Properties

Label 1920.2.y.j.1567.3
Level $1920$
Weight $2$
Character 1920.1567
Analytic conductor $15.331$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1920,2,Mod(223,1920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1920.223"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.y (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,16,0,4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1567.3
Root \(1.28040 + 0.600471i\) of defining polynomial
Character \(\chi\) \(=\) 1920.1567
Dual form 1920.2.y.j.223.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(-1.45639 + 1.69674i) q^{5} +(-1.12791 - 1.12791i) q^{7} +1.00000 q^{9} +(-4.05250 + 4.05250i) q^{11} -1.51085i q^{13} +(-1.45639 + 1.69674i) q^{15} +(-1.61725 - 1.61725i) q^{17} +(3.09584 - 3.09584i) q^{19} +(-1.12791 - 1.12791i) q^{21} +(-1.55774 + 1.55774i) q^{23} +(-0.757876 - 4.94223i) q^{25} +1.00000 q^{27} +(-0.425907 - 0.425907i) q^{29} -9.02889i q^{31} +(-4.05250 + 4.05250i) q^{33} +(3.55644 - 0.271100i) q^{35} -7.76193i q^{37} -1.51085i q^{39} -7.27238i q^{41} +9.30484i q^{43} +(-1.45639 + 1.69674i) q^{45} +(1.13932 - 1.13932i) q^{47} -4.45565i q^{49} +(-1.61725 - 1.61725i) q^{51} +8.27183 q^{53} +(-0.974046 - 12.7781i) q^{55} +(3.09584 - 3.09584i) q^{57} +(-9.12504 - 9.12504i) q^{59} +(-4.89881 + 4.89881i) q^{61} +(-1.12791 - 1.12791i) q^{63} +(2.56353 + 2.20039i) q^{65} +2.17068i q^{67} +(-1.55774 + 1.55774i) q^{69} -13.5937 q^{71} +(-1.11750 - 1.11750i) q^{73} +(-0.757876 - 4.94223i) q^{75} +9.14169 q^{77} -1.68922 q^{79} +1.00000 q^{81} -5.64544 q^{83} +(5.09941 - 0.388718i) q^{85} +(-0.425907 - 0.425907i) q^{87} +10.4975 q^{89} +(-1.70410 + 1.70410i) q^{91} -9.02889i q^{93} +(0.744106 + 9.76158i) q^{95} +(-6.26114 - 6.26114i) q^{97} +(-4.05250 + 4.05250i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{3} + 4 q^{5} + 4 q^{7} + 16 q^{9} + 4 q^{15} - 8 q^{17} + 8 q^{19} + 4 q^{21} + 32 q^{25} + 16 q^{27} - 12 q^{29} - 20 q^{35} + 4 q^{45} + 32 q^{47} - 8 q^{51} - 16 q^{53} + 4 q^{55} + 8 q^{57}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.45639 + 1.69674i −0.651316 + 0.758807i
\(6\) 0 0
\(7\) −1.12791 1.12791i −0.426309 0.426309i 0.461060 0.887369i \(-0.347469\pi\)
−0.887369 + 0.461060i \(0.847469\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.05250 + 4.05250i −1.22188 + 1.22188i −0.254911 + 0.966965i \(0.582046\pi\)
−0.966965 + 0.254911i \(0.917954\pi\)
\(12\) 0 0
\(13\) 1.51085i 0.419036i −0.977805 0.209518i \(-0.932811\pi\)
0.977805 0.209518i \(-0.0671894\pi\)
\(14\) 0 0
\(15\) −1.45639 + 1.69674i −0.376037 + 0.438097i
\(16\) 0 0
\(17\) −1.61725 1.61725i −0.392241 0.392241i 0.483244 0.875486i \(-0.339458\pi\)
−0.875486 + 0.483244i \(0.839458\pi\)
\(18\) 0 0
\(19\) 3.09584 3.09584i 0.710234 0.710234i −0.256350 0.966584i \(-0.582520\pi\)
0.966584 + 0.256350i \(0.0825200\pi\)
\(20\) 0 0
\(21\) −1.12791 1.12791i −0.246130 0.246130i
\(22\) 0 0
\(23\) −1.55774 + 1.55774i −0.324810 + 0.324810i −0.850609 0.525799i \(-0.823767\pi\)
0.525799 + 0.850609i \(0.323767\pi\)
\(24\) 0 0
\(25\) −0.757876 4.94223i −0.151575 0.988446i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −0.425907 0.425907i −0.0790889 0.0790889i 0.666456 0.745545i \(-0.267811\pi\)
−0.745545 + 0.666456i \(0.767811\pi\)
\(30\) 0 0
\(31\) 9.02889i 1.62164i −0.585298 0.810818i \(-0.699022\pi\)
0.585298 0.810818i \(-0.300978\pi\)
\(32\) 0 0
\(33\) −4.05250 + 4.05250i −0.705450 + 0.705450i
\(34\) 0 0
\(35\) 3.55644 0.271100i 0.601148 0.0458243i
\(36\) 0 0
\(37\) 7.76193i 1.27605i −0.770014 0.638027i \(-0.779751\pi\)
0.770014 0.638027i \(-0.220249\pi\)
\(38\) 0 0
\(39\) 1.51085i 0.241930i
\(40\) 0 0
\(41\) 7.27238i 1.13576i −0.823113 0.567878i \(-0.807765\pi\)
0.823113 0.567878i \(-0.192235\pi\)
\(42\) 0 0
\(43\) 9.30484i 1.41897i 0.704718 + 0.709487i \(0.251073\pi\)
−0.704718 + 0.709487i \(0.748927\pi\)
\(44\) 0 0
\(45\) −1.45639 + 1.69674i −0.217105 + 0.252936i
\(46\) 0 0
\(47\) 1.13932 1.13932i 0.166187 0.166187i −0.619114 0.785301i \(-0.712508\pi\)
0.785301 + 0.619114i \(0.212508\pi\)
\(48\) 0 0
\(49\) 4.45565i 0.636522i
\(50\) 0 0
\(51\) −1.61725 1.61725i −0.226461 0.226461i
\(52\) 0 0
\(53\) 8.27183 1.13622 0.568112 0.822952i \(-0.307674\pi\)
0.568112 + 0.822952i \(0.307674\pi\)
\(54\) 0 0
\(55\) −0.974046 12.7781i −0.131340 1.72299i
\(56\) 0 0
\(57\) 3.09584 3.09584i 0.410054 0.410054i
\(58\) 0 0
\(59\) −9.12504 9.12504i −1.18798 1.18798i −0.977625 0.210354i \(-0.932538\pi\)
−0.210354 0.977625i \(-0.567462\pi\)
\(60\) 0 0
\(61\) −4.89881 + 4.89881i −0.627229 + 0.627229i −0.947370 0.320141i \(-0.896270\pi\)
0.320141 + 0.947370i \(0.396270\pi\)
\(62\) 0 0
\(63\) −1.12791 1.12791i −0.142103 0.142103i
\(64\) 0 0
\(65\) 2.56353 + 2.20039i 0.317967 + 0.272925i
\(66\) 0 0
\(67\) 2.17068i 0.265191i 0.991170 + 0.132596i \(0.0423312\pi\)
−0.991170 + 0.132596i \(0.957669\pi\)
\(68\) 0 0
\(69\) −1.55774 + 1.55774i −0.187529 + 0.187529i
\(70\) 0 0
\(71\) −13.5937 −1.61328 −0.806641 0.591042i \(-0.798717\pi\)
−0.806641 + 0.591042i \(0.798717\pi\)
\(72\) 0 0
\(73\) −1.11750 1.11750i −0.130793 0.130793i 0.638680 0.769473i \(-0.279481\pi\)
−0.769473 + 0.638680i \(0.779481\pi\)
