Properties

Label 960.2.bc.e
Level 960960
Weight 22
Character orbit 960.bc
Analytic conductor 7.6667.666
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,2,Mod(367,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.367"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 960=2635 960 = 2^{6} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 960.bc (of order 44, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-8,0,4,0,-16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.665638594047.66563859404
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(i)\Q(i)
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x166x15+14x1410x1326x12+78x1166x1074x9+233x8++256 x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 212 2^{12}
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ7q3+(β11+β101)q5+(β15+β12++β3)q7q9+(β15β14β11++1)q11+(β13β11+β9++1)q13++(β15+β14+β11+1)q99+O(q100) q - \beta_{7} q^{3} + (\beta_{11} + \beta_{10} - 1) q^{5} + (\beta_{15} + \beta_{12} + \cdots + \beta_{3}) q^{7} - q^{9} + ( - \beta_{15} - \beta_{14} - \beta_{11} + \cdots + 1) q^{11} + (\beta_{13} - \beta_{11} + \beta_{9} + \cdots + 1) q^{13}+ \cdots + (\beta_{15} + \beta_{14} + \beta_{11} + \cdots - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q8q5+4q716q98q134q158q17+8q194q2132q2512q2912q3524q3724q43+8q4532q47+8q51+4q558q57++48q97+O(q100) 16 q - 8 q^{5} + 4 q^{7} - 16 q^{9} - 8 q^{13} - 4 q^{15} - 8 q^{17} + 8 q^{19} - 4 q^{21} - 32 q^{25} - 12 q^{29} - 12 q^{35} - 24 q^{37} - 24 q^{43} + 8 q^{45} - 32 q^{47} + 8 q^{51} + 4 q^{55} - 8 q^{57}+ \cdots + 48 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x166x15+14x1410x1326x12+78x1166x1074x9+233x8++256 x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 : Copy content Toggle raw display

β1\beta_{1}== (13ν1528ν14+6ν13+74ν12158ν11+26ν10+314ν9++640)/256 ( 13 \nu^{15} - 28 \nu^{14} + 6 \nu^{13} + 74 \nu^{12} - 158 \nu^{11} + 26 \nu^{10} + 314 \nu^{9} + \cdots + 640 ) / 256 Copy content Toggle raw display
β2\beta_{2}== (5ν15+36ν1458ν13+6ν12+182ν11322ν10+30ν9++1024)/256 ( - 5 \nu^{15} + 36 \nu^{14} - 58 \nu^{13} + 6 \nu^{12} + 182 \nu^{11} - 322 \nu^{10} + 30 \nu^{9} + \cdots + 1024 ) / 256 Copy content Toggle raw display
β3\beta_{3}== (4ν1535ν14+76ν1330ν12190ν11+434ν10214ν9+2304)/128 ( 4 \nu^{15} - 35 \nu^{14} + 76 \nu^{13} - 30 \nu^{12} - 190 \nu^{11} + 434 \nu^{10} - 214 \nu^{9} + \cdots - 2304 ) / 128 Copy content Toggle raw display
β4\beta_{4}== (6ν1531ν14+57ν1310ν12168ν11+328ν10112ν9+1632)/64 ( 6 \nu^{15} - 31 \nu^{14} + 57 \nu^{13} - 10 \nu^{12} - 168 \nu^{11} + 328 \nu^{10} - 112 \nu^{9} + \cdots - 1632 ) / 64 Copy content Toggle raw display
