6*b12 + 3*b11 - 6*b10 + 2*b9 - 8*b8 - 13*b7 - 5*b6 - 6*b5 - 3*b4 + 3*b3 + 9*b1 - 7) / 4
ν 8 \nu^{8} ν 8 = = =
( − 4 β 15 + 4 β 14 − 9 β 13 + 8 β 12 + β 11 − 9 β 10 − 3 β 9 + ⋯ + 1 ) / 2 ( - 4 \beta_{15} + 4 \beta_{14} - 9 \beta_{13} + 8 \beta_{12} + \beta_{11} - 9 \beta_{10} - 3 \beta_{9} + \cdots + 1 ) / 2 ( − 4 β 1 5 + 4 β 1 4 − 9 β 1 3 + 8 β 1 2 + β 1 1 − 9 β 1 0 − 3 β 9 + ⋯ + 1 ) / 2
(-4*b15 + 4*b14 - 9*b13 + 8*b12 + b11 - 9*b10 - 3*b9 + 8*b7 - 9*b6 - 9*b5 + 4*b4 + 2*b3 + 4*b2 + 7*b1 + 1) / 2
ν 9 \nu^{9} ν 9 = = =
( − 7 β 15 + 32 β 14 − 20 β 13 − 8 β 12 − 3 β 11 + 8 β 10 + 20 β 9 + ⋯ − 23 ) / 4 ( - 7 \beta_{15} + 32 \beta_{14} - 20 \beta_{13} - 8 \beta_{12} - 3 \beta_{11} + 8 \beta_{10} + 20 \beta_{9} + \cdots - 23 ) / 4 ( − 7 β 1 5 + 3 2 β 1 4 − 2 0 β 1 3 − 8 β 1 2 − 3 β 1 1 + 8 β 1 0 + 2 0 β 9 + ⋯ − 2 3 ) / 4
(-7*b15 + 32*b14 - 20*b13 - 8*b12 - 3*b11 + 8*b10 + 20*b9 - b7 - b6 + 4*b5 - 19*b4 - 37*b3 + 8*b2 + 3*b1 - 23) / 4
ν 10 \nu^{10} ν 1 0 = = =
( 11 β 14 − 9 β 13 + 9 β 12 + 20 β 11 + 8 β 10 + 4 β 9 − β 8 + ⋯ − 6 ) / 2 ( 11 \beta_{14} - 9 \beta_{13} + 9 \beta_{12} + 20 \beta_{11} + 8 \beta_{10} + 4 \beta_{9} - \beta_{8} + \cdots - 6 ) / 2 ( 1 1 β 1 4 − 9 β 1 3 + 9 β 1 2 + 2 0 β 1 1 + 8 β 1 0 + 4 β 9 − β 8 + ⋯ − 6 ) / 2
(11*b14 - 9*b13 + 9*b12 + 20*b11 + 8*b10 + 4*b9 - b8 + 24*b7 + 9*b6 - 11*b5 - 16*b3 + 4*b2 - 7*b1 - 6) / 2
ν 11 \nu^{11} ν 1 1 = = =
( 9 β 15 − 2 β 14 − 16 β 13 − 16 β 12 + 7 β 11 − 58 β 10 − 8 β 9 + ⋯ − 105 ) / 4 ( 9 \beta_{15} - 2 \beta_{14} - 16 \beta_{13} - 16 \beta_{12} + 7 \beta_{11} - 58 \beta_{10} - 8 \beta_{9} + \cdots - 105 ) / 4 ( 9 β 1 5 − 2 β 1 4 − 1 6 β 1 3 − 1 6 β 1 2 + 7 β 1 1 − 5 8 β 1 0 − 8 β 9 + ⋯ − 1 0 5 ) / 4
(9*b15 - 2*b14 - 16*b13 - 16*b12 + 7*b11 - 58*b10 - 8*b9 + 6*b8 - 13*b7 + 13*b6 + 8*b5 - 45*b4 - 13*b3 + 14*b2 - 29*b1 - 105) / 4
ν 12 \nu^{12} ν 1 2 = = =
