Properties

Label 2380.2.m.d.169.16
Level $2380$
Weight $2$
Character 2380.169
Analytic conductor $19.004$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2380,2,Mod(169,2380)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2380.169"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2380, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [26,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.0043956811\)
Analytic rank: \(0\)
Dimension: \(26\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 169.16
Character \(\chi\) \(=\) 2380.169
Dual form 2380.2.m.d.169.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.807362 q^{3} +(-2.19195 - 0.442004i) q^{5} +1.00000 q^{7} -2.34817 q^{9} +0.748338i q^{11} -2.28620i q^{13} +(-1.76969 - 0.356857i) q^{15} +(0.793630 + 4.04600i) q^{17} +0.712341 q^{19} +0.807362 q^{21} +2.80575 q^{23} +(4.60927 + 1.93770i) q^{25} -4.31791 q^{27} -5.30790i q^{29} +4.52957i q^{31} +0.604179i q^{33} +(-2.19195 - 0.442004i) q^{35} -9.33442 q^{37} -1.84579i q^{39} -1.92803i q^{41} +6.53531i q^{43} +(5.14706 + 1.03790i) q^{45} +8.50706i q^{47} +1.00000 q^{49} +(0.640747 + 3.26659i) q^{51} +13.3808i q^{53} +(0.330768 - 1.64032i) q^{55} +0.575117 q^{57} +6.74114 q^{59} -1.53774i q^{61} -2.34817 q^{63} +(-1.01051 + 5.01124i) q^{65} +4.60728i q^{67} +2.26525 q^{69} +12.8158i q^{71} -3.39600 q^{73} +(3.72134 + 1.56442i) q^{75} +0.748338i q^{77} +5.22533i q^{79} +3.55839 q^{81} +6.69151i q^{83} +(0.0487536 - 9.21942i) q^{85} -4.28539i q^{87} +0.864356 q^{89} -2.28620i q^{91} +3.65700i q^{93} +(-1.56141 - 0.314858i) q^{95} +7.00477 q^{97} -1.75722i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 6 q^{3} - 4 q^{5} + 26 q^{7} + 32 q^{9} + 10 q^{15} - 11 q^{17} + 6 q^{21} - 16 q^{23} + 4 q^{25} + 6 q^{27} - 4 q^{35} - 20 q^{37} - 18 q^{45} + 26 q^{49} + 9 q^{51} - 14 q^{55} + 32 q^{59} + 32 q^{63}+ \cdots - 46 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2380\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(1191\) \(1261\) \(1361\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.807362 0.466130 0.233065 0.972461i \(-0.425124\pi\)
0.233065 + 0.972461i \(0.425124\pi\)
\(4\) 0 0
\(5\) −2.19195 0.442004i −0.980269 0.197670i
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.34817 −0.782722
\(10\) 0 0
\(11\) 0.748338i 0.225632i 0.993616 + 0.112816i \(0.0359871\pi\)
−0.993616 + 0.112816i \(0.964013\pi\)
\(12\) 0 0
\(13\) 2.28620i 0.634079i −0.948412 0.317039i \(-0.897311\pi\)
0.948412 0.317039i \(-0.102689\pi\)
\(14\) 0 0
\(15\) −1.76969 0.356857i −0.456933 0.0921400i
\(16\) 0 0
\(17\) 0.793630 + 4.04600i 0.192484 + 0.981300i
\(18\) 0 0
\(19\) 0.712341 0.163422 0.0817112 0.996656i \(-0.473962\pi\)
0.0817112 + 0.996656i \(0.473962\pi\)
\(20\) 0 0
\(21\) 0.807362 0.176181
\(22\) 0 0
\(23\) 2.80575 0.585039 0.292519 0.956260i \(-0.405506\pi\)
0.292519 + 0.956260i \(0.405506\pi\)
\(24\) 0 0
\(25\) 4.60927 + 1.93770i 0.921853 + 0.387540i
\(26\) 0 0
\(27\) −4.31791 −0.830981
\(28\) 0 0
\(29\) 5.30790i 0.985652i −0.870128 0.492826i \(-0.835964\pi\)
0.870128 0.492826i \(-0.164036\pi\)
\(30\) 0 0
\(31\) 4.52957i 0.813535i 0.913532 + 0.406768i \(0.133344\pi\)
−0.913532 + 0.406768i \(0.866656\pi\)
\(32\) 0 0
\(33\) 0.604179i 0.105174i
\(34\) 0 0
\(35\) −2.19195 0.442004i −0.370507 0.0747123i
\(36\) 0 0
\(37\) −9.33442 −1.53457 −0.767284 0.641307i \(-0.778393\pi\)
−0.767284 + 0.641307i \(0.778393\pi\)
\(38\) 0 0
\(39\) 1.84579i 0.295563i
\(40\) 0 0
\(41\) 1.92803i 0.301108i −0.988602 0.150554i \(-0.951894\pi\)
0.988602 0.150554i \(-0.0481058\pi\)
\(42\) 0 0
\(43\) 6.53531i 0.996626i 0.866997 + 0.498313i \(0.166047\pi\)
−0.866997 + 0.498313i \(0.833953\pi\)
\(44\) 0 0
\(45\) 5.14706 + 1.03790i 0.767278 + 0.154721i
\(46\) 0 0
\(47\) 8.50706i 1.24088i 0.784253 + 0.620441i \(0.213046\pi\)
−0.784253 + 0.620441i \(0.786954\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0.640747 + 3.26659i 0.0897225 + 0.457414i
\(52\) 0 0
\(53\) 13.3808i 1.83799i 0.394268 + 0.918996i \(0.370998\pi\)
−0.394268 + 0.918996i \(0.629002\pi\)
\(54\) 0 0
\(55\) 0.330768 1.64032i 0.0446008 0.221180i
\(56\) 0 0
\(57\) 0.575117 0.0761761
\(58\) 0 0
\(59\) 6.74114 0.877622 0.438811 0.898579i \(-0.355400\pi\)
0.438811 + 0.898579i \(0.355400\pi\)
\(60\) 0 0
\(61\) 1.53774i 0.196888i −0.995143 0.0984440i \(-0.968613\pi\)
0.995143 0.0984440i \(-0.0313865\pi\)
\(62\) 0 0
\(63\) −2.34817 −0.295841
\(64\) 0 0
\(65\) −1.01051 + 5.01124i −0.125338 + 0.621567i
\(66\) 0 0
\(67\) 4.60728i 0.562868i 0.959581 + 0.281434i \(0.0908101\pi\)
−0.959581 + 0.281434i \(0.909190\pi\)