β5\beta_{5}== (33ν15168ν14+290ν136ν12902ν11+1618ν10366ν9+7680)/256 ( 33 \nu^{15} - 168 \nu^{14} + 290 \nu^{13} - 6 \nu^{12} - 902 \nu^{11} + 1618 \nu^{10} - 366 \nu^{9} + \cdots - 7680 ) / 256 Copy content Toggle raw display
β6\beta_{6}== (24ν15117ν14+206ν1318ν12630ν11+1178ν10318ν9+5568)/128 ( 24 \nu^{15} - 117 \nu^{14} + 206 \nu^{13} - 18 \nu^{12} - 630 \nu^{11} + 1178 \nu^{10} - 318 \nu^{9} + \cdots - 5568 ) / 128 Copy content Toggle raw display
β7\beta_{7}== (87ν15378ν14+582ν13+130ν122094ν11+3290ν10+12544)/256 ( 87 \nu^{15} - 378 \nu^{14} + 582 \nu^{13} + 130 \nu^{12} - 2094 \nu^{11} + 3290 \nu^{10} + \cdots - 12544 ) / 256 Copy content Toggle raw display
β8\beta_{8}== (33ν15+138ν14203ν1366ν12+768ν111152ν1048ν9++4128)/64 ( - 33 \nu^{15} + 138 \nu^{14} - 203 \nu^{13} - 66 \nu^{12} + 768 \nu^{11} - 1152 \nu^{10} - 48 \nu^{9} + \cdots + 4128 ) / 64 Copy content Toggle raw display
β9\beta_{9}== (109ν15578ν14+1062ν13146ν123130ν11+6014ν10+29056)/256 ( 109 \nu^{15} - 578 \nu^{14} + 1062 \nu^{13} - 146 \nu^{12} - 3130 \nu^{11} + 6014 \nu^{10} + \cdots - 29056 ) / 256 Copy content Toggle raw display
β10\beta_{10}== (67ν15+316ν14530ν1314ν12+1714ν112998ν10++13184)/128 ( - 67 \nu^{15} + 316 \nu^{14} - 530 \nu^{13} - 14 \nu^{12} + 1714 \nu^{11} - 2998 \nu^{10} + \cdots + 13184 ) / 128 Copy content Toggle raw display
β11\beta_{11}== (40ν15+182ν14297ν1328ν12+1002ν111678ν10++7008)/64 ( - 40 \nu^{15} + 182 \nu^{14} - 297 \nu^{13} - 28 \nu^{12} + 1002 \nu^{11} - 1678 \nu^{10} + \cdots + 7008 ) / 64 Copy content Toggle raw display
β12\beta_{12}== (75ν15372ν14+652ν1334ν122014ν11+3674ν10902ν9+17216)/128 ( 75 \nu^{15} - 372 \nu^{14} + 652 \nu^{13} - 34 \nu^{12} - 2014 \nu^{11} + 3674 \nu^{10} - 902 \nu^{9} + \cdots - 17216 ) / 128 Copy content Toggle raw display
β13\beta_{13}== (185ν15840ν14+1370ν13+122ν124582ν11+7730ν10+33536)/256 ( 185 \nu^{15} - 840 \nu^{14} + 1370 \nu^{13} + 122 \nu^{12} - 4582 \nu^{11} + 7730 \nu^{10} + \cdots - 33536 ) / 256 Copy content Toggle raw display
β14\beta_{14}== (191ν15886ν14+1454ν13+106ν124838ν11+8226ν10+35072)/256 ( 191 \nu^{15} - 886 \nu^{14} + 1454 \nu^{13} + 106 \nu^{12} - 4838 \nu^{11} + 8226 \nu^{10} + \cdots - 35072 ) / 256 Copy content Toggle raw display
β15\beta_{15}== (146ν15657ν14+1056ν13+130ν123614ν11+5970ν10+24192)/128 ( 146 \nu^{15} - 657 \nu^{14} + 1056 \nu^{13} + 130 \nu^{12} - 3614 \nu^{11} + 5970 \nu^{10} + \cdots - 24192 ) / 128 Copy content Toggle raw display
ν\nu== (β15β11+β7+β6β4+β3+β1+3)/4 ( -\beta_{15} - \beta_{11} + \beta_{7} + \beta_{6} - \beta_{4} + \beta_{3} + \beta _1 + 3 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β14β13+β12β8+β6+β5+β1+2)/2 ( -\beta_{14} - \beta_{13} + \beta_{12} - \beta_{8} + \beta_{6} + \beta_{5} + \beta _1 + 2 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (3β152β145β112β102β8β7+β6++3)/4 ( - 3 \beta_{15} - 2 \beta_{14} - 5 \beta_{11} - 2 \beta_{10} - 2 \beta_{8} - \beta_{7} + \beta_{6} + \cdots + 3 ) / 4 Copy content Toggle raw display