( 11 β 15 − 29 β 14 − 10 β 13 + 21 β 12 + 31 β 11 − 27 β 10 + ⋯ − 14 ) / 2 ( 11 \beta_{15} - 29 \beta_{14} - 10 \beta_{13} + 21 \beta_{12} + 31 \beta_{11} - 27 \beta_{10} + \cdots - 14 ) / 2 ( 1 1 β 1 5 − 2 9 β 1 4 − 1 0 β 1 3 + 2 1 β 1 2 + 3 1 β 1 1 − 2 7 β 1 0 + ⋯ − 1 4 ) / 2
(11*b15 - 29*b14 - 10*b13 + 21*b12 + 31*b11 - 27*b10 - 4*b9 - 21*b8 + 6*b7 - 8*b6 + 4*b5 + 3*b4 - 2*b3 + 17*b2 - 16*b1 - 14) / 2
ν 13 \nu^{13} ν 1 3 = = =
( 3 β 15 − 58 β 14 + 10 β 13 + 26 β 12 − 43 β 11 − 104 β 10 + ⋯ − 73 ) / 4 ( 3 \beta_{15} - 58 \beta_{14} + 10 \beta_{13} + 26 \beta_{12} - 43 \beta_{11} - 104 \beta_{10} + \cdots - 73 ) / 4 ( 3 β 1 5 − 5 8 β 1 4 + 1 0 β 1 3 + 2 6 β 1 2 − 4 3 β 1 1 − 1 0 4 β 1 0 + ⋯ − 7 3 ) / 4
(3*b15 - 58*b14 + 10*b13 + 26*b12 - 43*b11 - 104*b10 - 30*b9 + 70*b8 + 63*b7 - 115*b6 - 38*b5 - 65*b4 - 17*b3 + 30*b2 - 55*b1 - 73) / 4
ν 14 \nu^{14} ν 1 4 = = =
( 33 β 15 + 16 β 14 − 44 β 13 + 46 β 12 + 52 β 11 + 80 β 10 + ⋯ + 15 ) / 2 ( 33 \beta_{15} + 16 \beta_{14} - 44 \beta_{13} + 46 \beta_{12} + 52 \beta_{11} + 80 \beta_{10} + \cdots + 15 ) / 2 ( 3 3 β 1 5 + 1 6 β 1 4 − 4 4 β 1 3 + 4 6 β 1 2 + 5 2 β 1 1 + 8 0 β 1 0 + ⋯ + 1 5 ) / 2
(33*b15 + 16*b14 - 44*b13 + 46*b12 + 52*b11 + 80*b10 + 37*b9 + 8*b8 + 68*b7 + 2*b6 - 18*b5 - 9*b4 - 48*b3 + 83*b2 + 16*b1 + 15) / 2
ν 15 \nu^{15} ν 1 5 = = =
( 111 β 15 − 156 β 14 + 66 β 13 − 2 β 12 + 55 β 11 + 2 β 10 + ⋯ − 83 ) / 4 ( 111 \beta_{15} - 156 \beta_{14} + 66 \beta_{13} - 2 \beta_{12} + 55 \beta_{11} + 2 \beta_{10} + \cdots - 83 ) / 4 ( 1 1 1 β 1 5 − 1 5 6 β 1 4 + 6 6 β 1 3 − 2 β 1 2 + 5 5 β 1 1 + 2 β 1 0 + ⋯ − 8 3 ) / 4
(111*b15 - 156*b14 + 66*b13 - 2*b12 + 55*b11 + 2*b10 + 2*b9 + 120*b8 + 111*b7 + 135*b6 - 70*b5 - 31*b4 - 145*b3 + 56*b2 - 35*b1 - 83) / 4
Character values
We give the values of χ \chi χ on generators for ( Z / 960 Z ) × \left(\mathbb{Z}/960\mathbb{Z}\right)^\times ( Z / 9 6 0 Z ) × .