\(74\) 0 0
\(75\) −0.757876 4.94223i −0.0875120 0.570679i
\(76\) 0 0
\(77\) 9.14169 1.04179
\(78\) 0 0
\(79\) −1.68922 −0.190052 −0.0950261 0.995475i \(-0.530293\pi\)
−0.0950261 + 0.995475i \(0.530293\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −5.64544 −0.619668 −0.309834 0.950791i \(-0.600273\pi\)
−0.309834 + 0.950791i \(0.600273\pi\)
\(84\) 0 0
\(85\) 5.09941 0.388718i 0.553109 0.0421624i
\(86\) 0 0
\(87\) −0.425907 0.425907i −0.0456620 0.0456620i
\(88\) 0 0
\(89\) 10.4975 1.11273 0.556365 0.830938i \(-0.312196\pi\)
0.556365 + 0.830938i \(0.312196\pi\)
\(90\) 0 0
\(91\) −1.70410 + 1.70410i −0.178639 + 0.178639i
\(92\) 0 0
\(93\) 9.02889i 0.936252i
\(94\) 0 0
\(95\) 0.744106 + 9.76158i 0.0763436 + 1.00152i
\(96\) 0 0
\(97\) −6.26114 6.26114i −0.635722 0.635722i 0.313775 0.949497i \(-0.398406\pi\)
−0.949497 + 0.313775i \(0.898406\pi\)
\(98\) 0 0
\(99\) −4.05250 + 4.05250i −0.407292 + 0.407292i
\(100\) 0 0
\(101\) −1.36593 1.36593i −0.135915 0.135915i 0.635876 0.771791i \(-0.280639\pi\)
−0.771791 + 0.635876i \(0.780639\pi\)
\(102\) 0 0
\(103\) 0.00181474 0.00181474i 0.000178812 0.000178812i −0.707017 0.707196i \(-0.749960\pi\)
0.707196 + 0.707017i \(0.249960\pi\)
\(104\) 0 0
\(105\) 3.55644 0.271100i 0.347073 0.0264567i
\(106\) 0 0
\(107\) −14.5410 −1.40573 −0.702863 0.711325i \(-0.748096\pi\)
−0.702863 + 0.711325i \(0.748096\pi\)
\(108\) 0 0
\(109\) 11.1313 + 11.1313i 1.06619 + 1.06619i 0.997649 + 0.0685378i \(0.0218334\pi\)
0.0685378 + 0.997649i \(0.478167\pi\)
\(110\) 0 0
\(111\) 7.76193i 0.736730i
\(112\) 0 0
\(113\) 9.54820 9.54820i 0.898219 0.898219i −0.0970594 0.995279i \(-0.530944\pi\)
0.995279 + 0.0970594i \(0.0309437\pi\)
\(114\) 0 0
\(115\) −0.374412 4.91174i −0.0349141 0.458023i
\(116\) 0 0
\(117\) 1.51085i 0.139679i
\(118\) 0 0
\(119\) 3.64822i 0.334432i
\(120\) 0 0
\(121\) 21.8455i 1.98596i
\(122\) 0 0
\(123\) 7.27238i 0.655729i
\(124\) 0 0
\(125\) 9.48945 + 5.91187i 0.848763 + 0.528774i
\(126\) 0 0
\(127\) −7.29219 + 7.29219i −0.647077 + 0.647077i −0.952286 0.305209i \(-0.901274\pi\)
0.305209 + 0.952286i \(0.401274\pi\)
\(128\) 0 0
\(129\) 9.30484i 0.819246i
\(130\) 0 0
\(131\) −2.59824 2.59824i −0.227009 0.227009i 0.584433 0.811442i \(-0.301317\pi\)
−0.811442 + 0.584433i \(0.801317\pi\)
\(132\) 0 0
\(133\) −6.98363 −0.605558
\(134\) 0 0
\(135\) −1.45639 + 1.69674i −0.125346 + 0.146032i
\(136\) 0 0
\(137\) −13.6691 + 13.6691i −1.16783 + 1.16783i −0.185115 + 0.982717i \(0.559266\pi\)
−0.982717 + 0.185115i \(0.940734\pi\)
\(138\) 0 0
\(139\) −4.06432 4.06432i −0.344731 0.344731i 0.513412 0.858143i \(-0.328381\pi\)
−0.858143 + 0.513412i \(0.828381\pi\)
\(140\) 0 0
\(141\) 1.13932 1.13932i 0.0959479 0.0959479i
\(142\) 0 0
\(143\) 6.12274 + 6.12274i 0.512009 + 0.512009i
\(144\) 0 0
\(145\) 1.34294 0.102370i 0.111525 0.00850133i
\(146\) 0 0
\(147\) 4.45565i 0.367496i
\(148\) 0 0
\(149\) 7.44842 7.44842i 0.610199 0.610199i −0.332799 0.942998i \(-0.607993\pi\)
0.942998 + 0.332799i \(0.107993\pi\)
\(150\) 0 0
\(151\) 7.91377 0.644013 0.322007 0.946737i \(-0.395643\pi\)
0.322007 + 0.946737i \(0.395643\pi\)
\(152\) 0 0
\(153\) −1.61725 1.61725i −0.130747 0.130747i
\(154\) 0 0
\(155\) 15.3197 + 13.1496i 1.23051 + 1.05620i
\(156\) 0 0
\(157\) −9.30731 −0.742804 −0.371402 0.928472i \(-0.621123\pi\)
−0.371402 + 0.928472i \(0.621123\pi\)
\(158\) 0 0
\(159\) 8.27183 0.655999
\(160\) 0 0
\(161\) 3.51396 0.276939
\(162\) 0 0
\(163\) −3.08826 −0.241891 −0.120946 0.992659i \(-0.538593\pi\)
−0.120946 + 0.992659i \(0.538593\pi\)
\(164\) 0 0
\(165\) −0.974046 12.7781i −0.0758294 0.994771i
\(166\) 0 0
\(167\) 4.67681 + 4.67681i 0.361902 + 0.361902i 0.864513 0.502611i \(-0.167627\pi\)
−0.502611 + 0.864513i \(0.667627\pi\)
\(168\) 0 0
\(169\) 10.7173 0.824409
\(170\) 0 0
\(171\) 3.09584 3.09584i 0.236745 0.236745i
\(172\) 0 0
\(173\) 22.7032i 1.72609i −0.505124 0.863047i \(-0.668553\pi\)
0.505124 0.863047i \(-0.331447\pi\)
\(174\) 0 0
\(175\) −4.71956 + 6.42919i −0.356765 + 0.486001i
\(176\) 0 0
\(177\) −9.12504 9.12504i −0.685880 0.685880i
\(178\) 0 0
\(179\) 5.21450 5.21450i 0.389750 0.389750i −0.484848 0.874598i \(-0.661125\pi\)
0.874598 + 0.484848i \(0.161125\pi\)
\(180\) 0 0
\(181\) −14.5282 14.5282i −1.07987 1.07987i −0.996520 0.0833500i \(-0.973438\pi\)
−0.0833500 0.996520i \(-0.526562\pi\)
\(182\) 0 0
\(183\) −4.89881 + 4.89881i −0.362131 + 0.362131i
\(184\) 0 0
\(185\) 13.1700 + 11.3044i 0.968278 + 0.831114i
\(186\) 0 0
\(187\) 13.1078 0.958540
\(188\) 0 0
\(189\) −1.12791 1.12791i −0.0820432 0.0820432i
\(190\) 0 0
\(191\) 21.5118i 1.55654i 0.627929 + 0.778271i \(0.283903\pi\)
−0.627929 + 0.778271i \(0.716097\pi\)
\(192\) 0 0
\(193\) −14.7523 + 14.7523i −1.06189 + 1.06189i −0.0639410 + 0.997954i \(0.520367\pi\)
−0.997954 + 0.0639410i \(0.979633\pi\)
\(194\) 0 0
\(195\) 2.56353 + 2.20039i 0.183578 + 0.157573i
\(196\) 0 0
\(197\) 6.41499i 0.457049i 0.973538 + 0.228524i \(0.0733901\pi\)
−0.973538 + 0.228524i \(0.926610\pi\)
\(198\) 0 0
\(199\) 9.01442i 0.639015i 0.947584 + 0.319508i \(0.103518\pi\)
−0.947584 + 0.319508i \(0.896482\pi\)
\(200\) 0 0
\(201\) 2.17068i 0.153108i
\(202\) 0 0
\(203\) 0.960767i 0.0674326i
\(204\) 0 0