ν4\nu^{4}== (β15+3β142β13+β12β11+β10β8++2)/2 ( - \beta_{15} + 3 \beta_{14} - 2 \beta_{13} + \beta_{12} - \beta_{11} + \beta_{10} - \beta_{8} + \cdots + 2 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (β15+6β14+2β13+2β12+β11+8β10+2β9++3)/4 ( - \beta_{15} + 6 \beta_{14} + 2 \beta_{13} + 2 \beta_{12} + \beta_{11} + 8 \beta_{10} + 2 \beta_{9} + \cdots + 3 ) / 4 Copy content Toggle raw display
ν6\nu^{6}== (β15+4β144β13+6β12+4β113β92β6+1)/2 ( \beta_{15} + 4 \beta_{14} - 4 \beta_{13} + 6 \beta_{12} + 4 \beta_{11} - 3 \beta_{9} - 2 \beta_{6} + \cdots - 1 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (3β154β146β13+6β12+3β116β10+2β9+7)/4 ( 3 \beta_{15} - 4 \beta_{14} - 6 \beta_{13} + 6 \beta_{12} + 3 \beta_{11} - 6 \beta_{10} + 2 \beta_{9} + \cdots - 7 ) / 4 Copy content Toggle raw display
ν8\nu^{8}== (4β15+4β149β13+8β12+β119β103β9++1)/2 ( - 4 \beta_{15} + 4 \beta_{14} - 9 \beta_{13} + 8 \beta_{12} + \beta_{11} - 9 \beta_{10} - 3 \beta_{9} + \cdots + 1 ) / 2 Copy content Toggle raw display
ν9\nu^{9}== (7β15+32β1420β138β123β11+8β10+20β9+23)/4 ( - 7 \beta_{15} + 32 \beta_{14} - 20 \beta_{13} - 8 \beta_{12} - 3 \beta_{11} + 8 \beta_{10} + 20 \beta_{9} + \cdots - 23 ) / 4 Copy content Toggle raw display
ν10\nu^{10}== (11β149β13+9β12+20β11+8β10+4β9β8+6)/2 ( 11 \beta_{14} - 9 \beta_{13} + 9 \beta_{12} + 20 \beta_{11} + 8 \beta_{10} + 4 \beta_{9} - \beta_{8} + \cdots - 6 ) / 2 Copy content Toggle raw display
ν11\nu^{11}== (9β152β1416β1316β12+7β1158β108β9+105)/4 ( 9 \beta_{15} - 2 \beta_{14} - 16 \beta_{13} - 16 \beta_{12} + 7 \beta_{11} - 58 \beta_{10} - 8 \beta_{9} + \cdots - 105 ) / 4 Copy content Toggle raw display
ν12\nu^{12}== (11β1529β1410β13+21β12+31β1127β10+14)/2 ( 11 \beta_{15} - 29 \beta_{14} - 10 \beta_{13} + 21 \beta_{12} + 31 \beta_{11} - 27 \beta_{10} + \cdots - 14 ) / 2 Copy content Toggle raw display
ν13\nu^{13}== (3β1558β14+10β13+26β1243β11104β10+73)/4 ( 3 \beta_{15} - 58 \beta_{14} + 10 \beta_{13} + 26 \beta_{12} - 43 \beta_{11} - 104 \beta_{10} + \cdots - 73 ) / 4 Copy content Toggle raw display
ν14\nu^{14}== (33β15+16β1444β13+46β12+52β11+80β10++15)/2 ( 33 \beta_{15} + 16 \beta_{14} - 44 \beta_{13} + 46 \beta_{12} + 52 \beta_{11} + 80 \beta_{10} + \cdots + 15 ) / 2 Copy content Toggle raw display
ν15\nu^{15}== (111β15156β14+66β132β12+55β11+2β10+83)/4 ( 111 \beta_{15} - 156 \beta_{14} + 66 \beta_{13} - 2 \beta_{12} + 55 \beta_{11} + 2 \beta_{10} + \cdots - 83 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/960Z)×\left(\mathbb{Z}/960\mathbb{Z}\right)^\times.