n n n
511 511 5 1 1
577 577 5 7 7
641 641 6 4 1
901 901 9 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− β 7 -\beta_{7} − β 7
1 1 1
β 7 \beta_{7} β 7
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 960 , [ χ ] ) S_{2}^{\mathrm{new}}(960, [\chi]) S 2 n e w ( 9 6 0 , [ χ ] ) :
T 7 16 − 4 T 7 15 + 8 T 7 14 + 32 T 7 13 + 392 T 7 12 − 1264 T 7 11 + ⋯ + 2304 T_{7}^{16} - 4 T_{7}^{15} + 8 T_{7}^{14} + 32 T_{7}^{13} + 392 T_{7}^{12} - 1264 T_{7}^{11} + \cdots + 2304 T 7 1 6 − 4 T 7 1 5 + 8 T 7 1 4 + 3 2 T 7 1 3 + 3 9 2 T 7 1 2 − 1 2 6 4 T 7 1 1 + ⋯ + 2 3 0 4
T7^16 - 4*T7^15 + 8*T7^14 + 32*T7^13 + 392*T7^12 - 1264*T7^11 + 2432*T7^10 + 7648*T7^9 + 7856*T7^8 - 7360*T7^7 + 56832*T7^6 + 202368*T7^5 + 314752*T7^4 + 251904*T7^3 + 115200*T7^2 + 23040*T7 + 2304
T 11 16 + 8 T 11 13 + 1288 T 11 12 + 400 T 11 11 + 32 T 11 10 − 4864 T 11 9 + ⋯ + 952576 T_{11}^{16} + 8 T_{11}^{13} + 1288 T_{11}^{12} + 400 T_{11}^{11} + 32 T_{11}^{10} - 4864 T_{11}^{9} + \cdots + 952576 T 1 1 1 6 + 8 T 1 1 1 3 + 1 2 8 8 T 1 1 1 2 + 4 0 0 T 1 1 1 1 + 3 2 T 1 1 1 0 − 4 8 6 4 T 1 1 9 + ⋯ + 9 5 2 5 7 6
T11^16 + 8*T11^13 + 1288*T11^12 + 400*T11^11 + 32*T11^10 - 4864*T11^9 + 335152*T11^8 - 3264*T11^7 - 128*T11^6 + 4608*T11^5 + 1229440*T11^4 + 36096*T11^3 + 512*T11^2 - 31232*T11 + 952576
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 16 T^{16} T 1 6
T^16
3 3 3
( T 2 + 1 ) 8 (T^{2} + 1)^{8} ( T 2 + 1 ) 8
(T^2 + 1)^8
5 5 5
T 16 + 8 T 15 + ⋯ + 390625 T^{16} + 8 T^{15} + \cdots + 390625 T 1 6 + 8 T 1 5 + ⋯ + 3 9 0 6 2 5
T^16 + 8*T^15 + 48*T^14 + 208*T^13 + 752*T^12 + 2336*T^11 + 6432*T^10 + 16200*T^9 + 37486*T^8 + 81000*T^7 + 160800*T^6 + 292000*T^5 + 470000*T^4 + 650000*T^3 + 750000*T^2 + 625000*T + 390625
7 7 7
T 16 − 4 T 15 + ⋯ + 2304 T^{16} - 4 T^{15} + \cdots + 2304 T 1 6 − 4 T 1 5 + ⋯ + 2 3 0 4
T^16 - 4*T^15 + 8*T^14 + 32*T^13 + 392*T^12 - 1264*T^11 + 2432*T^10 + 7648*T^9 + 7856*T^8 - 7360*T^7 + 56832*T^6 + 202368*T^5 + 314752*T^4 + 251904*T^3 + 115200*T^2 + 23040*T + 2304
11 11 1 1
T 16 + 8 T 13 + ⋯ + 952576 T^{16} + 8 T^{13} + \cdots + 952576 T 1 6 + 8 T 1 3 + ⋯ + 9 5 2 5 7 6
T^16 + 8*T^13 + 1288*T^12 + 400*T^11 + 32*T^10 - 4864*T^9 + 335152*T^8 - 3264*T^7 - 128*T^6 + 4608*T^5 + 1229440*T^4 + 36096*T^3 + 512*T^2 - 31232*T + 952576
13 13 1 3
( T 8 + 4 T 7 + ⋯ + 2896 ) 2 (T^{8} + 4 T^{7} + \cdots + 2896)^{2} ( T 8 + 4 T 7 + ⋯ + 2 8 9 6 ) 2
(T^8 + 4*T^7 - 52*T^6 - 184*T^5 + 660*T^4 + 1696*T^3 - 2336*T^2 - 2688*T + 2896)^2
17 17 1 7
T 16 + 8 T 15 + ⋯ + 9339136 T^{16} + 8 T^{15} + \cdots + 9339136 T 1 6 + 8 T 1 5 + ⋯ + 9 3 3 9 1 3 6
