Properties

Label 2380.2.m.d.169.13
Level $2380$
Weight $2$
Character 2380.169
Analytic conductor $19.004$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2380,2,Mod(169,2380)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2380.169"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2380, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [26,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.0043956811\)
Analytic rank: \(0\)
Dimension: \(26\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 169.13
Character \(\chi\) \(=\) 2380.169
Dual form 2380.2.m.d.169.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.355118 q^{3} +(0.778855 - 2.09604i) q^{5} +1.00000 q^{7} -2.87389 q^{9} +3.29848i q^{11} +2.14706i q^{13} +(0.276586 - 0.744342i) q^{15} +(2.86942 + 2.96081i) q^{17} +4.80942 q^{19} +0.355118 q^{21} +1.16614 q^{23} +(-3.78677 - 3.26502i) q^{25} -2.08593 q^{27} +4.14905i q^{29} -0.597440i q^{31} +1.17135i q^{33} +(0.778855 - 2.09604i) q^{35} +3.57132 q^{37} +0.762461i q^{39} +5.47443i q^{41} +8.74450i q^{43} +(-2.23835 + 6.02379i) q^{45} +1.76692i q^{47} +1.00000 q^{49} +(1.01898 + 1.05144i) q^{51} -7.89948i q^{53} +(6.91374 + 2.56904i) q^{55} +1.70791 q^{57} +11.5544 q^{59} +8.59309i q^{61} -2.87389 q^{63} +(4.50033 + 1.67225i) q^{65} -13.7553i q^{67} +0.414116 q^{69} +11.3621i q^{71} +9.47179 q^{73} +(-1.34475 - 1.15947i) q^{75} +3.29848i q^{77} -6.47139i q^{79} +7.88092 q^{81} -11.8773i q^{83} +(8.44085 - 3.70838i) q^{85} +1.47340i q^{87} +5.60255 q^{89} +2.14706i q^{91} -0.212162i q^{93} +(3.74584 - 10.0807i) q^{95} -13.5262 q^{97} -9.47947i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 6 q^{3} - 4 q^{5} + 26 q^{7} + 32 q^{9} + 10 q^{15} - 11 q^{17} + 6 q^{21} - 16 q^{23} + 4 q^{25} + 6 q^{27} - 4 q^{35} - 20 q^{37} - 18 q^{45} + 26 q^{49} + 9 q^{51} - 14 q^{55} + 32 q^{59} + 32 q^{63}+ \cdots - 46 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2380\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(1191\) \(1261\) \(1361\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.355118 0.205028 0.102514 0.994732i \(-0.467311\pi\)
0.102514 + 0.994732i \(0.467311\pi\)
\(4\) 0 0
\(5\) 0.778855 2.09604i 0.348315 0.937378i
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.87389 −0.957964
\(10\) 0 0
\(11\) 3.29848i 0.994528i 0.867599 + 0.497264i \(0.165662\pi\)
−0.867599 + 0.497264i \(0.834338\pi\)
\(12\) 0 0
\(13\) 2.14706i 0.595488i 0.954646 + 0.297744i \(0.0962342\pi\)
−0.954646 + 0.297744i \(0.903766\pi\)
\(14\) 0 0
\(15\) 0.276586 0.744342i 0.0714141 0.192188i
\(16\) 0 0
\(17\) 2.86942 + 2.96081i 0.695937 + 0.718103i
\(18\) 0 0
\(19\) 4.80942 1.10336 0.551678 0.834057i \(-0.313988\pi\)
0.551678 + 0.834057i \(0.313988\pi\)
\(20\) 0 0
\(21\) 0.355118 0.0774932
\(22\) 0 0
\(23\) 1.16614 0.243156 0.121578 0.992582i \(-0.461205\pi\)
0.121578 + 0.992582i \(0.461205\pi\)
\(24\) 0 0
\(25\) −3.78677 3.26502i −0.757354 0.653005i
\(26\) 0 0
\(27\) −2.08593 −0.401437