\(68\) 0 0
\(69\) 2.26525 0.272704
\(70\) 0 0
\(71\) 12.8158i 1.52096i 0.649362 + 0.760479i \(0.275036\pi\)
−0.649362 + 0.760479i \(0.724964\pi\)
\(72\) 0 0
\(73\) −3.39600 −0.397472 −0.198736 0.980053i \(-0.563684\pi\)
−0.198736 + 0.980053i \(0.563684\pi\)
\(74\) 0 0
\(75\) 3.72134 + 1.56442i 0.429704 + 0.180644i
\(76\) 0 0
\(77\) 0.748338i 0.0852810i
\(78\) 0 0
\(79\) 5.22533i 0.587895i 0.955822 + 0.293948i \(0.0949691\pi\)
−0.955822 + 0.293948i \(0.905031\pi\)
\(80\) 0 0
\(81\) 3.55839 0.395377
\(82\) 0 0
\(83\) 6.69151i 0.734488i 0.930125 + 0.367244i \(0.119699\pi\)
−0.930125 + 0.367244i \(0.880301\pi\)
\(84\) 0 0
\(85\) 0.0487536 9.21942i 0.00528807 0.999986i
\(86\) 0 0
\(87\) 4.28539i 0.459443i
\(88\) 0 0
\(89\) 0.864356 0.0916216 0.0458108 0.998950i \(-0.485413\pi\)
0.0458108 + 0.998950i \(0.485413\pi\)
\(90\) 0 0
\(91\) 2.28620i 0.239659i
\(92\) 0 0
\(93\) 3.65700i 0.379214i
\(94\) 0 0
\(95\) −1.56141 0.314858i −0.160198 0.0323037i
\(96\) 0 0
\(97\) 7.00477 0.711226 0.355613 0.934633i \(-0.384272\pi\)
0.355613 + 0.934633i \(0.384272\pi\)
\(98\) 0 0
\(99\) 1.75722i 0.176608i
\(100\) 0 0
\(101\) −13.9278 −1.38587 −0.692935 0.721000i \(-0.743683\pi\)
−0.692935 + 0.721000i \(0.743683\pi\)
\(102\) 0 0
\(103\) 6.50691i 0.641145i 0.947224 + 0.320573i \(0.103875\pi\)
−0.947224 + 0.320573i \(0.896125\pi\)
\(104\) 0 0
\(105\) −1.76969 0.356857i −0.172704 0.0348257i
\(106\) 0 0
\(107\) 2.71392 0.262364 0.131182 0.991358i \(-0.458123\pi\)
0.131182 + 0.991358i \(0.458123\pi\)
\(108\) 0 0
\(109\) 9.90433i 0.948663i −0.880346 0.474332i \(-0.842690\pi\)
0.880346 0.474332i \(-0.157310\pi\)
\(110\) 0 0
\(111\) −7.53625 −0.715309
\(112\) 0 0
\(113\) −0.715790 −0.0673359 −0.0336679 0.999433i \(-0.510719\pi\)
−0.0336679 + 0.999433i \(0.510719\pi\)
\(114\) 0 0
\(115\) −6.15005 1.24015i −0.573495 0.115645i
\(116\) 0 0
\(117\) 5.36839i 0.496307i
\(118\) 0 0
\(119\) 0.793630 + 4.04600i 0.0727520 + 0.370897i
\(120\) 0 0
\(121\) 10.4400 0.949090
\(122\) 0 0
\(123\) 1.55662i 0.140356i
\(124\) 0 0
\(125\) −9.24680 6.28464i −0.827059 0.562116i
\(126\) 0 0
\(127\) 1.67651i 0.148766i −0.997230 0.0743829i \(-0.976301\pi\)
0.997230 0.0743829i \(-0.0236987\pi\)
\(128\) 0 0
\(129\) 5.27636i 0.464558i
\(130\) 0 0
\(131\) 16.9660i 1.48233i 0.671326 + 0.741163i \(0.265725\pi\)
−0.671326 + 0.741163i \(0.734275\pi\)
\(132\) 0 0
\(133\) 0.712341 0.0617678
\(134\) 0 0
\(135\) 9.46462 + 1.90853i 0.814585 + 0.164260i
\(136\) 0 0
\(137\) 21.2590i 1.81628i 0.418672 + 0.908138i \(0.362496\pi\)
−0.418672 + 0.908138i \(0.637504\pi\)
\(138\) 0 0
\(139\) 12.8748i 1.09203i −0.837776 0.546015i \(-0.816144\pi\)
0.837776 0.546015i \(-0.183856\pi\)
\(140\) 0 0
\(141\) 6.86828i 0.578413i
\(142\) 0 0
\(143\) 1.71085 0.143069
\(144\) 0 0
\(145\) −2.34611 + 11.6346i −0.194834 + 0.966204i
\(146\) 0 0
\(147\) 0.807362 0.0665901
\(148\) 0 0
\(149\) −4.71300 −0.386104 −0.193052 0.981189i \(-0.561839\pi\)
−0.193052 + 0.981189i \(0.561839\pi\)
\(150\) 0 0
\(151\) 8.59803 0.699698 0.349849 0.936806i \(-0.386233\pi\)
0.349849 + 0.936806i \(0.386233\pi\)
\(152\) 0 0
\(153\) −1.86358 9.50069i −0.150661 0.768086i
\(154\) 0 0
\(155\) 2.00209 9.92859i 0.160812 0.797483i
\(156\) 0 0
\(157\) 9.86515i 0.787324i 0.919255 + 0.393662i \(0.128792\pi\)
−0.919255 + 0.393662i \(0.871208\pi\)
\(158\) 0 0
\(159\) 10.8031i 0.856744i
\(160\) 0 0
\(161\) 2.80575 0.221124
\(162\) 0 0
\(163\) 8.17360 0.640206 0.320103 0.947383i \(-0.396283\pi\)
0.320103 + 0.947383i \(0.396283\pi\)
\(164\) 0 0
\(165\) 0.267050 1.32433i 0.0207898 0.103099i
\(166\) 0 0
\(167\) 3.21694 0.248935 0.124467 0.992224i \(-0.460278\pi\)
0.124467 + 0.992224i \(0.460278\pi\)
\(168\) 0 0
\(169\) 7.77328 0.597944
\(170\) 0 0
\(171\) −1.67270 −0.127914
\(172\) 0 0
\(173\) −19.0720 −1.45002 −0.725009 0.688740i \(-0.758164\pi\)
−0.725009 + 0.688740i \(0.758164\pi\)
\(174\) 0 0
\(175\) 4.60927 + 1.93770i 0.348428 + 0.146476i
\(176\) 0 0
\(177\) 5.44254 0.409086
\(178\) 0 0
\(179\) −3.91871 −0.292898 −0.146449 0.989218i \(-0.546784\pi\)
−0.146449 + 0.989218i \(0.546784\pi\)
\(180\) 0 0
\(181\) 15.6263i 1.16149i −0.814085 0.580746i \(-0.802761\pi\)
0.814085 0.580746i \(-0.197239\pi\)
\(182\) 0 0
\(183\) 1.24152i 0.0917755i
\(184\) 0 0
\(185\) 20.4606 + 4.12585i 1.50429 + 0.303338i
\(186\) 0 0
\(187\) −3.02778 + 0.593904i −0.221413 + 0.0434305i
\(188\) 0 0
\(189\) −4.31791 −0.314081
\(190\) 0 0
\(191\) −12.5499 −0.908077 −0.454038 0.890982i \(-0.650017\pi\)
−0.454038 + 0.890982i \(0.650017\pi\)
\(192\) 0 0
\(193\) −20.0850 −1.44575 −0.722874 0.690980i \(-0.757179\pi\)