nn 511511 577577 641641 901901
χ(n)\chi(n) 1-1 β7-\beta_{7} 11 β7\beta_{7}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
367.1
1.38194 + 0.300388i
1.28040 + 0.600471i
−1.40988 + 0.110627i
0.885279 1.10285i
0.424183 + 1.34910i
0.237728 1.39409i
1.40838 0.128355i
−1.20803 0.735291i
1.38194 0.300388i
1.28040 0.600471i
−1.40988 0.110627i
0.885279 + 1.10285i
0.424183 1.34910i
0.237728 + 1.39409i
1.40838 + 0.128355i
−1.20803 + 0.735291i
0 1.00000i 0 −2.21420 0.311968i 0 1.96597 + 1.96597i 0 −1.00000 0
367.2 0 1.00000i 0 −1.69674 1.45639i 0 −1.12791 1.12791i 0 −1.00000 0
367.3 0 1.00000i 0 −0.849960 2.06823i 0 2.08016 + 2.08016i 0 −1.00000 0
367.4 0 1.00000i 0 −0.658594 + 2.13688i 0 3.54781 + 3.54781i 0 −1.00000 0
367.5 0 1.00000i 0 −0.609492 + 2.15140i 0 −0.566689 0.566689i 0 −1.00000 0
367.6 0 1.00000i 0 −0.0583995 2.23531i 0 −0.747384 0.747384i 0 −1.00000 0
367.7 0 1.00000i 0 0.539352 + 2.17005i 0 −3.00806 3.00806i 0 −1.00000 0
367.8 0 1.00000i 0 1.54804 + 1.61356i 0 −0.143894 0.143894i 0 −1.00000 0
463.1 0 1.00000i 0 −2.21420 + 0.311968i 0 1.96597 1.96597i 0 −1.00000 0
463.2 0 1.00000i 0 −1.69674 + 1.45639i 0 −1.12791 + 1.12791i 0 −1.00000 0
463.3 0 1.00000i 0 −0.849960 + 2.06823i 0 2.08016 2.08016i 0 −1.00000 0
463.4 0 1.00000i 0 −0.658594 2.13688i 0 3.54781 3.54781i 0 −1.00000 0
463.5 0 1.00000i 0 −0.609492 2.15140i 0 −0.566689 + 0.566689i 0 −1.00000 0
463.6 0 1.00000i 0 −0.0583995 + 2.23531i 0 −0.747384 + 0.747384i 0 −1.00000 0
463.7 0 1.00000i 0 0.539352 2.17005i 0 −3.00806 + 3.00806i 0 −1.00000 0
463.8 0 1.00000i 0 1.54804 1.61356i 0 −0.143894 + 0.143894i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 367.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
80.j even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.2.bc.e 16
4.b odd 2 1 240.2.bc.e yes 16
5.c odd 4 1 960.2.y.e 16
8.b even 2 1 1920.2.bc.j 16
8.d odd 2 1 1920.2.bc.i 16
12.b even 2 1 720.2.bd.f 16
16.e even 4 1 240.2.y.e 16
16.e even 4 1 1920.2.y.i 16
16.f odd 4 1 960.2.y.e 16
16.f odd 4 1 1920.2.y.j 16
20.e even 4 1 240.2.y.e 16
40.i odd 4 1 1920.2.y.j 16
40.k even 4 1 1920.2.y.i 16
48.i odd 4 1 720.2.z.f 16
60.l odd 4 1 720.2.z.f 16
80.i odd 4 1 1920.2.bc.i 16
80.j even 4 1 inner 960.2.bc.e 16
80.s even 4 1 1920.2.bc.j 16
80.t odd 4 1 240.2.bc.e yes 16
240.bf even 4 1 720.2.bd.f 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
240.2.y.e 16 16.e even 4 1
240.2.y.e 16 20.e even 4 1
240.2.bc.e yes 16 4.b odd 2 1
240.2.bc.e yes 16 80.t odd 4 1
720.2.z.f 16 48.i odd 4 1
720.2.z.f 16 60.l odd 4 1
720.2.bd.f 16 12.b even 2 1
720.2.bd.f 16 240.bf even 4 1
960.2.y.e 16 5.c odd 4 1
960.2.y.e 16 16.f odd 4 1
960.2.bc.e 16 1.a even 1 1 trivial
960.2.bc.e 16 80.j even 4 1 inner
1920.2.y.i 16 16.e even 4 1
1920.2.y.i 16 40.k even 4 1
1920.2.y.j 16 16.f odd 4 1
1920.2.y.j 16 40.i odd 4 1