\(205\) 12.3394 + 10.5914i 0.861819 + 0.739736i
\(206\) 0 0
\(207\) −1.55774 + 1.55774i −0.108270 + 0.108270i
\(208\) 0 0
\(209\) 25.0918i 1.73563i
\(210\) 0 0
\(211\) −12.1263 12.1263i −0.834809 0.834809i 0.153361 0.988170i \(-0.450990\pi\)
−0.988170 + 0.153361i \(0.950990\pi\)
\(212\) 0 0
\(213\) −13.5937 −0.931428
\(214\) 0 0
\(215\) −15.7879 13.5514i −1.07673 0.924201i
\(216\) 0 0
\(217\) −10.1837 + 10.1837i −0.691318 + 0.691318i
\(218\) 0 0
\(219\) −1.11750 1.11750i −0.0755134 0.0755134i
\(220\) 0 0
\(221\) −2.44343 + 2.44343i −0.164363 + 0.164363i
\(222\) 0 0
\(223\) −9.07927 9.07927i −0.607993 0.607993i 0.334428 0.942421i \(-0.391457\pi\)
−0.942421 + 0.334428i \(0.891457\pi\)
\(224\) 0 0
\(225\) −0.757876 4.94223i −0.0505251 0.329482i
\(226\) 0 0
\(227\) 0.580888i 0.0385549i −0.999814 0.0192774i \(-0.993863\pi\)
0.999814 0.0192774i \(-0.00613658\pi\)
\(228\) 0 0
\(229\) −8.27674 + 8.27674i −0.546942 + 0.546942i −0.925555 0.378613i \(-0.876401\pi\)
0.378613 + 0.925555i \(0.376401\pi\)
\(230\) 0 0
\(231\) 9.14169 0.601479
\(232\) 0 0
\(233\) 10.8812 + 10.8812i 0.712852 + 0.712852i 0.967131 0.254279i \(-0.0818382\pi\)
−0.254279 + 0.967131i \(0.581838\pi\)
\(234\) 0 0
\(235\) 0.273843 + 3.59242i 0.0178635 + 0.234344i
\(236\) 0 0
\(237\) −1.68922 −0.109727
\(238\) 0 0
\(239\) 10.3831 0.671628 0.335814 0.941928i \(-0.390989\pi\)
0.335814 + 0.941928i \(0.390989\pi\)
\(240\) 0 0
\(241\) 22.4691 1.44736 0.723680 0.690136i \(-0.242449\pi\)
0.723680 + 0.690136i \(0.242449\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 7.56010 + 6.48915i 0.482997 + 0.414577i
\(246\) 0 0
\(247\) −4.67736 4.67736i −0.297613 0.297613i
\(248\) 0 0
\(249\) −5.64544 −0.357765
\(250\) 0 0
\(251\) −16.2297 + 16.2297i −1.02441 + 1.02441i −0.0247152 + 0.999695i \(0.507868\pi\)
−0.999695 + 0.0247152i \(0.992132\pi\)
\(252\) 0 0
\(253\) 12.6255i 0.793756i
\(254\) 0 0
\(255\) 5.09941 0.388718i 0.319337 0.0243424i
\(256\) 0 0
\(257\) −0.223380 0.223380i −0.0139341 0.0139341i 0.700105 0.714039i \(-0.253136\pi\)
−0.714039 + 0.700105i \(0.753136\pi\)
\(258\) 0 0
\(259\) −8.75474 + 8.75474i −0.543993 + 0.543993i
\(260\) 0 0
\(261\) −0.425907 0.425907i −0.0263630 0.0263630i
\(262\) 0 0
\(263\) 1.01264 1.01264i 0.0624420 0.0624420i −0.675196 0.737638i \(-0.735941\pi\)
0.737638 + 0.675196i \(0.235941\pi\)
\(264\) 0 0
\(265\) −12.0470 + 14.0352i −0.740040 + 0.862174i
\(266\) 0 0
\(267\) 10.4975 0.642435
\(268\) 0 0
\(269\) −12.5052 12.5052i −0.762455 0.762455i 0.214310 0.976766i \(-0.431250\pi\)
−0.976766 + 0.214310i \(0.931250\pi\)
\(270\) 0 0
\(271\) 25.2641i 1.53469i −0.641237 0.767343i \(-0.721578\pi\)
0.641237 0.767343i \(-0.278422\pi\)
\(272\) 0 0
\(273\) −1.70410 + 1.70410i −0.103137 + 0.103137i
\(274\) 0 0
\(275\) 23.0997 + 16.9571i 1.39296 + 1.02255i
\(276\) 0 0
\(277\) 13.1100i 0.787706i 0.919174 + 0.393853i \(0.128858\pi\)
−0.919174 + 0.393853i \(0.871142\pi\)
\(278\) 0 0
\(279\) 9.02889i 0.540546i
\(280\) 0 0
\(281\) 2.34999i 0.140189i 0.997540 + 0.0700944i \(0.0223301\pi\)
−0.997540 + 0.0700944i \(0.977670\pi\)
\(282\) 0 0
\(283\) 16.1614i 0.960695i −0.877078 0.480348i \(-0.840510\pi\)
0.877078 0.480348i \(-0.159490\pi\)
\(284\) 0 0
\(285\) 0.744106 + 9.76158i 0.0440770 + 0.578226i
\(286\) 0 0
\(287\) −8.20257 + 8.20257i −0.484183 + 0.484183i
\(288\) 0 0
\(289\) 11.7690i 0.692293i
\(290\) 0 0
\(291\) −6.26114 6.26114i −0.367035 0.367035i
\(292\) 0 0
\(293\) −15.9522 −0.931939 −0.465969 0.884801i \(-0.654294\pi\)
−0.465969 + 0.884801i \(0.654294\pi\)
\(294\) 0 0
\(295\) 28.7724 2.19327i 1.67520 0.127697i
\(296\) 0 0
\(297\) −4.05250 + 4.05250i −0.235150 + 0.235150i
\(298\) 0 0
\(299\) 2.35351 + 2.35351i 0.136107 + 0.136107i
\(300\) 0 0
\(301\) 10.4950 10.4950i 0.604921 0.604921i
\(302\) 0 0
\(303\) −1.36593 1.36593i −0.0784705 0.0784705i
\(304\) 0 0
\(305\) −1.17746 15.4466i −0.0674213 0.884469i
\(306\) 0 0
\(307\) 24.9902i 1.42627i 0.701029 + 0.713133i \(0.252724\pi\)
−0.701029 + 0.713133i \(0.747276\pi\)
\(308\) 0 0
\(309\) 0.00181474 0.00181474i 0.000103237 0.000103237i
\(310\) 0 0
\(311\) −5.55703 −0.315111 −0.157555 0.987510i \(-0.550361\pi\)
−0.157555 + 0.987510i \(0.550361\pi\)
\(312\) 0 0
\(313\) 3.12705 + 3.12705i 0.176751 + 0.176751i 0.789938 0.613187i \(-0.210113\pi\)
−0.613187 + 0.789938i \(0.710113\pi\)
\(314\) 0 0
\(315\) 3.55644 0.271100i 0.200383 0.0152748i
\(316\) 0 0
\(317\) −33.8169 −1.89935 −0.949674 0.313240i \(-0.898586\pi\)
−0.949674 + 0.313240i \(0.898586\pi\)
\(318\) 0 0
\(319\) 3.45198 0.193274
\(320\) 0 0
\(321\) −14.5410 −0.811597
\(322\) 0 0
\(323\) −10.0135 −0.557166
\(324\) 0 0
\(325\) −7.46699 + 1.14504i −0.414194 + 0.0635154i
\(326\) 0 0
\(327\) 11.1313 + 11.1313i 0.615563 + 0.615563i
\(328\) 0 0
\(329\) −2.57009 −0.141694
\(330\) 0 0
\(331\) 13.0748 13.0748i 0.718658 0.718658i −0.249672 0.968330i \(-0.580323\pi\)
0.968330 + 0.249672i \(0.0803229\pi\)
\(332\) 0 0
\(333\) 7.76193i 0.425351i
\(334\) 0 0
\(335\) −3.68309 3.16136i −0.201229 0.172723i
\(336\) 0 0
\(337\) −4.71773 4.71773i −0.256991 0.256991i 0.566838 0.823829i \(-0.308167\pi\)
−0.823829 + 0.566838i \(0.808167\pi\)
\(338\) 0 0
\(339\) 9.54820 9.54820i 0.518587 0.518587i