−0.722874 + 0.690980i \(0.757179\pi\)
\(194\) 0 0
\(195\) −0.815847 + 4.04588i −0.0584240 + 0.289731i
\(196\) 0 0
\(197\) 11.3948 0.811848 0.405924 0.913907i \(-0.366950\pi\)
0.405924 + 0.913907i \(0.366950\pi\)
\(198\) 0 0
\(199\) 26.0963i 1.84992i −0.380068 0.924959i \(-0.624099\pi\)
0.380068 0.924959i \(-0.375901\pi\)
\(200\) 0 0
\(201\) 3.71974i 0.262370i
\(202\) 0 0
\(203\) 5.30790i 0.372542i
\(204\) 0 0
\(205\) −0.852197 + 4.22615i −0.0595201 + 0.295167i
\(206\) 0 0
\(207\) −6.58837 −0.457923
\(208\) 0 0
\(209\) 0.533072i 0.0368734i
\(210\) 0 0
\(211\) 15.4488i 1.06354i 0.846889 + 0.531769i \(0.178473\pi\)
−0.846889 + 0.531769i \(0.821527\pi\)
\(212\) 0 0
\(213\) 10.3470i 0.708965i
\(214\) 0 0
\(215\) 2.88863 14.3251i 0.197003 0.976961i
\(216\) 0 0
\(217\) 4.52957i 0.307487i
\(218\) 0 0
\(219\) −2.74180 −0.185274
\(220\) 0 0
\(221\) 9.24999 1.81440i 0.622221 0.122050i
\(222\) 0 0
\(223\) 24.6699i 1.65202i −0.563655 0.826010i \(-0.690605\pi\)
0.563655 0.826010i \(-0.309395\pi\)
\(224\) 0 0
\(225\) −10.8233 4.55004i −0.721555 0.303336i
\(226\) 0 0
\(227\) −21.4843 −1.42596 −0.712981 0.701183i \(-0.752656\pi\)
−0.712981 + 0.701183i \(0.752656\pi\)
\(228\) 0 0
\(229\) 25.2840 1.67081 0.835407 0.549632i \(-0.185232\pi\)
0.835407 + 0.549632i \(0.185232\pi\)
\(230\) 0 0
\(231\) 0.604179i 0.0397521i
\(232\) 0 0
\(233\) 10.3072 0.675246 0.337623 0.941282i \(-0.390377\pi\)
0.337623 + 0.941282i \(0.390377\pi\)
\(234\) 0 0
\(235\) 3.76015 18.6470i 0.245285 1.21640i
\(236\) 0 0
\(237\) 4.21873i 0.274036i
\(238\) 0 0
\(239\) −10.1266 −0.655032 −0.327516 0.944846i \(-0.606212\pi\)
−0.327516 + 0.944846i \(0.606212\pi\)
\(240\) 0 0
\(241\) 7.72491i 0.497605i 0.968554 + 0.248803i \(0.0800371\pi\)
−0.968554 + 0.248803i \(0.919963\pi\)
\(242\) 0 0
\(243\) 15.8266 1.01528
\(244\) 0 0
\(245\) −2.19195 0.442004i −0.140038 0.0282386i
\(246\) 0 0
\(247\) 1.62856i 0.103623i
\(248\) 0 0
\(249\) 5.40247i 0.342367i
\(250\) 0 0
\(251\) 19.3215 1.21956 0.609780 0.792571i \(-0.291258\pi\)
0.609780 + 0.792571i \(0.291258\pi\)
\(252\) 0 0
\(253\) 2.09965i 0.132004i
\(254\) 0 0
\(255\) 0.0393618 7.44340i 0.00246493 0.466124i
\(256\) 0 0
\(257\) 19.3313i 1.20585i 0.797796 + 0.602927i \(0.205999\pi\)
−0.797796 + 0.602927i \(0.794001\pi\)
\(258\) 0 0
\(259\) −9.33442 −0.580013
\(260\) 0 0
\(261\) 12.4638i 0.771492i
\(262\) 0 0
\(263\) 1.77501i 0.109452i 0.998501 + 0.0547259i \(0.0174285\pi\)
−0.998501 + 0.0547259i \(0.982571\pi\)
\(264\) 0 0
\(265\) 5.91435 29.3300i 0.363316 1.80173i
\(266\) 0 0
\(267\) 0.697848 0.0427076
\(268\) 0 0
\(269\) 3.34737i 0.204093i −0.994780 0.102046i \(-0.967461\pi\)
0.994780 0.102046i \(-0.0325390\pi\)
\(270\) 0 0
\(271\) −16.1661 −0.982018 −0.491009 0.871154i \(-0.663372\pi\)
−0.491009 + 0.871154i \(0.663372\pi\)
\(272\) 0 0
\(273\) 1.84579i 0.111712i
\(274\) 0 0
\(275\) −1.45005 + 3.44929i −0.0874415 + 0.208000i
\(276\) 0 0
\(277\) −19.8690 −1.19381 −0.596906 0.802311i \(-0.703603\pi\)
−0.596906 + 0.802311i \(0.703603\pi\)
\(278\) 0 0
\(279\) 10.6362i 0.636772i
\(280\) 0 0
\(281\) −5.83444 −0.348053 −0.174027 0.984741i \(-0.555678\pi\)
−0.174027 + 0.984741i \(0.555678\pi\)
\(282\) 0 0
\(283\) −14.4435 −0.858578 −0.429289 0.903167i \(-0.641236\pi\)
−0.429289 + 0.903167i \(0.641236\pi\)
\(284\) 0 0
\(285\) −1.26063 0.254204i −0.0746731 0.0150577i
\(286\) 0 0
\(287\) 1.92803i 0.113808i
\(288\) 0 0
\(289\) −15.7403 + 6.42206i −0.925900 + 0.377768i
\(290\) 0 0
\(291\) 5.65538 0.331524
\(292\) 0 0
\(293\) 11.1472i 0.651228i 0.945503 + 0.325614i \(0.105571\pi\)
−0.945503 + 0.325614i \(0.894429\pi\)
\(294\) 0 0
\(295\) −14.7762 2.97961i −0.860305 0.173480i
\(296\) 0 0
\(297\) 3.23125i 0.187496i
\(298\) 0 0
\(299\) 6.41451i 0.370961i
\(300\) 0 0
\(301\) 6.53531i 0.376689i
\(302\) 0 0
\(303\) −11.2448 −0.645997
\(304\) 0 0
\(305\) −0.679689 + 3.37066i −0.0389189 + 0.193003i
\(306\) 0 0
\(307\) 16.4732i 0.940175i −0.882620 0.470088i \(-0.844222\pi\)
0.882620 0.470088i \(-0.155778\pi\)
\(308\) 0 0
\(309\) 5.25343i 0.298857i
\(310\) 0 0
\(311\) 14.5026i 0.822368i −0.911552 0.411184i \(-0.865115\pi\)
0.911552 0.411184i \(-0.134885\pi\)
\(312\) 0 0
\(313\) 12.8807 0.728060 0.364030 0.931387i \(-0.381401\pi\)
0.364030 + 0.931387i \(0.381401\pi\)
\(314\) 0 0
\(315\) 5.14706 + 1.03790i 0.290004 + 0.0584790i
\(316\) 0 0
\(317\) 22.9542 1.28924 0.644618 0.764505i \(-0.277017\pi\)
0.644618 + 0.764505i \(0.277017\pi\)
\(318\) 0 0
\(319\) 3.97210 0.222395
\(320\) 0 0
\(321\) 2.19111 0.122296
\(322\) 0 0
\(323\) 0.565336 + 2.88214i 0.0314561 + 0.160366i
\(324\) 0 0
\(325\) 4.42997 10.5377i 0.245730 0.584527i