T^16 + 8*T^15 + 32*T^14 + 56*T^13 + 344*T^12 + 2384*T^11 + 9632*T^10 + 16704*T^9 + 33072*T^8 + 154688*T^7 + 642944*T^6 + 1090048*T^5 + 1092736*T^4 + 1576192*T^3 + 7250432*T^2 + 11637248*T + 9339136
19 19 1 9
T 16 − 8 T 15 + ⋯ + 5308416 T^{16} - 8 T^{15} + \cdots + 5308416 T 1 6 − 8 T 1 5 + ⋯ + 5 3 0 8 4 1 6
T^16 - 8*T^15 + 32*T^14 - 32*T^13 + 4384*T^12 - 37376*T^11 + 159232*T^10 - 8704*T^9 + 365312*T^8 - 4669440*T^7 + 26353664*T^6 + 20144128*T^5 + 12132352*T^4 - 31162368*T^3 + 75497472*T^2 + 28311552*T + 5308416
23 23 2 3
T 16 + ⋯ + 330366976 T^{16} + \cdots + 330366976 T 1 6 + ⋯ + 3 3 0 3 6 6 9 7 6
T^16 + 160*T^13 + 2144*T^12 + 5376*T^11 + 12800*T^10 + 164352*T^9 + 1573632*T^8 + 6053888*T^7 + 13303808*T^6 + 20127744*T^5 + 78913536*T^4 + 281018368*T^3 + 606076928*T^2 + 632815616*T + 330366976
29 29 2 9
T 16 + 12 T 15 + ⋯ + 45373696 T^{16} + 12 T^{15} + \cdots + 45373696 T 1 6 + 1 2 T 1 5 + ⋯ + 4 5 3 7 3 6 9 6
T^16 + 12*T^15 + 72*T^14 - 344*T^13 + 968*T^12 + 8640*T^11 + 93152*T^10 - 658272*T^9 + 2256816*T^8 - 317056*T^7 + 7303808*T^6 - 54760320*T^5 + 205079424*T^4 - 57830144*T^3 + 2508800*T^2 + 15088640*T + 45373696
31 31 3 1
T 16 + ⋯ + 1655277803776 T^{16} + \cdots + 1655277803776 T 1 6 + ⋯ + 1 6 5 5 2 7 7 8 0 3 7 7 6
T^16 + 400*T^14 + 65392*T^12 + 5639616*T^10 + 275577056*T^8 + 7591641856*T^6 + 109950837504*T^4 + 715784229888*T^2 + 1655277803776
37 37 3 7
( T 8 + 12 T 7 + ⋯ + 28176 ) 2 (T^{8} + 12 T^{7} + \cdots + 28176)^{2} ( T 8 + 1 2 T 7 + ⋯ + 2 8 1 7 6 ) 2
(T^8 + 12*T^7 - 60*T^6 - 904*T^5 + 84*T^4 + 11232*T^3 - 4352*T^2 - 35712*T + 28176)^2
41 41 4 1
T 16 + ⋯ + 177209344 T^{16} + \cdots + 177209344 T 1 6 + ⋯ + 1 7 7 2 0 9 3 4 4
T^16 + 304*T^14 + 34624*T^12 + 1887744*T^10 + 51522560*T^8 + 662142976*T^6 + 3275882496*T^4 + 5163712512*T^2 + 177209344
43 43 4 3
( T 8 + 12 T 7 + ⋯ + 193792 ) 2 (T^{8} + 12 T^{7} + \cdots + 193792)^{2} ( T 8 + 1 2 T 7 + ⋯ + 1 9 3 7 9 2 ) 2
(T^8 + 12*T^7 - 144*T^6 - 1568*T^5 + 6224*T^4 + 48000*T^3 - 89216*T^2 - 389888*T + 193792)^2
47 47 4 7
T 16 + 32 T 15 + ⋯ + 65536 T^{16} + 32 T^{15} + \cdots + 65536 T 1 6 + 3 2 T 1 5 + ⋯ + 6 5 5 3 6
T^16 + 32*T^15 + 512*T^14 + 3808*T^13 + 14976*T^12 + 58368*T^11 + 1450496*T^10 + 10061312*T^9 + 32079360*T^8 - 53747712*T^7 + 149700608*T^6 + 436641792*T^5 + 705069056*T^4 - 208142336*T^3 + 29491200*T^2 - 1966080*T + 65536
53 53 5 3
T 16 + ⋯ + 35845091584 T^{16} + \cdots + 35845091584 T 1 6 + ⋯ + 3 5 8 4 5 0 9 1 5 8 4
T^16 + 288*T^14 + 31848*T^12 + 1757056*T^10 + 52530608*T^8 + 857669376*T^6 + 7247269504*T^4 + 27828649984*T^2 + 35845091584
59 59 5 9