\(340\) 0 0
\(341\) 36.5896 + 36.5896i 1.98144 + 1.98144i
\(342\) 0 0
\(343\) −12.9209 + 12.9209i −0.697664 + 0.697664i
\(344\) 0 0
\(345\) −0.374412 4.91174i −0.0201577 0.264439i
\(346\) 0 0
\(347\) 26.4531 1.42008 0.710039 0.704163i \(-0.248677\pi\)
0.710039 + 0.704163i \(0.248677\pi\)
\(348\) 0 0
\(349\) 7.72146 + 7.72146i 0.413320 + 0.413320i 0.882893 0.469573i \(-0.155592\pi\)
−0.469573 + 0.882893i \(0.655592\pi\)
\(350\) 0 0
\(351\) 1.51085i 0.0806434i
\(352\) 0 0
\(353\) 17.1761 17.1761i 0.914189 0.914189i −0.0824092 0.996599i \(-0.526261\pi\)
0.996599 + 0.0824092i \(0.0262615\pi\)
\(354\) 0 0
\(355\) 19.7978 23.0651i 1.05076 1.22417i
\(356\) 0 0
\(357\) 3.64822i 0.193084i
\(358\) 0 0
\(359\) 13.3611i 0.705173i −0.935779 0.352587i \(-0.885302\pi\)
0.935779 0.352587i \(-0.114698\pi\)
\(360\) 0 0
\(361\) 0.168423i 0.00886435i
\(362\) 0 0
\(363\) 21.8455i 1.14659i
\(364\) 0 0
\(365\) 3.52361 0.268598i 0.184434 0.0140591i
\(366\) 0 0
\(367\) 2.07421 2.07421i 0.108273 0.108273i −0.650895 0.759168i \(-0.725606\pi\)
0.759168 + 0.650895i \(0.225606\pi\)
\(368\) 0 0
\(369\) 7.27238i 0.378585i
\(370\) 0 0
\(371\) −9.32985 9.32985i −0.484382 0.484382i
\(372\) 0 0
\(373\) 31.6636 1.63948 0.819739 0.572737i \(-0.194118\pi\)
0.819739 + 0.572737i \(0.194118\pi\)
\(374\) 0 0
\(375\) 9.48945 + 5.91187i 0.490033 + 0.305288i
\(376\) 0 0
\(377\) −0.643483 + 0.643483i −0.0331411 + 0.0331411i
\(378\) 0 0
\(379\) −5.09306 5.09306i −0.261613 0.261613i 0.564096 0.825709i \(-0.309225\pi\)
−0.825709 + 0.564096i \(0.809225\pi\)
\(380\) 0 0
\(381\) −7.29219 + 7.29219i −0.373590 + 0.373590i
\(382\) 0 0
\(383\) 3.20359 + 3.20359i 0.163696 + 0.163696i 0.784202 0.620506i \(-0.213073\pi\)
−0.620506 + 0.784202i \(0.713073\pi\)
\(384\) 0 0
\(385\) −13.3138 + 15.5111i −0.678536 + 0.790519i
\(386\) 0 0
\(387\) 9.30484i 0.472992i
\(388\) 0 0
\(389\) 1.34936 1.34936i 0.0684155 0.0684155i −0.672071 0.740487i \(-0.734595\pi\)
0.740487 + 0.672071i \(0.234595\pi\)
\(390\) 0 0
\(391\) 5.03851 0.254808
\(392\) 0 0
\(393\) −2.59824 2.59824i −0.131064 0.131064i
\(394\) 0 0
\(395\) 2.46016 2.86617i 0.123784 0.144213i
\(396\) 0 0
\(397\) −24.4680 −1.22801 −0.614007 0.789301i \(-0.710443\pi\)
−0.614007 + 0.789301i \(0.710443\pi\)
\(398\) 0 0
\(399\) −6.98363 −0.349619
\(400\) 0 0
\(401\) 28.5323 1.42484 0.712419 0.701755i \(-0.247600\pi\)
0.712419 + 0.701755i \(0.247600\pi\)
\(402\) 0 0
\(403\) −13.6413 −0.679523
\(404\) 0 0
\(405\) −1.45639 + 1.69674i −0.0723684 + 0.0843119i
\(406\) 0 0
\(407\) 31.4552 + 31.4552i 1.55918 + 1.55918i
\(408\) 0 0
\(409\) −15.1016 −0.746726 −0.373363 0.927685i \(-0.621795\pi\)
−0.373363 + 0.927685i \(0.621795\pi\)
\(410\) 0 0
\(411\) −13.6691 + 13.6691i −0.674248 + 0.674248i
\(412\) 0 0
\(413\) 20.5844i 1.01289i
\(414\) 0 0
\(415\) 8.22194 9.57886i 0.403599 0.470208i
\(416\) 0 0
\(417\) −4.06432 4.06432i −0.199030 0.199030i
\(418\) 0 0
\(419\) 1.93018 1.93018i 0.0942953 0.0942953i −0.658386 0.752681i \(-0.728760\pi\)
0.752681 + 0.658386i \(0.228760\pi\)
\(420\) 0 0
\(421\) −11.3334 11.3334i −0.552355 0.552355i 0.374765 0.927120i \(-0.377723\pi\)
−0.927120 + 0.374765i \(0.877723\pi\)
\(422\) 0 0
\(423\) 1.13932 1.13932i 0.0553956 0.0553956i
\(424\) 0 0
\(425\) −6.76716 + 9.21851i −0.328255 + 0.447164i
\(426\) 0 0
\(427\) 11.0508 0.534786
\(428\) 0 0
\(429\) 6.12274 + 6.12274i 0.295609 + 0.295609i
\(430\) 0 0
\(431\) 23.3060i 1.12261i −0.827609 0.561305i \(-0.810299\pi\)
0.827609 0.561305i \(-0.189701\pi\)
\(432\) 0 0
\(433\) 2.27419 2.27419i 0.109291 0.109291i −0.650347 0.759637i \(-0.725376\pi\)
0.759637 + 0.650347i \(0.225376\pi\)
\(434\) 0 0
\(435\) 1.34294 0.102370i 0.0643890 0.00490825i
\(436\) 0 0
\(437\) 9.64500i 0.461383i
\(438\) 0 0
\(439\) 9.72340i 0.464073i 0.972707 + 0.232036i \(0.0745388\pi\)
−0.972707 + 0.232036i \(0.925461\pi\)
\(440\) 0 0
\(441\) 4.45565i 0.212174i
\(442\) 0 0
\(443\) 16.8029i 0.798332i 0.916879 + 0.399166i \(0.130700\pi\)
−0.916879 + 0.399166i \(0.869300\pi\)
\(444\) 0 0
\(445\) −15.2884 + 17.8115i −0.724738 + 0.844347i
\(446\) 0 0
\(447\) 7.44842 7.44842i 0.352298 0.352298i
\(448\) 0 0
\(449\) 14.6889i 0.693212i 0.938011 + 0.346606i \(0.112666\pi\)
−0.938011 + 0.346606i \(0.887334\pi\)
\(450\) 0 0
\(451\) 29.4713 + 29.4713i 1.38775 + 1.38775i
\(452\) 0 0
\(453\) 7.91377 0.371821
\(454\) 0 0
\(455\) −0.409593 5.37326i −0.0192020 0.251902i
\(456\) 0 0
\(457\) −10.8605 + 10.8605i −0.508034 + 0.508034i −0.913922 0.405889i \(-0.866962\pi\)
0.405889 + 0.913922i \(0.366962\pi\)
\(458\) 0 0
\(459\) −1.61725 1.61725i −0.0754869 0.0754869i
\(460\) 0 0
\(461\) 12.2300 12.2300i 0.569608 0.569608i −0.362411 0.932019i \(-0.618046\pi\)
0.932019 + 0.362411i \(0.118046\pi\)
\(462\) 0 0
\(463\) 25.4819 + 25.4819i 1.18424 + 1.18424i 0.978634 + 0.205609i \(0.0659176\pi\)
0.205609 + 0.978634i \(0.434082\pi\)
\(464\) 0 0
\(465\) 15.3197 + 13.1496i 0.710435 + 0.609796i
\(466\) 0 0
\(467\) 34.3316i 1.58868i 0.607475 + 0.794339i \(0.292182\pi\)
−0.607475 + 0.794339i \(0.707818\pi\)
\(468\) 0 0
\(469\) 2.44833 2.44833i 0.113053 0.113053i
\(470\) 0 0
\(471\) −9.30731 −0.428858
\(472\) 0 0
\(473\) −37.7079 37.7079i −1.73381 1.73381i
\(474\) 0 0