\(326\) 0 0
\(327\) 7.99638i 0.442201i
\(328\) 0 0
\(329\) 8.50706i 0.469010i
\(330\) 0 0
\(331\) −31.5703 −1.73526 −0.867629 0.497212i \(-0.834357\pi\)
−0.867629 + 0.497212i \(0.834357\pi\)
\(332\) 0 0
\(333\) 21.9188 1.20114
\(334\) 0 0
\(335\) 2.03643 10.0989i 0.111262 0.551762i
\(336\) 0 0
\(337\) −7.01847 −0.382321 −0.191160 0.981559i \(-0.561225\pi\)
−0.191160 + 0.981559i \(0.561225\pi\)
\(338\) 0 0
\(339\) −0.577901 −0.0313873
\(340\) 0 0
\(341\) −3.38965 −0.183560
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −4.96532 1.00125i −0.267324 0.0539055i
\(346\) 0 0
\(347\) 17.2589 0.926504 0.463252 0.886227i \(-0.346683\pi\)
0.463252 + 0.886227i \(0.346683\pi\)
\(348\) 0 0
\(349\) −9.22975 −0.494057 −0.247028 0.969008i \(-0.579454\pi\)
−0.247028 + 0.969008i \(0.579454\pi\)
\(350\) 0 0
\(351\) 9.87161i 0.526907i
\(352\) 0 0
\(353\) 5.66145i 0.301328i 0.988585 + 0.150664i \(0.0481412\pi\)
−0.988585 + 0.150664i \(0.951859\pi\)
\(354\) 0 0
\(355\) 5.66464 28.0916i 0.300648 1.49095i
\(356\) 0 0
\(357\) 0.640747 + 3.26659i 0.0339119 + 0.172886i
\(358\) 0 0
\(359\) 36.1283 1.90678 0.953388 0.301746i \(-0.0975695\pi\)
0.953388 + 0.301746i \(0.0975695\pi\)
\(360\) 0 0
\(361\) −18.4926 −0.973293
\(362\) 0 0
\(363\) 8.42885 0.442400
\(364\) 0 0
\(365\) 7.44385 + 1.50104i 0.389629 + 0.0785683i
\(366\) 0 0
\(367\) 22.2824 1.16313 0.581566 0.813499i \(-0.302440\pi\)
0.581566 + 0.813499i \(0.302440\pi\)
\(368\) 0 0
\(369\) 4.52734i 0.235684i
\(370\) 0 0
\(371\) 13.3808i 0.694695i
\(372\) 0 0
\(373\) 22.2799i 1.15361i −0.816882 0.576805i \(-0.804299\pi\)
0.816882 0.576805i \(-0.195701\pi\)
\(374\) 0 0
\(375\) −7.46551 5.07398i −0.385517 0.262019i
\(376\) 0 0
\(377\) −12.1349 −0.624981
\(378\) 0 0
\(379\) 24.4108i 1.25390i 0.779060 + 0.626950i \(0.215697\pi\)
−0.779060 + 0.626950i \(0.784303\pi\)
\(380\) 0 0
\(381\) 1.35355i 0.0693443i
\(382\) 0 0
\(383\) 24.1204i 1.23250i −0.787552 0.616248i \(-0.788652\pi\)
0.787552 0.616248i \(-0.211348\pi\)
\(384\) 0 0
\(385\) 0.330768 1.64032i 0.0168575 0.0835983i
\(386\) 0 0
\(387\) 15.3460i 0.780081i
\(388\) 0 0
\(389\) 13.6717 0.693181 0.346590 0.938017i \(-0.387339\pi\)
0.346590 + 0.938017i \(0.387339\pi\)
\(390\) 0 0
\(391\) 2.22673 + 11.3521i 0.112610 + 0.574099i
\(392\) 0 0
\(393\) 13.6977i 0.690957i
\(394\) 0 0
\(395\) 2.30961 11.4536i 0.116209 0.576295i
\(396\) 0 0
\(397\) −14.5962 −0.732562 −0.366281 0.930504i \(-0.619369\pi\)
−0.366281 + 0.930504i \(0.619369\pi\)
\(398\) 0 0
\(399\) 0.575117 0.0287919
\(400\) 0 0
\(401\) 33.9031i 1.69304i 0.532358 + 0.846519i \(0.321306\pi\)
−0.532358 + 0.846519i \(0.678694\pi\)
\(402\) 0 0
\(403\) 10.3555 0.515845
\(404\) 0 0
\(405\) −7.79980 1.57282i −0.387575 0.0781541i
\(406\) 0 0
\(407\) 6.98530i 0.346248i
\(408\) 0 0
\(409\) −18.4514 −0.912365 −0.456182 0.889886i \(-0.650784\pi\)
−0.456182 + 0.889886i \(0.650784\pi\)
\(410\) 0 0
\(411\) 17.1637i 0.846621i
\(412\) 0 0
\(413\) 6.74114 0.331710
\(414\) 0 0
\(415\) 2.95767 14.6674i 0.145186 0.719996i
\(416\) 0 0
\(417\) 10.3947i 0.509028i
\(418\) 0 0
\(419\) 29.1254i 1.42287i −0.702752 0.711435i \(-0.748046\pi\)
0.702752 0.711435i \(-0.251954\pi\)
\(420\) 0 0
\(421\) 7.57872 0.369364 0.184682 0.982798i \(-0.440874\pi\)
0.184682 + 0.982798i \(0.440874\pi\)
\(422\) 0 0
\(423\) 19.9760i 0.971267i
\(424\) 0 0
\(425\) −4.18188 + 20.1869i −0.202851 + 0.979210i
\(426\) 0 0
\(427\) 1.53774i 0.0744167i
\(428\) 0 0
\(429\) 1.38128 0.0666887
\(430\) 0 0
\(431\) 19.1063i 0.920320i 0.887836 + 0.460160i \(0.152208\pi\)
−0.887836 + 0.460160i \(0.847792\pi\)
\(432\) 0 0
\(433\) 16.9823i 0.816117i −0.912956 0.408058i \(-0.866206\pi\)
0.912956 0.408058i \(-0.133794\pi\)
\(434\) 0 0
\(435\) −1.89416 + 9.39336i −0.0908180 + 0.450377i
\(436\) 0 0
\(437\) 1.99865 0.0956084
\(438\) 0 0
\(439\) 0.404036i 0.0192836i −0.999954 0.00964180i \(-0.996931\pi\)
0.999954 0.00964180i \(-0.00306913\pi\)
\(440\) 0 0
\(441\) −2.34817 −0.111817
\(442\) 0 0
\(443\) 4.75167i 0.225759i −0.993609 0.112879i \(-0.963993\pi\)
0.993609 0.112879i \(-0.0360074\pi\)
\(444\) 0 0
\(445\) −1.89462 0.382049i −0.0898138 0.0181108i
\(446\) 0 0
\(447\) −3.80509 −0.179975
\(448\) 0 0
\(449\) 27.9118i 1.31724i 0.752476 + 0.658620i \(0.228860\pi\)
−0.752476 + 0.658620i \(0.771140\pi\)
\(450\) 0 0
\(451\) 1.44282 0.0679397
\(452\) 0 0
\(453\) 6.94172 0.326150
\(454\) 0 0
\(455\) −1.01051 + 5.01124i −0.0473734 + 0.234930i
\(456\) 0 0
\(457\) 30.5973i 1.43128i −0.698469 0.715640i \(-0.746135\pi\)
0.698469 0.715640i \(-0.253865\pi\)
\(458\) 0 0
\(459\) −3.42682 17.4703i −0.159950 0.815442i