T 16 + ⋯ + 8785580546304 T^{16} + \cdots + 8785580546304 T 1 6 + ⋯ + 8 7 8 5 5 8 0 5 4 6 3 0 4
T^16 + 24*T^15 + 288*T^14 + 88*T^13 + 2312*T^12 + 159344*T^11 + 3162272*T^10 - 6636224*T^9 - 6863056*T^8 - 22966592*T^7 + 6225456512*T^6 - 30963593984*T^5 + 76917010048*T^4 - 5539065600*T^3 + 659907482112*T^2 - 3405193191936*T + 8785580546304
61 61 6 1
T 16 + ⋯ + 55857327698176 T^{16} + \cdots + 55857327698176 T 1 6 + ⋯ + 5 5 8 5 7 3 2 7 6 9 8 1 7 6
T^16 - 40*T^15 + 800*T^14 - 8400*T^13 + 63696*T^12 - 663648*T^11 + 10869120*T^10 - 111801536*T^9 + 699602272*T^8 - 2889433984*T^7 + 22923310592*T^6 - 221883207424*T^5 + 1391650424064*T^4 - 3702308508160*T^3 + 1765515921408*T^2 + 14044002376704*T + 55857327698176
67 67 6 7
( T 8 + 8 T 7 + ⋯ − 18176 ) 2 (T^{8} + 8 T^{7} + \cdots - 18176)^{2} ( T 8 + 8 T 7 + ⋯ − 1 8 1 7 6 ) 2
(T^8 + 8*T^7 - 88*T^6 - 800*T^5 + 288*T^4 + 12032*T^3 + 19840*T^2 - 6144*T - 18176)^2
71 71 7 1
( T 8 − 392 T 6 + ⋯ + 3900672 ) 2 (T^{8} - 392 T^{6} + \cdots + 3900672)^{2} ( T 8 − 3 9 2 T 6 + ⋯ + 3 9 0 0 6 7 2 ) 2
(T^8 - 392*T^6 - 112*T^5 + 42640*T^4 + 20416*T^3 - 834176*T^2 - 74496*T + 3900672)^2
73 73 7 3
T 16 + ⋯ + 2179567984896 T^{16} + \cdots + 2179567984896 T 1 6 + ⋯ + 2 1 7 9 5 6 7 9 8 4 8 9 6
T^16 + 8*T^15 + 32*T^14 - 208*T^13 + 70928*T^12 + 649952*T^11 + 2951552*T^10 - 40257728*T^9 + 148347488*T^8 + 423075200*T^7 + 8882210304*T^6 - 121945550592*T^5 + 689259012352*T^4 - 2106688255488*T^3 + 3923046991872*T^2 - 4135347053568*T + 2179567984896
79 79 7 9
( T 8 + 24 T 7 + ⋯ − 1507376 ) 2 (T^{8} + 24 T^{7} + \cdots - 1507376)^{2} ( T 8 + 2 4 T 7 + ⋯ − 1 5 0 7 3 7 6 ) 2
(T^8 + 24*T^7 + 56*T^6 - 2512*T^5 - 18952*T^4 + 9824*T^3 + 368096*T^2 + 352960*T - 1507376)^2
83 83 8 3
T 16 + 464 T 14 + ⋯ + 34668544 T^{16} + 464 T^{14} + \cdots + 34668544 T 1 6 + 4 6 4 T 1 4 + ⋯ + 3 4 6 6 8 5 4 4
T^16 + 464*T^14 + 82624*T^12 + 7046912*T^10 + 288146944*T^8 + 4717408256*T^6 + 14798209024*T^4 + 1441071104*T^2 + 34668544
89 89 8 9
( T 8 − 344 T 6 + ⋯ − 3899136 ) 2 (T^{8} - 344 T^{6} + \cdots - 3899136)^{2} ( T 8 − 3 4 4 T 6 + ⋯ − 3 8 9 9 1 3 6 ) 2
(T^8 - 344*T^6 - 1424*T^5 + 25168*T^4 + 143552*T^3 - 305024*T^2 - 2790144*T - 3899136)^2
97 97 9 7
T 16 + ⋯ + 16602430353664 T^{16} + \cdots + 16602430353664 T 1 6 + ⋯ + 1 6 6 0 2 4 3 0 3 5 3 6 6 4
T^16 - 48*T^15 + 1152*T^14 - 13376*T^13 + 85328*T^12 - 554688*T^11 + 17785856*T^10 - 208141824*T^9 + 1104328032*T^8 + 1208939264*T^7 + 90097928192*T^6 - 706044478464*T^5 + 2748398726400*T^4 - 1260709630976*T^3 + 39649280000*T^2 - 1147409612800*T + 16602430353664
show more
show less