\(475\) −17.6466 12.9541i −0.809682 0.594374i
\(476\) 0 0
\(477\) 8.27183 0.378741
\(478\) 0 0
\(479\) −8.65519 −0.395466 −0.197733 0.980256i \(-0.563358\pi\)
−0.197733 + 0.980256i \(0.563358\pi\)
\(480\) 0 0
\(481\) −11.7271 −0.534712
\(482\) 0 0
\(483\) 3.51396 0.159891
\(484\) 0 0
\(485\) 19.7422 1.50491i 0.896447 0.0683343i
\(486\) 0 0
\(487\) 7.87838 + 7.87838i 0.357004 + 0.357004i 0.862707 0.505704i \(-0.168767\pi\)
−0.505704 + 0.862707i \(0.668767\pi\)
\(488\) 0 0
\(489\) −3.08826 −0.139656
\(490\) 0 0
\(491\) −5.87690 + 5.87690i −0.265221 + 0.265221i −0.827171 0.561950i \(-0.810051\pi\)
0.561950 + 0.827171i \(0.310051\pi\)
\(492\) 0 0
\(493\) 1.37760i 0.0620439i
\(494\) 0 0
\(495\) −0.974046 12.7781i −0.0437801 0.574331i
\(496\) 0 0
\(497\) 15.3325 + 15.3325i 0.687756 + 0.687756i
\(498\) 0 0
\(499\) 4.52232 4.52232i 0.202447 0.202447i −0.598601 0.801048i \(-0.704276\pi\)
0.801048 + 0.598601i \(0.204276\pi\)
\(500\) 0 0
\(501\) 4.67681 + 4.67681i 0.208944 + 0.208944i
\(502\) 0 0
\(503\) −7.49454 + 7.49454i −0.334165 + 0.334165i −0.854166 0.520001i \(-0.825932\pi\)
0.520001 + 0.854166i \(0.325932\pi\)
\(504\) 0 0
\(505\) 4.30695 0.328310i 0.191657 0.0146096i
\(506\) 0 0
\(507\) 10.7173 0.475973
\(508\) 0 0
\(509\) −2.39069 2.39069i −0.105965 0.105965i 0.652136 0.758102i \(-0.273873\pi\)
−0.758102 + 0.652136i \(0.773873\pi\)
\(510\) 0 0
\(511\) 2.52086i 0.111516i
\(512\) 0 0
\(513\) 3.09584 3.09584i 0.136685 0.136685i
\(514\) 0 0
\(515\) 0.000436186 0.00572212i 1.92206e−5 0.000252147i
\(516\) 0 0
\(517\) 9.23418i 0.406119i
\(518\) 0 0
\(519\) 22.7032i 0.996561i
\(520\) 0 0
\(521\) 27.6569i 1.21167i 0.795590 + 0.605835i \(0.207161\pi\)
−0.795590 + 0.605835i \(0.792839\pi\)
\(522\) 0 0
\(523\) 5.69218i 0.248902i 0.992226 + 0.124451i \(0.0397169\pi\)
−0.992226 + 0.124451i \(0.960283\pi\)
\(524\) 0 0
\(525\) −4.71956 + 6.42919i −0.205979 + 0.280593i
\(526\) 0 0
\(527\) −14.6020 + 14.6020i −0.636073 + 0.636073i
\(528\) 0 0
\(529\) 18.1469i 0.788996i
\(530\) 0 0
\(531\) −9.12504 9.12504i −0.395993 0.395993i
\(532\) 0 0
\(533\) −10.9875 −0.475922
\(534\) 0 0
\(535\) 21.1772 24.6723i 0.915572 1.06668i
\(536\) 0 0
\(537\) 5.21450 5.21450i 0.225022 0.225022i
\(538\) 0 0
\(539\) 18.0565 + 18.0565i 0.777750 + 0.777750i
\(540\) 0 0
\(541\) −8.91173 + 8.91173i −0.383145 + 0.383145i −0.872234 0.489089i \(-0.837329\pi\)
0.489089 + 0.872234i \(0.337329\pi\)
\(542\) 0 0
\(543\) −14.5282 14.5282i −0.623463 0.623463i
\(544\) 0 0
\(545\) −35.0985 + 2.67549i −1.50345 + 0.114605i
\(546\) 0 0
\(547\) 16.9775i 0.725904i 0.931808 + 0.362952i \(0.118231\pi\)
−0.931808 + 0.362952i \(0.881769\pi\)
\(548\) 0 0
\(549\) −4.89881 + 4.89881i −0.209076 + 0.209076i
\(550\) 0 0
\(551\) −2.63708 −0.112343
\(552\) 0 0
\(553\) 1.90528 + 1.90528i 0.0810209 + 0.0810209i
\(554\) 0 0
\(555\) 13.1700 + 11.3044i 0.559035 + 0.479844i
\(556\) 0 0
\(557\) −5.77429 −0.244665 −0.122332 0.992489i \(-0.539037\pi\)
−0.122332 + 0.992489i \(0.539037\pi\)
\(558\) 0 0
\(559\) 14.0583 0.594601
\(560\) 0 0
\(561\) 13.1078 0.553414
\(562\) 0 0
\(563\) −8.76839 −0.369544 −0.184772 0.982781i \(-0.559155\pi\)
−0.184772 + 0.982781i \(0.559155\pi\)
\(564\) 0 0
\(565\) 2.29497 + 30.1067i 0.0965503 + 1.26660i
\(566\) 0 0
\(567\) −1.12791 1.12791i −0.0473676 0.0473676i
\(568\) 0 0
\(569\) −6.53649 −0.274024 −0.137012 0.990569i \(-0.543750\pi\)
−0.137012 + 0.990569i \(0.543750\pi\)
\(570\) 0 0
\(571\) 8.51080 8.51080i 0.356166 0.356166i −0.506232 0.862397i \(-0.668962\pi\)
0.862397 + 0.506232i \(0.168962\pi\)
\(572\) 0 0
\(573\) 21.5118i 0.898670i
\(574\) 0 0
\(575\) 8.87926 + 6.51812i 0.370291 + 0.271824i
\(576\) 0 0
\(577\) −2.50352 2.50352i −0.104223 0.104223i 0.653072 0.757295i \(-0.273480\pi\)
−0.757295 + 0.653072i \(0.773480\pi\)
\(578\) 0 0
\(579\) −14.7523 + 14.7523i −0.613085 + 0.613085i
\(580\) 0 0
\(581\) 6.36753 + 6.36753i 0.264170 + 0.264170i
\(582\) 0 0
\(583\) −33.5216 + 33.5216i −1.38832 + 1.38832i
\(584\) 0 0
\(585\) 2.56353 + 2.20039i 0.105989 + 0.0909749i
\(586\) 0 0
\(587\) −28.0515 −1.15781 −0.578904 0.815396i \(-0.696519\pi\)
−0.578904 + 0.815396i \(0.696519\pi\)
\(588\) 0 0
\(589\) −27.9520 27.9520i −1.15174 1.15174i
\(590\) 0 0
\(591\) 6.41499i 0.263877i
\(592\) 0 0
\(593\) 10.3023 10.3023i 0.423066 0.423066i −0.463192 0.886258i \(-0.653296\pi\)
0.886258 + 0.463192i \(0.153296\pi\)
\(594\) 0 0
\(595\) −6.19010 5.31322i −0.253769 0.217821i
\(596\) 0 0
\(597\) 9.01442i 0.368936i
\(598\) 0 0
\(599\) 16.5177i 0.674893i 0.941345 + 0.337447i \(0.109563\pi\)
−0.941345 + 0.337447i \(0.890437\pi\)
\(600\) 0 0
\(601\) 28.1393i 1.14783i −0.818916 0.573913i \(-0.805425\pi\)
0.818916 0.573913i \(-0.194575\pi\)
\(602\) 0 0
\(603\) 2.17068i 0.0883971i
\(604\) 0 0
\(605\) 37.0663 + 31.8156i 1.50696 + 1.29349i
\(606\) 0 0
\(607\) 7.05215 7.05215i 0.286238 0.286238i −0.549353 0.835591i \(-0.685126\pi\)
0.835591 + 0.549353i \(0.185126\pi\)
\(608\) 0 0
\(609\) 0.960767i 0.0389322i
\(610\) 0 0
\(611\) −1.72134 1.72134i −0.0696381 0.0696381i
\(612\) 0 0
\(613\) −9.16257 −0.370073 −0.185036 0.982732i \(-0.559240\pi\)
−0.185036 + 0.982732i \(0.559240\pi\)
\(614\) 0 0
\(615\) 12.3394 + 10.5914i 0.497571 + 0.427087i