\(460\) 0 0
\(461\) 6.89878 0.321308 0.160654 0.987011i \(-0.448640\pi\)
0.160654 + 0.987011i \(0.448640\pi\)
\(462\) 0 0
\(463\) 4.55142i 0.211523i 0.994392 + 0.105761i \(0.0337279\pi\)
−0.994392 + 0.105761i \(0.966272\pi\)
\(464\) 0 0
\(465\) 1.61641 8.01596i 0.0749592 0.371731i
\(466\) 0 0
\(467\) 0.723439i 0.0334768i 0.999860 + 0.0167384i \(0.00532824\pi\)
−0.999860 + 0.0167384i \(0.994672\pi\)
\(468\) 0 0
\(469\) 4.60728i 0.212744i
\(470\) 0 0
\(471\) 7.96474i 0.366996i
\(472\) 0 0
\(473\) −4.89062 −0.224871
\(474\) 0 0
\(475\) 3.28337 + 1.38030i 0.150651 + 0.0633326i
\(476\) 0 0
\(477\) 31.4203i 1.43864i
\(478\) 0 0
\(479\) 26.9152i 1.22979i −0.788609 0.614895i \(-0.789199\pi\)
0.788609 0.614895i \(-0.210801\pi\)
\(480\) 0 0
\(481\) 21.3404i 0.973037i
\(482\) 0 0
\(483\) 2.26525 0.103073
\(484\) 0 0
\(485\) −15.3541 3.09613i −0.697193 0.140588i
\(486\) 0 0
\(487\) −5.93638 −0.269003 −0.134502 0.990913i \(-0.542943\pi\)
−0.134502 + 0.990913i \(0.542943\pi\)
\(488\) 0 0
\(489\) 6.59905 0.298419
\(490\) 0 0
\(491\) −16.4842 −0.743924 −0.371962 0.928248i \(-0.621315\pi\)
−0.371962 + 0.928248i \(0.621315\pi\)
\(492\) 0 0
\(493\) 21.4758 4.21251i 0.967221 0.189722i
\(494\) 0 0
\(495\) −0.776699 + 3.85174i −0.0349100 + 0.173123i
\(496\) 0 0
\(497\) 12.8158i 0.574868i
\(498\) 0 0
\(499\) 11.9978i 0.537098i 0.963266 + 0.268549i \(0.0865440\pi\)
−0.963266 + 0.268549i \(0.913456\pi\)
\(500\) 0 0
\(501\) 2.59724 0.116036
\(502\) 0 0
\(503\) 1.68306 0.0750441 0.0375221 0.999296i \(-0.488054\pi\)
0.0375221 + 0.999296i \(0.488054\pi\)
\(504\) 0 0
\(505\) 30.5291 + 6.15615i 1.35853 + 0.273945i
\(506\) 0 0
\(507\) 6.27585 0.278720
\(508\) 0 0
\(509\) −3.98212 −0.176504 −0.0882522 0.996098i \(-0.528128\pi\)
−0.0882522 + 0.996098i \(0.528128\pi\)
\(510\) 0 0
\(511\) −3.39600 −0.150230
\(512\) 0 0
\(513\) −3.07582 −0.135801
\(514\) 0 0
\(515\) 2.87608 14.2628i 0.126735 0.628495i
\(516\) 0 0
\(517\) −6.36616 −0.279983
\(518\) 0 0
\(519\) −15.3980 −0.675897
\(520\) 0 0
\(521\) 18.7826i 0.822879i 0.911437 + 0.411439i \(0.134974\pi\)
−0.911437 + 0.411439i \(0.865026\pi\)
\(522\) 0 0
\(523\) 31.2301i 1.36559i −0.730608 0.682797i \(-0.760763\pi\)
0.730608 0.682797i \(-0.239237\pi\)
\(524\) 0 0
\(525\) 3.72134 + 1.56442i 0.162413 + 0.0682770i
\(526\) 0 0
\(527\) −18.3267 + 3.59481i −0.798322 + 0.156592i
\(528\) 0 0
\(529\) −15.1278 −0.657730
\(530\) 0 0
\(531\) −15.8293 −0.686934
\(532\) 0 0
\(533\) −4.40787 −0.190926
\(534\) 0 0
\(535\) −5.94877 1.19956i −0.257188 0.0518616i
\(536\) 0 0
\(537\) −3.16382 −0.136529
\(538\) 0 0
\(539\) 0.748338i 0.0322332i
\(540\) 0 0
\(541\) 28.0864i 1.20753i 0.797163 + 0.603764i \(0.206333\pi\)
−0.797163 + 0.603764i \(0.793667\pi\)
\(542\) 0 0
\(543\) 12.6161i 0.541407i
\(544\) 0 0
\(545\) −4.37775 + 21.7098i −0.187522 + 0.929945i
\(546\) 0 0
\(547\) 19.4131 0.830045 0.415023 0.909811i \(-0.363774\pi\)
0.415023 + 0.909811i \(0.363774\pi\)
\(548\) 0 0
\(549\) 3.61088i 0.154109i
\(550\) 0 0
\(551\) 3.78104i 0.161078i
\(552\) 0 0
\(553\) 5.22533i 0.222204i
\(554\) 0 0
\(555\) 16.5191 + 3.33105i 0.701195 + 0.141395i
\(556\) 0 0
\(557\) 25.0570i 1.06170i −0.847466 0.530850i \(-0.821873\pi\)
0.847466 0.530850i \(-0.178127\pi\)
\(558\) 0 0
\(559\) 14.9410 0.631939
\(560\) 0 0
\(561\) −2.44451 + 0.479495i −0.103207 + 0.0202443i
\(562\) 0 0
\(563\) 8.18528i 0.344969i 0.985012 + 0.172484i \(0.0551794\pi\)
−0.985012 + 0.172484i \(0.944821\pi\)
\(564\) 0 0
\(565\) 1.56897 + 0.316382i 0.0660072 + 0.0133103i
\(566\) 0 0
\(567\) 3.55839 0.149438
\(568\) 0 0
\(569\) −14.3787 −0.602788 −0.301394 0.953500i \(-0.597452\pi\)
−0.301394 + 0.953500i \(0.597452\pi\)
\(570\) 0 0
\(571\) 2.69245i 0.112676i −0.998412 0.0563378i \(-0.982058\pi\)
0.998412 0.0563378i \(-0.0179424\pi\)
\(572\) 0 0
\(573\) −10.1323 −0.423282
\(574\) 0 0
\(575\) 12.9324 + 5.43669i 0.539320 + 0.226726i
\(576\) 0 0
\(577\) 28.3361i 1.17965i 0.807532 + 0.589824i \(0.200803\pi\)
−0.807532 + 0.589824i \(0.799197\pi\)
\(578\) 0 0
\(579\) −16.2158 −0.673907
\(580\) 0 0
\(581\) 6.69151i 0.277610i
\(582\) 0 0
\(583\) −10.0133 −0.414710
\(584\) 0 0
\(585\) 2.37285 11.7672i 0.0981051 0.486515i
\(586\) 0 0
\(587\) 17.8657i 0.737397i −0.929549 0.368699i \(-0.879803\pi\)
0.929549 0.368699i \(-0.120197\pi\)
\(588\) 0 0
\(589\) 3.22660i 0.132950i
\(590\) 0 0
\(591\) 9.19975 0.378427
\(592\) 0 0
\(593\) 29.7093i 1.22001i 0.792396 + 0.610007i \(0.208833\pi\)
−0.792396 + 0.610007i \(0.791167\pi\)
\(594\) 0 0
\(595\) 0.0487536 9.21942i 0.00199870 0.377959i
\(596\) 0 0
\(597\) 21.0691i 0.862303i