\(28\) 0 0
\(29\) 4.14905i 0.770460i 0.922821 + 0.385230i \(0.125878\pi\)
−0.922821 + 0.385230i \(0.874122\pi\)
\(30\) 0 0
\(31\) 0.597440i 0.107303i −0.998560 0.0536517i \(-0.982914\pi\)
0.998560 0.0536517i \(-0.0170861\pi\)
\(32\) 0 0
\(33\) 1.17135i 0.203906i
\(34\) 0 0
\(35\) 0.778855 2.09604i 0.131651 0.354295i
\(36\) 0 0
\(37\) 3.57132 0.587122 0.293561 0.955940i \(-0.405160\pi\)
0.293561 + 0.955940i \(0.405160\pi\)
\(38\) 0 0
\(39\) 0.762461i 0.122091i
\(40\) 0 0
\(41\) 5.47443i 0.854962i 0.904024 + 0.427481i \(0.140599\pi\)
−0.904024 + 0.427481i \(0.859401\pi\)
\(42\) 0 0
\(43\) 8.74450i 1.33352i 0.745271 + 0.666762i \(0.232320\pi\)
−0.745271 + 0.666762i \(0.767680\pi\)
\(44\) 0 0
\(45\) −2.23835 + 6.02379i −0.333673 + 0.897974i
\(46\) 0 0
\(47\) 1.76692i 0.257731i 0.991662 + 0.128866i \(0.0411336\pi\)
−0.991662 + 0.128866i \(0.958866\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.01898 + 1.05144i 0.142686 + 0.147231i
\(52\) 0 0
\(53\) 7.89948i 1.08508i −0.840031 0.542538i \(-0.817463\pi\)
0.840031 0.542538i \(-0.182537\pi\)
\(54\) 0 0
\(55\) 6.91374 + 2.56904i 0.932249 + 0.346409i
\(56\) 0 0
\(57\) 1.70791 0.226218
\(58\) 0 0
\(59\) 11.5544 1.50425 0.752127 0.659018i \(-0.229028\pi\)
0.752127 + 0.659018i \(0.229028\pi\)
\(60\) 0 0
\(61\) 8.59309i 1.10023i 0.835088 + 0.550116i \(0.185417\pi\)
−0.835088 + 0.550116i \(0.814583\pi\)
\(62\) 0 0
\(63\) −2.87389 −0.362076
\(64\) 0 0
\(65\) 4.50033 + 1.67225i 0.558197 + 0.207417i
\(66\) 0 0
\(67\) 13.7553i 1.68048i −0.542213 0.840241i \(-0.682413\pi\)
0.542213 0.840241i \(-0.317587\pi\)
\(68\) 0 0
\(69\) 0.414116 0.0498537
\(70\) 0 0
\(71\) 11.3621i 1.34843i 0.738533 + 0.674217i \(0.235519\pi\)
−0.738533 + 0.674217i \(0.764481\pi\)
\(72\) 0 0
\(73\) 9.47179 1.10859 0.554294 0.832321i \(-0.312988\pi\)
0.554294 + 0.832321i \(0.312988\pi\)
\(74\) 0 0
\(75\) −1.34475 1.15947i −0.155278 0.133884i
\(76\) 0 0
\(77\) 3.29848i 0.375896i
\(78\) 0 0
\(79\) 6.47139i 0.728089i −0.931382 0.364044i \(-0.881396\pi\)
0.931382 0.364044i \(-0.118604\pi\)
\(80\) 0 0
\(81\) 7.88092 0.875658
\(82\) 0 0
\(83\) 11.8773i 1.30370i −0.758349 0.651849i \(-0.773994\pi\)
0.758349 0.651849i \(-0.226006\pi\)
\(84\) 0 0
\(85\) 8.44085 3.70838i 0.915539 0.402230i
\(86\) 0 0
\(87\) 1.47340i 0.157966i
\(88\) 0 0
\(89\) 5.60255 0.593870 0.296935 0.954898i \(-0.404036\pi\)
0.296935 + 0.954898i \(0.404036\pi\)
\(90\) 0 0
\(91\) 2.14706i 0.225073i
\(92\) 0 0
\(93\) 0.212162i 0.0220002i
\(94\) 0 0
\(95\) 3.74584 10.0807i 0.384315 1.03426i
\(96\) 0 0
\(97\) −13.5262 −1.37337 −0.686687 0.726954i \(-0.740936\pi\)
−0.686687 + 0.726954i \(0.740936\pi\)
\(98\) 0 0
\(99\) 9.47947i 0.952722i
\(100\) 0 0
\(101\) 8.51116 0.846892 0.423446 0.905921i \(-0.360820\pi\)
0.423446 + 0.905921i \(0.360820\pi\)
\(102\) 0 0
\(103\) 0.0327687i 0.00322880i 0.999999 + 0.00161440i \(0.000513880\pi\)
−0.999999 + 0.00161440i \(0.999486\pi\)
\(104\) 0 0
\(105\) 0.276586 0.744342i 0.0269920 0.0726404i
\(106\) 0 0