\(616\) 0 0
\(617\) 1.80126 1.80126i 0.0725161 0.0725161i −0.669919 0.742435i \(-0.733671\pi\)
0.742435 + 0.669919i \(0.233671\pi\)
\(618\) 0 0
\(619\) 22.8596 + 22.8596i 0.918804 + 0.918804i 0.996943 0.0781384i \(-0.0248976\pi\)
−0.0781384 + 0.996943i \(0.524898\pi\)
\(620\) 0 0
\(621\) −1.55774 + 1.55774i −0.0625098 + 0.0625098i
\(622\) 0 0
\(623\) −11.8402 11.8402i −0.474366 0.474366i
\(624\) 0 0
\(625\) −23.8512 + 7.49119i −0.954050 + 0.299648i
\(626\) 0 0
\(627\) 25.0918i 1.00207i
\(628\) 0 0
\(629\) −12.5530 + 12.5530i −0.500521 + 0.500521i
\(630\) 0 0
\(631\) 5.25748 0.209297 0.104648 0.994509i \(-0.466628\pi\)
0.104648 + 0.994509i \(0.466628\pi\)
\(632\) 0 0
\(633\) −12.1263 12.1263i −0.481977 0.481977i
\(634\) 0 0
\(635\) −1.75273 22.9932i −0.0695548 0.912458i
\(636\) 0 0
\(637\) −6.73184 −0.266725
\(638\) 0 0
\(639\) −13.5937 −0.537760
\(640\) 0 0
\(641\) −13.7980 −0.544989 −0.272494 0.962157i \(-0.587849\pi\)
−0.272494 + 0.962157i \(0.587849\pi\)
\(642\) 0 0
\(643\) −10.3483 −0.408098 −0.204049 0.978961i \(-0.565410\pi\)
−0.204049 + 0.978961i \(0.565410\pi\)
\(644\) 0 0
\(645\) −15.7879 13.5514i −0.621649 0.533588i
\(646\) 0 0
\(647\) −5.33727 5.33727i −0.209830 0.209830i 0.594365 0.804195i \(-0.297403\pi\)
−0.804195 + 0.594365i \(0.797403\pi\)
\(648\) 0 0
\(649\) 73.9585 2.90312
\(650\) 0 0
\(651\) −10.1837 + 10.1837i −0.399133 + 0.399133i
\(652\) 0 0
\(653\) 30.3415i 1.18735i 0.804703 + 0.593677i \(0.202324\pi\)
−0.804703 + 0.593677i \(0.797676\pi\)
\(654\) 0 0
\(655\) 8.19258 0.624504i 0.320110 0.0244014i
\(656\) 0 0
\(657\) −1.11750 1.11750i −0.0435977 0.0435977i
\(658\) 0 0
\(659\) 22.0703 22.0703i 0.859738 0.859738i −0.131569 0.991307i \(-0.542002\pi\)
0.991307 + 0.131569i \(0.0420016\pi\)
\(660\) 0 0
\(661\) −12.8058 12.8058i −0.498089 0.498089i 0.412753 0.910843i \(-0.364567\pi\)
−0.910843 + 0.412753i \(0.864567\pi\)
\(662\) 0 0
\(663\) −2.44343 + 2.44343i −0.0948951 + 0.0948951i
\(664\) 0 0
\(665\) 10.1709 11.8494i 0.394409 0.459501i
\(666\) 0 0
\(667\) 1.32690 0.0513778
\(668\) 0 0
\(669\) −9.07927 9.07927i −0.351025 0.351025i
\(670\) 0 0
\(671\) 39.7049i 1.53279i
\(672\) 0 0
\(673\) 5.19258 5.19258i 0.200159 0.200159i −0.599909 0.800068i \(-0.704797\pi\)
0.800068 + 0.599909i \(0.204797\pi\)
\(674\) 0 0
\(675\) −0.757876 4.94223i −0.0291707 0.190226i
\(676\) 0 0
\(677\) 34.5001i 1.32595i −0.748643 0.662973i \(-0.769294\pi\)
0.748643 0.662973i \(-0.230706\pi\)
\(678\) 0 0
\(679\) 14.1240i 0.542028i
\(680\) 0 0
\(681\) 0.580888i 0.0222597i
\(682\) 0 0
\(683\) 16.4252i 0.628494i 0.949341 + 0.314247i \(0.101752\pi\)
−0.949341 + 0.314247i \(0.898248\pi\)
\(684\) 0 0
\(685\) −3.28547 43.1005i −0.125531 1.64679i
\(686\) 0 0
\(687\) −8.27674 + 8.27674i −0.315777 + 0.315777i
\(688\) 0 0
\(689\) 12.4975i 0.476118i
\(690\) 0 0
\(691\) −9.38248 9.38248i −0.356926 0.356926i 0.505752 0.862679i \(-0.331215\pi\)
−0.862679 + 0.505752i \(0.831215\pi\)
\(692\) 0 0
\(693\) 9.14169 0.347264
\(694\) 0 0
\(695\) 12.8153 0.976886i 0.486113 0.0370554i
\(696\) 0 0
\(697\) −11.7613 + 11.7613i −0.445490 + 0.445490i
\(698\) 0 0
\(699\) 10.8812 + 10.8812i 0.411565 + 0.411565i
\(700\) 0 0
\(701\) 9.83481 9.83481i 0.371455 0.371455i −0.496552 0.868007i \(-0.665401\pi\)
0.868007 + 0.496552i \(0.165401\pi\)
\(702\) 0 0
\(703\) −24.0297 24.0297i −0.906296 0.906296i
\(704\) 0 0
\(705\) 0.273843 + 3.59242i 0.0103135 + 0.135298i
\(706\) 0 0
\(707\) 3.08128i 0.115883i
\(708\) 0 0
\(709\) 23.8550 23.8550i 0.895894 0.895894i −0.0991761 0.995070i \(-0.531621\pi\)
0.995070 + 0.0991761i \(0.0316207\pi\)
\(710\) 0 0
\(711\) −1.68922 −0.0633507
\(712\) 0 0
\(713\) 14.0646 + 14.0646i 0.526724 + 0.526724i
\(714\) 0 0
\(715\) −19.3058 + 1.47164i −0.721996 + 0.0550363i
\(716\) 0 0
\(717\) 10.3831 0.387765
\(718\) 0 0
\(719\) 15.7928 0.588971 0.294485 0.955656i \(-0.404852\pi\)
0.294485 + 0.955656i \(0.404852\pi\)
\(720\) 0 0
\(721\) −0.00409372 −0.000152458
\(722\) 0 0
\(723\) 22.4691 0.835634
\(724\) 0 0
\(725\) −1.78214 + 2.42771i −0.0661872 + 0.0901630i
\(726\) 0 0
\(727\) −2.18456 2.18456i −0.0810208 0.0810208i 0.665435 0.746456i \(-0.268246\pi\)
−0.746456 + 0.665435i \(0.768246\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 15.0483 15.0483i 0.556581 0.556581i
\(732\) 0 0
\(733\) 27.2805i 1.00763i −0.863812 0.503815i \(-0.831929\pi\)
0.863812 0.503815i \(-0.168071\pi\)
\(734\) 0 0
\(735\) 7.56010 + 6.48915i 0.278858 + 0.239356i
\(736\) 0 0
\(737\) −8.79670 8.79670i −0.324031 0.324031i
\(738\) 0 0
\(739\) 35.5998 35.5998i 1.30956 1.30956i 0.387826 0.921733i \(-0.373226\pi\)
0.921733 0.387826i \(-0.126774\pi\)
\(740\) 0 0
\(741\) −4.67736 4.67736i −0.171827 0.171827i
\(742\) 0 0
\(743\) 25.0052 25.0052i 0.917352 0.917352i −0.0794841 0.996836i \(-0.525327\pi\)
0.996836 + 0.0794841i \(0.0253273\pi\)
\(744\) 0 0
\(745\) 1.79028 + 23.4858i 0.0655907 + 0.860455i
\(746\) 0 0
\(747\) −5.64544 −0.206556
\(748\) 0 0
\(749\) 16.4008 + 16.4008i 0.599274 + 0.599274i
\(750\) 0 0
\(751\) 35.0837i 1.28022i 0.768283 + 0.640111i \(0.221112\pi\)
−0.768283 + 0.640111i \(0.778888\pi\)
\(752\) 0 0
\(753\) −16.2297 + 16.2297i −0.591443 + 0.591443i