\(598\) 0 0
\(599\) −23.8491 −0.974448 −0.487224 0.873277i \(-0.661990\pi\)
−0.487224 + 0.873277i \(0.661990\pi\)
\(600\) 0 0
\(601\) 14.6210i 0.596404i −0.954503 0.298202i \(-0.903613\pi\)
0.954503 0.298202i \(-0.0963869\pi\)
\(602\) 0 0
\(603\) 10.8187i 0.440570i
\(604\) 0 0
\(605\) −22.8839 4.61451i −0.930363 0.187607i
\(606\) 0 0
\(607\) 11.6231 0.471766 0.235883 0.971781i \(-0.424202\pi\)
0.235883 + 0.971781i \(0.424202\pi\)
\(608\) 0 0
\(609\) 4.28539i 0.173653i
\(610\) 0 0
\(611\) 19.4489 0.786817
\(612\) 0 0
\(613\) 31.9544i 1.29063i −0.763918 0.645314i \(-0.776727\pi\)
0.763918 0.645314i \(-0.223273\pi\)
\(614\) 0 0
\(615\) −0.688032 + 3.41203i −0.0277441 + 0.137586i
\(616\) 0 0
\(617\) −23.1594 −0.932361 −0.466181 0.884690i \(-0.654370\pi\)
−0.466181 + 0.884690i \(0.654370\pi\)
\(618\) 0 0
\(619\) 35.0960i 1.41063i −0.708896 0.705313i \(-0.750806\pi\)
0.708896 0.705313i \(-0.249194\pi\)
\(620\) 0 0
\(621\) −12.1150 −0.486156
\(622\) 0 0
\(623\) 0.864356 0.0346297
\(624\) 0 0
\(625\) 17.4907 + 17.8627i 0.699626 + 0.714509i
\(626\) 0 0
\(627\) 0.430382i 0.0171878i
\(628\) 0 0
\(629\) −7.40808 37.7671i −0.295379 1.50587i
\(630\) 0 0
\(631\) 21.4433 0.853643 0.426821 0.904336i \(-0.359633\pi\)
0.426821 + 0.904336i \(0.359633\pi\)
\(632\) 0 0
\(633\) 12.4728i 0.495748i
\(634\) 0 0
\(635\) −0.741021 + 3.67481i −0.0294065 + 0.145830i
\(636\) 0 0
\(637\) 2.28620i 0.0905826i
\(638\) 0 0
\(639\) 30.0937i 1.19049i
\(640\) 0 0
\(641\) 12.1278i 0.479020i −0.970894 0.239510i \(-0.923013\pi\)
0.970894 0.239510i \(-0.0769868\pi\)
\(642\) 0 0
\(643\) −31.7218 −1.25099 −0.625493 0.780230i \(-0.715102\pi\)
−0.625493 + 0.780230i \(0.715102\pi\)
\(644\) 0 0
\(645\) 2.33217 11.5655i 0.0918291 0.455391i
\(646\) 0 0
\(647\) 8.99066i 0.353459i 0.984259 + 0.176730i \(0.0565518\pi\)
−0.984259 + 0.176730i \(0.943448\pi\)
\(648\) 0 0
\(649\) 5.04465i 0.198020i
\(650\) 0 0
\(651\) 3.65700i 0.143329i
\(652\) 0 0
\(653\) −7.02683 −0.274981 −0.137491 0.990503i \(-0.543904\pi\)
−0.137491 + 0.990503i \(0.543904\pi\)
\(654\) 0 0
\(655\) 7.49903 37.1886i 0.293011 1.45308i
\(656\) 0 0
\(657\) 7.97438 0.311110
\(658\) 0 0
\(659\) 32.2230 1.25523 0.627615 0.778524i \(-0.284031\pi\)
0.627615 + 0.778524i \(0.284031\pi\)
\(660\) 0 0
\(661\) 26.9697 1.04900 0.524499 0.851411i \(-0.324253\pi\)
0.524499 + 0.851411i \(0.324253\pi\)
\(662\) 0 0
\(663\) 7.46808 1.46488i 0.290036 0.0568911i
\(664\) 0 0
\(665\) −1.56141 0.314858i −0.0605491 0.0122097i
\(666\) 0 0
\(667\) 14.8926i 0.576645i
\(668\) 0 0
\(669\) 19.9175i 0.770057i
\(670\) 0 0
\(671\) 1.15075 0.0444243
\(672\) 0 0
\(673\) 2.49807 0.0962933 0.0481467 0.998840i \(-0.484669\pi\)
0.0481467 + 0.998840i \(0.484669\pi\)
\(674\) 0 0
\(675\) −19.9024 8.36679i −0.766043 0.322038i
\(676\) 0 0
\(677\) 32.7874 1.26012 0.630061 0.776545i \(-0.283030\pi\)
0.630061 + 0.776545i \(0.283030\pi\)
\(678\) 0 0
\(679\) 7.00477 0.268818
\(680\) 0 0
\(681\) −17.3456 −0.664684
\(682\) 0 0
\(683\) −35.0076 −1.33953 −0.669764 0.742574i \(-0.733605\pi\)
−0.669764 + 0.742574i \(0.733605\pi\)
\(684\) 0 0
\(685\) 9.39654 46.5985i 0.359023 1.78044i
\(686\) 0 0
\(687\) 20.4133 0.778817
\(688\) 0 0
\(689\) 30.5912 1.16543
\(690\) 0 0
\(691\) 27.3482i 1.04037i 0.854052 + 0.520187i \(0.174138\pi\)
−0.854052 + 0.520187i \(0.825862\pi\)
\(692\) 0 0
\(693\) 1.75722i 0.0667514i
\(694\) 0 0
\(695\) −5.69073 + 28.2210i −0.215862 + 1.07048i
\(696\) 0 0
\(697\) 7.80083 1.53014i 0.295477 0.0579584i
\(698\) 0 0
\(699\) 8.32162 0.314753
\(700\) 0 0
\(701\) −23.3065 −0.880273 −0.440137 0.897931i \(-0.645070\pi\)
−0.440137 + 0.897931i \(0.645070\pi\)
\(702\) 0 0
\(703\) −6.64929 −0.250783
\(704\) 0 0
\(705\) 3.03580 15.0549i 0.114335 0.567000i
\(706\) 0 0
\(707\) −13.9278 −0.523810
\(708\) 0 0
\(709\) 1.55904i 0.0585509i 0.999571 + 0.0292755i \(0.00932000\pi\)
−0.999571 + 0.0292755i \(0.990680\pi\)
\(710\) 0 0
\(711\) 12.2699i 0.460159i
\(712\) 0 0
\(713\) 12.7088i 0.475950i
\(714\) 0 0
\(715\) −3.75010 0.756203i −0.140246 0.0282804i
\(716\) 0 0
\(717\) −8.17579 −0.305330
\(718\) 0 0
\(719\) 30.0897i 1.12216i −0.827763 0.561078i \(-0.810387\pi\)
0.827763 0.561078i \(-0.189613\pi\)
\(720\) 0 0
\(721\) 6.50691i 0.242330i
\(722\) 0 0
\(723\) 6.23680i 0.231949i
\(724\) 0 0
\(725\) 10.2851 24.4655i 0.381979 0.908627i
\(726\) 0 0
\(727\) 7.43734i 0.275836i −0.990444 0.137918i \(-0.955959\pi\)
0.990444 0.137918i \(-0.0440410\pi\)
\(728\) 0 0
\(729\) 2.10264 0.0778754
\(730\) 0 0
\(731\) −26.4419 + 5.18662i −0.977989 + 0.191834i
\(732\) 0 0
\(733\) 38.5114i 1.42245i −0.702965 0.711225i \(-0.748141\pi\)