1920.2.bc.i 16 8.d odd 2 1
1920.2.bc.i 16 80.i odd 4 1
1920.2.bc.j 16 8.b even 2 1
1920.2.bc.j 16 80.s even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(960,[χ])S_{2}^{\mathrm{new}}(960, [\chi]):

T7164T715+8T714+32T713+392T7121264T711++2304 T_{7}^{16} - 4 T_{7}^{15} + 8 T_{7}^{14} + 32 T_{7}^{13} + 392 T_{7}^{12} - 1264 T_{7}^{11} + \cdots + 2304 Copy content Toggle raw display
T1116+8T1113+1288T1112+400T1111+32T11104864T119++952576 T_{11}^{16} + 8 T_{11}^{13} + 1288 T_{11}^{12} + 400 T_{11}^{11} + 32 T_{11}^{10} - 4864 T_{11}^{9} + \cdots + 952576 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16 T^{16} Copy content Toggle raw display
33 (T2+1)8 (T^{2} + 1)^{8} Copy content Toggle raw display
55 T16+8T15++390625 T^{16} + 8 T^{15} + \cdots + 390625 Copy content Toggle raw display
77 T164T15++2304 T^{16} - 4 T^{15} + \cdots + 2304 Copy content Toggle raw display
1111 T16+8T13++952576 T^{16} + 8 T^{13} + \cdots + 952576 Copy content Toggle raw display
1313 (T8+4T7++2896)2 (T^{8} + 4 T^{7} + \cdots + 2896)^{2} Copy content Toggle raw display
1717 T16+8T15++9339136 T^{16} + 8 T^{15} + \cdots + 9339136 Copy content Toggle raw display
1919 T168T15++5308416 T^{16} - 8 T^{15} + \cdots + 5308416 Copy content Toggle raw display
2323 T16++330366976 T^{16} + \cdots + 330366976 Copy content Toggle raw display
2929 T16+12T15++45373696 T^{16} + 12 T^{15} + \cdots + 45373696 Copy content Toggle raw display
3131 T16++1655277803776 T^{16} + \cdots + 1655277803776 Copy content Toggle raw display
3737 (T8+12T7++28176)2 (T^{8} + 12 T^{7} + \cdots + 28176)^{2} Copy content Toggle raw display
4141 T16++177209344 T^{16} + \cdots + 177209344 Copy content Toggle raw display
4343 (T8+12T7++193792)2 (T^{8} + 12 T^{7} + \cdots + 193792)^{2} Copy content Toggle raw display
4747 T16+32T15++65536 T^{16} + 32 T^{15} + \cdots + 65536 Copy content Toggle raw display
5353 T16++35845091584 T^{16} + \cdots + 35845091584 Copy content Toggle raw display
5959 T16++8785580546304 T^{16} + \cdots + 8785580546304 Copy content Toggle raw display
6161 T16++55857327698176 T^{16} + \cdots + 55857327698176 Copy content Toggle raw display
6767 (T8+8T7+18176)2 (T^{8} + 8 T^{7} + \cdots - 18176)^{2} Copy content Toggle raw display
7171 (T8392T6++3900672)2 (T^{8} - 392 T^{6} + \cdots + 3900672)^{2} Copy content Toggle raw display
7373 T16++2179567984896 T^{16} + \cdots + 2179567984896 Copy content Toggle raw display
7979 (T8+24T7+1507376)2 (T^{8} + 24 T^{7} + \cdots - 1507376)^{2} Copy content Toggle raw display
8383 T16+464T14++34668544 T^{16} + 464 T^{14} + \cdots + 34668544 Copy content Toggle raw display
8989 (T8344T6+3899136)2 (T^{8} - 344 T^{6} + \cdots - 3899136)^{2} Copy content Toggle raw display
9797 T16++16602430353664 T^{16} + \cdots + 16602430353664 Copy content Toggle raw display
show more
show less