\(754\) 0 0
\(755\) −11.5255 + 13.4276i −0.419456 + 0.488682i
\(756\) 0 0
\(757\) 18.8071i 0.683554i 0.939781 + 0.341777i \(0.111029\pi\)
−0.939781 + 0.341777i \(0.888971\pi\)
\(758\) 0 0
\(759\) 12.6255i 0.458275i
\(760\) 0 0
\(761\) 0.986222i 0.0357505i −0.999840 0.0178753i \(-0.994310\pi\)
0.999840 0.0178753i \(-0.00569017\pi\)
\(762\) 0 0
\(763\) 25.1102i 0.909049i
\(764\) 0 0
\(765\) 5.09941 0.388718i 0.184370 0.0140541i
\(766\) 0 0
\(767\) −13.7866 + 13.7866i −0.497806 + 0.497806i
\(768\) 0 0
\(769\) 43.7365i 1.57718i −0.614921 0.788589i \(-0.710812\pi\)
0.614921 0.788589i \(-0.289188\pi\)
\(770\) 0 0
\(771\) −0.223380 0.223380i −0.00804485 0.00804485i
\(772\) 0 0
\(773\) −33.7211 −1.21286 −0.606431 0.795136i \(-0.707399\pi\)
−0.606431 + 0.795136i \(0.707399\pi\)
\(774\) 0 0
\(775\) −44.6228 + 6.84278i −1.60290 + 0.245800i
\(776\) 0 0
\(777\) −8.75474 + 8.75474i −0.314074 + 0.314074i
\(778\) 0 0
\(779\) −22.5141 22.5141i −0.806652 0.806652i
\(780\) 0 0
\(781\) 55.0887 55.0887i 1.97123 1.97123i
\(782\) 0 0
\(783\) −0.425907 0.425907i −0.0152207 0.0152207i
\(784\) 0 0
\(785\) 13.5550 15.7921i 0.483800 0.563645i
\(786\) 0 0
\(787\) 27.5235i 0.981106i −0.871411 0.490553i \(-0.836795\pi\)
0.871411 0.490553i \(-0.163205\pi\)
\(788\) 0 0
\(789\) 1.01264 1.01264i 0.0360509 0.0360509i
\(790\) 0 0
\(791\) −21.5390 −0.765838
\(792\) 0 0
\(793\) 7.40139 + 7.40139i 0.262831 + 0.262831i
\(794\) 0 0
\(795\) −12.0470 + 14.0352i −0.427262 + 0.497776i
\(796\) 0 0
\(797\) −21.0022 −0.743937 −0.371969 0.928245i \(-0.621317\pi\)
−0.371969 + 0.928245i \(0.621317\pi\)
\(798\) 0 0
\(799\) −3.68513 −0.130371
\(800\) 0 0
\(801\) 10.4975 0.370910
\(802\) 0 0
\(803\) 9.05731 0.319626
\(804\) 0 0
\(805\) −5.11769 + 5.96229i −0.180375 + 0.210143i
\(806\) 0 0
\(807\) −12.5052 12.5052i −0.440204 0.440204i
\(808\) 0 0
\(809\) −17.2682 −0.607117 −0.303559 0.952813i \(-0.598175\pi\)
−0.303559 + 0.952813i \(0.598175\pi\)
\(810\) 0 0
\(811\) 12.8011 12.8011i 0.449507 0.449507i −0.445683 0.895191i \(-0.647039\pi\)
0.895191 + 0.445683i \(0.147039\pi\)
\(812\) 0 0
\(813\) 25.2641i 0.886052i
\(814\) 0 0
\(815\) 4.49770 5.23999i 0.157548 0.183549i
\(816\) 0 0
\(817\) 28.8063 + 28.8063i 1.00780 + 1.00780i
\(818\) 0 0
\(819\) −1.70410 + 1.70410i −0.0595462 + 0.0595462i
\(820\) 0 0
\(821\) −25.3693 25.3693i −0.885395 0.885395i 0.108682 0.994077i \(-0.465337\pi\)
−0.994077 + 0.108682i \(0.965337\pi\)
\(822\) 0 0
\(823\) 12.8031 12.8031i 0.446288 0.446288i −0.447830 0.894119i \(-0.647803\pi\)
0.894119 + 0.447830i \(0.147803\pi\)
\(824\) 0 0
\(825\) 23.0997 + 16.9571i 0.804228 + 0.590370i
\(826\) 0 0
\(827\) −22.8624 −0.795005 −0.397502 0.917601i \(-0.630123\pi\)
−0.397502 + 0.917601i \(0.630123\pi\)
\(828\) 0 0
\(829\) 32.1620 + 32.1620i 1.11703 + 1.11703i 0.992175 + 0.124857i \(0.0398471\pi\)
0.124857 + 0.992175i \(0.460153\pi\)
\(830\) 0 0
\(831\) 13.1100i 0.454782i
\(832\) 0 0
\(833\) −7.20592 + 7.20592i −0.249670 + 0.249670i
\(834\) 0 0
\(835\) −14.7466 + 1.12410i −0.510326 + 0.0389012i
\(836\) 0 0
\(837\) 9.02889i 0.312084i
\(838\) 0 0
\(839\) 19.2953i 0.666147i −0.942901 0.333073i \(-0.891914\pi\)
0.942901 0.333073i \(-0.108086\pi\)
\(840\) 0 0
\(841\) 28.6372i 0.987490i
\(842\) 0 0
\(843\) 2.34999i 0.0809381i
\(844\) 0 0
\(845\) −15.6086 + 18.1845i −0.536951 + 0.625567i
\(846\) 0 0
\(847\) −24.6397 + 24.6397i −0.846631 + 0.846631i
\(848\) 0 0
\(849\) 16.1614i 0.554658i
\(850\) 0 0
\(851\) 12.0910 + 12.0910i 0.414475 + 0.414475i
\(852\) 0 0
\(853\) 42.4336 1.45290 0.726449 0.687220i \(-0.241169\pi\)
0.726449 + 0.687220i \(0.241169\pi\)
\(854\) 0 0
\(855\) 0.744106 + 9.76158i 0.0254479 + 0.333839i
\(856\) 0 0
\(857\) 7.60830 7.60830i 0.259894 0.259894i −0.565117 0.825011i \(-0.691169\pi\)
0.825011 + 0.565117i \(0.191169\pi\)
\(858\) 0 0
\(859\) 11.8598 + 11.8598i 0.404651 + 0.404651i 0.879869 0.475217i \(-0.157631\pi\)
−0.475217 + 0.879869i \(0.657631\pi\)
\(860\) 0 0
\(861\) −8.20257 + 8.20257i −0.279543 + 0.279543i
\(862\) 0 0
\(863\) −5.07126 5.07126i −0.172628 0.172628i 0.615505 0.788133i \(-0.288952\pi\)
−0.788133 + 0.615505i \(0.788952\pi\)
\(864\) 0 0
\(865\) 38.5215 + 33.0647i 1.30977 + 1.12423i
\(866\) 0 0
\(867\) 11.7690i 0.399696i
\(868\) 0 0
\(869\) 6.84557 6.84557i 0.232220 0.232220i
\(870\) 0 0
\(871\) 3.27959 0.111125
\(872\) 0 0
\(873\) −6.26114 6.26114i −0.211907 0.211907i
\(874\) 0 0
\(875\) −4.03518 17.3713i −0.136414 0.587256i
\(876\) 0 0
\(877\) −10.2891 −0.347437 −0.173719 0.984795i \(-0.555578\pi\)
−0.173719 + 0.984795i \(0.555578\pi\)
\(878\) 0 0
\(879\) −15.9522 −0.538055
\(880\) 0 0
\(881\) −11.5441 −0.388932 −0.194466 0.980909i \(-0.562297\pi\)
−0.194466 + 0.980909i \(0.562297\pi\)
\(882\) 0 0
\(883\) −38.5099 −1.29596 −0.647981 0.761657i \(-0.724386\pi\)
−0.647981 + 0.761657i \(0.724386\pi\)
\(884\) 0 0
\(885\) 28.7724 2.19327i 0.967175 0.0737258i
\(886\) 0 0
\(887\) 5.56002 + 5.56002i 0.186687 + 0.186687i 0.794262 0.607575i \(-0.207858\pi\)
−0.607575 + 0.794262i \(0.707858\pi\)
\(888\) 0 0
\(889\) 16.4498 0.551709
\(890\) 0 0
\(891\) −4.05250 + 4.05250i −0.135764 + 0.135764i
\(892\) 0 0
\(893\) 7.05429i 0.236063i
\(894\) 0 0