0.702965 0.711225i \(-0.251859\pi\)
\(734\) 0 0
\(735\) −1.76969 0.356857i −0.0652762 0.0131629i
\(736\) 0 0
\(737\) −3.44780 −0.127001
\(738\) 0 0
\(739\) 11.0777 0.407501 0.203751 0.979023i \(-0.434687\pi\)
0.203751 + 0.979023i \(0.434687\pi\)
\(740\) 0 0
\(741\) 1.31483i 0.0483016i
\(742\) 0 0
\(743\) 20.1707 0.739989 0.369995 0.929034i \(-0.379359\pi\)
0.369995 + 0.929034i \(0.379359\pi\)
\(744\) 0 0
\(745\) 10.3306 + 2.08316i 0.378485 + 0.0763212i
\(746\) 0 0
\(747\) 15.7128i 0.574900i
\(748\) 0 0
\(749\) 2.71392 0.0991645
\(750\) 0 0
\(751\) 28.1753i 1.02813i 0.857751 + 0.514065i \(0.171861\pi\)
−0.857751 + 0.514065i \(0.828139\pi\)
\(752\) 0 0
\(753\) 15.5994 0.568474
\(754\) 0 0
\(755\) −18.8464 3.80036i −0.685892 0.138309i
\(756\) 0 0
\(757\) 11.4237i 0.415200i 0.978214 + 0.207600i \(0.0665653\pi\)
−0.978214 + 0.207600i \(0.933435\pi\)
\(758\) 0 0
\(759\) 1.69518i 0.0615310i
\(760\) 0 0
\(761\) 39.6513 1.43736 0.718679 0.695342i \(-0.244747\pi\)
0.718679 + 0.695342i \(0.244747\pi\)
\(762\) 0 0
\(763\) 9.90433i 0.358561i
\(764\) 0 0
\(765\) −0.114482 + 21.6487i −0.00413909 + 0.782711i
\(766\) 0 0
\(767\) 15.4116i 0.556481i
\(768\) 0 0
\(769\) 23.5728 0.850057 0.425028 0.905180i \(-0.360264\pi\)
0.425028 + 0.905180i \(0.360264\pi\)
\(770\) 0 0
\(771\) 15.6074i 0.562086i
\(772\) 0 0
\(773\) 4.41262i 0.158711i −0.996846 0.0793555i \(-0.974714\pi\)
0.996846 0.0793555i \(-0.0252862\pi\)
\(774\) 0 0
\(775\) −8.77694 + 20.8780i −0.315277 + 0.749960i
\(776\) 0 0
\(777\) −7.53625 −0.270362
\(778\) 0 0
\(779\) 1.37342i 0.0492078i
\(780\) 0 0
\(781\) −9.59057 −0.343178
\(782\) 0 0
\(783\) 22.9190i 0.819059i
\(784\) 0 0
\(785\) 4.36043 21.6239i 0.155630 0.771789i
\(786\) 0 0
\(787\) 35.2683 1.25718 0.628589 0.777737i \(-0.283633\pi\)
0.628589 + 0.777737i \(0.283633\pi\)
\(788\) 0 0
\(789\) 1.43308i 0.0510189i
\(790\) 0 0
\(791\) −0.715790 −0.0254506
\(792\) 0 0
\(793\) −3.51560 −0.124842
\(794\) 0 0
\(795\) 4.77502 23.6799i 0.169353 0.839839i
\(796\) 0 0
\(797\) 4.97423i 0.176196i −0.996112 0.0880982i \(-0.971921\pi\)
0.996112 0.0880982i \(-0.0280789\pi\)
\(798\) 0 0
\(799\) −34.4196 + 6.75146i −1.21768 + 0.238850i
\(800\) 0 0
\(801\) −2.02965 −0.0717143
\(802\) 0 0
\(803\) 2.54136i 0.0896825i
\(804\) 0 0
\(805\) −6.15005 1.24015i −0.216761 0.0437096i
\(806\) 0 0
\(807\) 2.70254i 0.0951337i
\(808\) 0 0
\(809\) 30.3565i 1.06728i −0.845713 0.533638i \(-0.820824\pi\)
0.845713 0.533638i \(-0.179176\pi\)
\(810\) 0 0
\(811\) 26.9435i 0.946115i −0.881032 0.473058i \(-0.843150\pi\)
0.881032 0.473058i \(-0.156850\pi\)
\(812\) 0 0
\(813\) −13.0519 −0.457749
\(814\) 0 0
\(815\) −17.9161 3.61276i −0.627574 0.126550i
\(816\) 0 0
\(817\) 4.65537i 0.162871i
\(818\) 0 0
\(819\) 5.36839i 0.187587i
\(820\) 0 0
\(821\) 17.6829i 0.617137i 0.951202 + 0.308568i \(0.0998499\pi\)
−0.951202 + 0.308568i \(0.900150\pi\)
\(822\) 0 0
\(823\) 23.0591 0.803791 0.401895 0.915686i \(-0.368352\pi\)
0.401895 + 0.915686i \(0.368352\pi\)
\(824\) 0 0
\(825\) −1.17072 + 2.78482i −0.0407591 + 0.0969551i
\(826\) 0 0
\(827\) −14.8622 −0.516809 −0.258405 0.966037i \(-0.583197\pi\)
−0.258405 + 0.966037i \(0.583197\pi\)
\(828\) 0 0
\(829\) 8.88012 0.308419 0.154210 0.988038i \(-0.450717\pi\)
0.154210 + 0.988038i \(0.450717\pi\)
\(830\) 0 0
\(831\) −16.0415 −0.556472
\(832\) 0 0
\(833\) 0.793630 + 4.04600i 0.0274977 + 0.140186i
\(834\) 0 0
\(835\) −7.05137 1.42190i −0.244023 0.0492069i
\(836\) 0 0
\(837\) 19.5583i 0.676033i
\(838\) 0 0
\(839\) 41.6530i 1.43802i −0.695000 0.719010i \(-0.744596\pi\)
0.695000 0.719010i \(-0.255404\pi\)
\(840\) 0 0
\(841\) 0.826198 0.0284896
\(842\) 0 0
\(843\) −4.71050 −0.162238
\(844\) 0 0
\(845\) −17.0386 3.43582i −0.586146 0.118196i
\(846\) 0 0
\(847\) 10.4400 0.358722
\(848\) 0 0
\(849\) −11.6611 −0.400209
\(850\) 0 0
\(851\) −26.1900 −0.897782
\(852\) 0 0
\(853\) −9.19446 −0.314812 −0.157406 0.987534i \(-0.550313\pi\)
−0.157406 + 0.987534i \(0.550313\pi\)
\(854\) 0 0
\(855\) 3.66646 + 0.739338i 0.125390 + 0.0252848i
\(856\) 0 0
\(857\) −31.7838 −1.08571 −0.542857 0.839825i \(-0.682657\pi\)
−0.542857 + 0.839825i \(0.682657\pi\)
\(858\) 0 0
\(859\) −36.7960 −1.25546 −0.627731 0.778430i \(-0.716016\pi\)
−0.627731 + 0.778430i \(0.716016\pi\)
\(860\) 0 0
\(861\) 1.55662i 0.0530494i
\(862\) 0 0
\(863\) 11.6255i 0.395736i 0.980229 + 0.197868i \(0.0634017\pi\)
−0.980229 + 0.197868i \(0.936598\pi\)
\(864\) 0 0
\(865\) 41.8048 + 8.42990i 1.42141 + 0.286625i
\(866\) 0 0
\(867\) −12.7081 + 5.18493i −0.431590 + 0.176089i
\(868\) 0 0
\(869\) −3.91031 −0.132648
\(870\) 0 0
\(871\) 10.5332 0.356903
\(872\) 0 0
\(873\) −16.4484 −0.556693
\(874\) 0 0
\(875\) −9.24680 6.28464i −0.312599 0.212460i
\(876\) 0 0
\(877\) 35.6436 1.20360 0.601799 0.798648i \(-0.294451\pi\)
0.601799 + 0.798648i \(0.294451\pi\)
\(878\) 0 0
\(879\) 8.99984i 0.303557i
\(880\) 0 0
\(881\) 40.5282i 1.36543i −0.730685 0.682715i \(-0.760799\pi\)
0.730685 0.682715i \(-0.239201\pi\)
\(882\) 0 0
\(883\) 48.7052i 1.63906i 0.573035 + 0.819531i \(0.305766\pi\)
−0.573035 + 0.819531i \(0.694234\pi\)
\(884\) 0 0
\(885\) −11.9298 2.40562i −0.401014 0.0808641i
\(886\) 0 0
\(887\) −46.5884 −1.56429 −0.782143 0.623098i \(-0.785874\pi\)
−0.782143 + 0.623098i \(0.785874\pi\)
\(888\) 0 0
\(889\) 1.67651i 0.0562282i
\(890\) 0 0
\(891\) 2.66288i 0.0892098i
\(892\) 0 0
\(893\) 6.05993i 0.202788i
\(894\) 0 0
\(895\) 8.58960 + 1.73208i 0.287119 + 0.0578972i
\(896\) 0 0
\(897\) 5.17883i 0.172916i
\(898\) 0 0
\(899\) 24.0425 0.801863
\(900\) 0 0
\(901\) −54.1387 + 10.6194i −1.80362 + 0.353783i
\(902\) 0 0
\(903\) 5.27636i 0.175586i
\(904\) 0 0
\(905\) −6.90688 + 34.2520i −0.229592 + 1.13857i
\(906\) 0 0
\(907\) −11.9355 −0.396313 −0.198157 0.980170i \(-0.563495\pi\)
−0.198157 + 0.980170i \(0.563495\pi\)
\(908\) 0 0
\(909\) 32.7049 1.08475
\(910\) 0 0
\(911\) 12.6691i 0.419746i −0.977729 0.209873i \(-0.932695\pi\)
0.977729 0.209873i \(-0.0673050\pi\)
\(912\) 0 0
\(913\) −5.00751 −0.165724
\(914\) 0 0
\(915\) −0.548755 + 2.72134i −0.0181413 + 0.0899647i
\(916\) 0 0
\(917\) 16.9660i 0.560266i
\(918\) 0 0
\(919\) −34.8061 −1.14815 −0.574074 0.818804i \(-0.694638\pi\)
−0.574074 + 0.818804i \(0.694638\pi\)
\(920\) 0 0
\(921\) 13.2998i 0.438244i
\(922\) 0 0
\(923\) 29.2996 0.964407
\(924\) 0 0
\(925\) −43.0248 18.0873i −1.41465 0.594706i
\(926\) 0 0
\(927\) 15.2793i 0.501839i
\(928\) 0 0
\(929\) 27.3173i 0.896250i 0.893971 + 0.448125i \(0.147908\pi\)
−0.893971 + 0.448125i \(0.852092\pi\)
\(930\) 0 0
\(931\) 0.712341 0.0233460
\(932\) 0 0
\(933\) 11.7089i 0.383331i
\(934\) 0 0
\(935\) 6.89924 + 0.0364842i 0.225629 + 0.00119316i
\(936\) 0 0
\(937\) 16.7006i 0.545585i 0.962073 + 0.272792i \(0.0879472\pi\)
−0.962073 + 0.272792i \(0.912053\pi\)
\(938\) 0 0
\(939\) 10.3994 0.339371
\(940\) 0 0
\(941\) 47.8707i 1.56054i 0.625444 + 0.780269i \(0.284918\pi\)
−0.625444 + 0.780269i \(0.715082\pi\)
\(942\) 0 0
\(943\) 5.40957i 0.176160i
\(944\) 0 0
\(945\) 9.46462 + 1.90853i 0.307884 + 0.0620845i
\(946\) 0 0
\(947\) 57.2021 1.85882 0.929409 0.369052i \(-0.120318\pi\)
0.929409 + 0.369052i \(0.120318\pi\)
\(948\) 0 0
\(949\) 7.76395i 0.252028i
\(950\) 0 0
\(951\) 18.5323 0.600952
\(952\) 0 0
\(953\) 42.7545i 1.38495i 0.721440 + 0.692477i \(0.243481\pi\)
−0.721440 + 0.692477i \(0.756519\pi\)
\(954\) 0 0
\(955\) 27.5087 + 5.54709i 0.890159 + 0.179500i
\(956\) 0 0
\(957\) 3.20692 0.103665
\(958\) 0 0
\(959\) 21.2590i 0.686488i
\(960\) 0 0
\(961\) 10.4830 0.338160
\(962\) 0 0
\(963\) −6.37274 −0.205359
\(964\) 0 0
\(965\) 44.0252 + 8.87764i 1.41722 + 0.285781i
\(966\) 0 0
\(967\) 5.83813i 0.187742i −0.995584 0.0938708i \(-0.970076\pi\)
0.995584 0.0938708i \(-0.0299241\pi\)
\(968\) 0 0
\(969\) 0.456430 + 2.32693i 0.0146627 + 0.0747516i
\(970\) 0 0
\(971\) 16.9513 0.543993 0.271996 0.962298i \(-0.412316\pi\)
0.271996 + 0.962298i \(0.412316\pi\)
\(972\) 0 0
\(973\) 12.8748i 0.412748i
\(974\) 0 0
\(975\) 3.57659 8.50775i 0.114542 0.272466i
\(976\) 0 0
\(977\) 49.4664i 1.58257i 0.611448 + 0.791284i \(0.290587\pi\)
−0.611448 + 0.791284i \(0.709413\pi\)
\(978\) 0 0
\(979\) 0.646831i 0.0206728i
\(980\) 0 0
\(981\) 23.2570i 0.742540i
\(982\) 0 0
\(983\) 0.404420 0.0128990 0.00644950 0.999979i \(-0.497947\pi\)
0.00644950 + 0.999979i \(0.497947\pi\)
\(984\) 0 0
\(985\) −24.9769 5.03656i −0.795829 0.160478i
\(986\) 0 0
\(987\) 6.86828i 0.218620i
\(988\) 0 0
\(989\) 18.3364i 0.583065i
\(990\) 0 0
\(991\) 7.48474i 0.237761i 0.992909 + 0.118880i \(0.0379305\pi\)
−0.992909 + 0.118880i \(0.962070\pi\)
\(992\) 0 0
\(993\) −25.4886 −0.808857
\(994\) 0 0
\(995\) −11.5347 + 57.2017i −0.365673 + 1.81342i
\(996\) 0 0
\(997\) −14.8925 −0.471649 −0.235825 0.971796i \(-0.575779\pi\)
−0.235825 + 0.971796i \(0.575779\pi\)
\(998\) 0 0
\(999\) 40.3051 1.27520
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2380.2.m.d.169.16 yes 26
5.4 even 2 2380.2.m.c.169.12 yes 26
17.16 even 2 2380.2.m.c.169.11 26
85.84 even 2 inner 2380.2.m.d.169.15 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2380.2.m.c.169.11 26 17.16 even 2
2380.2.m.c.169.12 yes 26 5.4 even 2
2380.2.m.d.169.15 yes 26 85.84 even 2 inner
2380.2.m.d.169.16 yes 26 1.1 even 1 trivial