\(895\) 1.25334 + 16.4420i 0.0418945 + 0.549595i
\(896\) 0 0
\(897\) 2.35351 + 2.35351i 0.0785815 + 0.0785815i
\(898\) 0 0
\(899\) −3.84547 + 3.84547i −0.128253 + 0.128253i
\(900\) 0 0
\(901\) −13.3776 13.3776i −0.445674 0.445674i
\(902\) 0 0
\(903\) 10.4950 10.4950i 0.349252 0.349252i
\(904\) 0 0
\(905\) 45.8092 3.49194i 1.52275 0.116076i
\(906\) 0 0
\(907\) −30.0758 −0.998649 −0.499325 0.866415i \(-0.666419\pi\)
−0.499325 + 0.866415i \(0.666419\pi\)
\(908\) 0 0
\(909\) −1.36593 1.36593i −0.0453049 0.0453049i
\(910\) 0 0
\(911\) 39.1493i 1.29707i 0.761183 + 0.648537i \(0.224619\pi\)
−0.761183 + 0.648537i \(0.775381\pi\)
\(912\) 0 0
\(913\) 22.8782 22.8782i 0.757157 0.757157i
\(914\) 0 0
\(915\) −1.17746 15.4466i −0.0389257 0.510649i
\(916\) 0 0
\(917\) 5.86114i 0.193552i
\(918\) 0 0
\(919\) 49.7130i 1.63988i −0.572448 0.819941i \(-0.694006\pi\)
0.572448 0.819941i \(-0.305994\pi\)
\(920\) 0 0
\(921\) 24.9902i 0.823455i
\(922\) 0 0
\(923\) 20.5382i 0.676022i
\(924\) 0 0
\(925\) −38.3612 + 5.88258i −1.26131 + 0.193418i
\(926\) 0 0
\(927\) 0.00181474 0.00181474i 5.96040e−5 5.96040e-5i
\(928\) 0 0
\(929\) 0.175895i 0.00577094i 0.999996 + 0.00288547i \(0.000918475\pi\)
−0.999996 + 0.00288547i \(0.999082\pi\)
\(930\) 0 0
\(931\) −13.7940 13.7940i −0.452079 0.452079i
\(932\) 0 0
\(933\) −5.55703 −0.181929
\(934\) 0 0
\(935\) −19.0901 + 22.2406i −0.624313 + 0.727347i
\(936\) 0 0
\(937\) −30.8310 + 30.8310i −1.00720 + 1.00720i −0.00722969 + 0.999974i \(0.502301\pi\)
−0.999974 + 0.00722969i \(0.997699\pi\)
\(938\) 0 0
\(939\) 3.12705 + 3.12705i 0.102048 + 0.102048i
\(940\) 0 0
\(941\) 38.5292 38.5292i 1.25602 1.25602i 0.303037 0.952979i \(-0.402000\pi\)
0.952979 0.303037i \(-0.0980005\pi\)
\(942\) 0 0
\(943\) 11.3285 + 11.3285i 0.368905 + 0.368905i
\(944\) 0 0
\(945\) 3.55644 0.271100i 0.115691 0.00881889i
\(946\) 0 0
\(947\) 57.6451i 1.87321i −0.350382 0.936607i \(-0.613948\pi\)
0.350382 0.936607i \(-0.386052\pi\)
\(948\) 0 0
\(949\) −1.68837 + 1.68837i −0.0548070 + 0.0548070i
\(950\) 0 0
\(951\) −33.8169 −1.09659
\(952\) 0 0
\(953\) −31.1076 31.1076i −1.00767 1.00767i −0.999970 0.00770207i \(-0.997548\pi\)
−0.00770207 0.999970i \(-0.502452\pi\)
\(954\) 0 0
\(955\) −36.5001 31.3296i −1.18111 1.01380i
\(956\) 0 0
\(957\) 3.45198 0.111587
\(958\) 0 0
\(959\) 30.8350 0.995714
\(960\) 0 0
\(961\) −50.5209 −1.62971
\(962\) 0 0
\(963\) −14.5410 −0.468576
\(964\) 0 0
\(965\) −3.54582 46.5160i −0.114144 1.49740i
\(966\) 0 0
\(967\) −37.9194 37.9194i −1.21941 1.21941i −0.967840 0.251567i \(-0.919054\pi\)
−0.251567 0.967840i \(-0.580946\pi\)
\(968\) 0 0
\(969\) −10.0135 −0.321680
\(970\) 0 0
\(971\) 26.9668 26.9668i 0.865404 0.865404i −0.126555 0.991960i \(-0.540392\pi\)
0.991960 + 0.126555i \(0.0403921\pi\)
\(972\) 0 0
\(973\) 9.16835i 0.293924i
\(974\) 0 0
\(975\) −7.46699 + 1.14504i −0.239135 + 0.0366706i
\(976\) 0 0
\(977\) −13.1778 13.1778i −0.421596 0.421596i 0.464157 0.885753i \(-0.346357\pi\)
−0.885753 + 0.464157i \(0.846357\pi\)
\(978\) 0 0
\(979\) −42.5410 + 42.5410i −1.35962 + 1.35962i
\(980\) 0 0
\(981\) 11.1313 + 11.1313i 0.355395 + 0.355395i
\(982\) 0 0
\(983\) 33.1704 33.1704i 1.05797 1.05797i 0.0597600 0.998213i \(-0.480966\pi\)
0.998213 0.0597600i \(-0.0190335\pi\)
\(984\) 0 0
\(985\) −10.8846 9.34270i −0.346812 0.297683i
\(986\) 0 0
\(987\) −2.57009 −0.0818069
\(988\) 0 0
\(989\) −14.4945 14.4945i −0.460898 0.460898i
\(990\) 0 0
\(991\) 10.3297i 0.328135i 0.986449 + 0.164067i \(0.0524615\pi\)
−0.986449 + 0.164067i \(0.947539\pi\)
\(992\) 0 0
\(993\) 13.0748 13.0748i 0.414917 0.414917i
\(994\) 0 0
\(995\) −15.2952 13.1285i −0.484889 0.416201i
\(996\) 0 0
\(997\) 37.9110i 1.20065i −0.799755 0.600327i \(-0.795037\pi\)
0.799755 0.600327i \(-0.204963\pi\)
\(998\) 0 0
\(999\) 7.76193i 0.245577i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.y.j.1567.3 16
4.3 odd 2 1920.2.y.i.1567.3 16
5.3 odd 4 1920.2.bc.j.1183.7 16
8.3 odd 2 240.2.y.e.187.6 yes 16
8.5 even 2 960.2.y.e.847.6 16
16.3 odd 4 1920.2.bc.j.607.7 16
16.5 even 4 240.2.bc.e.67.2 yes 16
16.11 odd 4 960.2.bc.e.367.2 16
16.13 even 4 1920.2.bc.i.607.7 16
20.3 even 4 1920.2.bc.i.1183.7 16
24.11 even 2 720.2.z.f.667.3 16
40.3 even 4 240.2.bc.e.43.2 yes 16
40.13 odd 4 960.2.bc.e.463.2 16
48.5 odd 4 720.2.bd.f.307.7 16
80.3 even 4 inner 1920.2.y.j.223.3 16
80.13 odd 4 1920.2.y.i.223.3 16
80.43 even 4 960.2.y.e.943.6 16
80.53 odd 4 240.2.y.e.163.6 16
120.83 odd 4 720.2.bd.f.523.7 16
240.53 even 4 720.2.z.f.163.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.e.163.6 16 80.53 odd 4
240.2.y.e.187.6 yes 16 8.3 odd 2
240.2.bc.e.43.2 yes 16 40.3 even 4
240.2.bc.e.67.2 yes 16 16.5 even 4
720.2.z.f.163.3 16 240.53 even 4
720.2.z.f.667.3 16 24.11 even 2
720.2.bd.f.307.7 16 48.5 odd 4
720.2.bd.f.523.7 16 120.83 odd 4
960.2.y.e.847.6 16 8.5 even 2
960.2.y.e.943.6 16 80.43 even 4
960.2.bc.e.367.2 16 16.11 odd 4
960.2.bc.e.463.2 16 40.13 odd 4
1920.2.y.i.223.3 16 80.13 odd 4
1920.2.y.i.1567.3 16 4.3 odd 2
1920.2.y.j.223.3 16 80.3 even 4 inner
1920.2.y.j.1567.3 16 1.1 even 1 trivial
1920.2.bc.i.607.7 16 16.13 even 4
1920.2.bc.i.1183.7 16 20.3 even 4
1920.2.bc.j.607.7 16 16.3 odd 4
1920.2.bc.j.1183.7 16 5.3 odd 4