\(107\) 7.10993 0.687343 0.343672 0.939090i \(-0.388329\pi\)
0.343672 + 0.939090i \(0.388329\pi\)
\(108\) 0 0
\(109\) 2.71597i 0.260143i 0.991505 + 0.130071i \(0.0415207\pi\)
−0.991505 + 0.130071i \(0.958479\pi\)
\(110\) 0 0
\(111\) 1.26824 0.120376
\(112\) 0 0
\(113\) −17.8811 −1.68211 −0.841055 0.540949i \(-0.818065\pi\)
−0.841055 + 0.540949i \(0.818065\pi\)
\(114\) 0 0
\(115\) 0.908251 2.44427i 0.0846949 0.227929i
\(116\) 0 0
\(117\) 6.17042i 0.570456i
\(118\) 0 0
\(119\) 2.86942 + 2.96081i 0.263039 + 0.271417i
\(120\) 0 0
\(121\) 0.120046 0.0109132
\(122\) 0 0
\(123\) 1.94407i 0.175291i
\(124\) 0 0
\(125\) −9.79297 + 5.39424i −0.875910 + 0.482475i
\(126\) 0 0
\(127\) 0.00262702i 0.000233111i −1.00000 0.000116555i \(-0.999963\pi\)
1.00000 0.000116555i \(-3.71007e-5\pi\)
\(128\) 0 0
\(129\) 3.10533i 0.273409i
\(130\) 0 0
\(131\) 0.261389i 0.0228376i −0.999935 0.0114188i \(-0.996365\pi\)
0.999935 0.0114188i \(-0.00363480\pi\)
\(132\) 0 0
\(133\) 4.80942 0.417029
\(134\) 0 0
\(135\) −1.62463 + 4.37218i −0.139826 + 0.376298i
\(136\) 0 0
\(137\) 2.51963i 0.215266i −0.994191 0.107633i \(-0.965673\pi\)
0.994191 0.107633i \(-0.0343272\pi\)
\(138\) 0 0
\(139\) 7.24994i 0.614932i −0.951559 0.307466i \(-0.900519\pi\)
0.951559 0.307466i \(-0.0994810\pi\)
\(140\) 0 0
\(141\) 0.627465i 0.0528421i
\(142\) 0 0
\(143\) −7.08204 −0.592230
\(144\) 0 0
\(145\) 8.69658 + 3.23151i 0.722212 + 0.268362i
\(146\) 0 0
\(147\) 0.355118 0.0292897
\(148\) 0 0
\(149\) 14.8200 1.21410 0.607051 0.794663i \(-0.292352\pi\)
0.607051 + 0.794663i \(0.292352\pi\)
\(150\) 0 0
\(151\) −22.2442 −1.81021 −0.905103 0.425193i \(-0.860206\pi\)
−0.905103 + 0.425193i \(0.860206\pi\)
\(152\) 0 0
\(153\) −8.24640 8.50906i −0.666682 0.687917i
\(154\) 0 0
\(155\) −1.25226 0.465319i −0.100584 0.0373754i
\(156\) 0 0
\(157\) 6.48150i 0.517280i 0.965974 + 0.258640i \(0.0832743\pi\)
−0.965974 + 0.258640i \(0.916726\pi\)
\(158\) 0 0
\(159\) 2.80525i 0.222471i
\(160\) 0 0
\(161\) 1.16614 0.0919044
\(162\) 0 0
\(163\) −0.677681 −0.0530801 −0.0265400 0.999648i \(-0.508449\pi\)
−0.0265400 + 0.999648i \(0.508449\pi\)
\(164\) 0 0
\(165\) 2.45520 + 0.912312i 0.191137 + 0.0710234i
\(166\) 0 0
\(167\) 7.60691 0.588641 0.294320 0.955707i \(-0.404907\pi\)
0.294320 + 0.955707i \(0.404907\pi\)
\(168\) 0 0
\(169\) 8.39012 0.645394
\(170\) 0 0
\(171\) −13.8217 −1.05698
\(172\) 0 0
\(173\) 18.8210 1.43093 0.715466 0.698647i \(-0.246214\pi\)
0.715466 + 0.698647i \(0.246214\pi\)
\(174\) 0 0
\(175\) −3.78677 3.26502i −0.286253 0.246813i
\(176\) 0 0
\(177\) 4.10318 0.308414
\(178\) 0 0
\(179\) 10.3450 0.773222 0.386611 0.922243i \(-0.373646\pi\)
0.386611 + 0.922243i \(0.373646\pi\)
\(180\) 0 0
\(181\) 24.1822i 1.79745i 0.438516 + 0.898723i \(0.355504\pi\)
−0.438516 + 0.898723i \(0.644496\pi\)
\(182\) 0 0
\(183\) 3.05156i 0.225578i
\(184\) 0 0
\(185\) 2.78154 7.48564i 0.204503 0.550355i
\(186\) 0 0
\(187\) −9.76618 + 9.46472i −0.714174 + 0.692129i
\(188\) 0 0
\(189\) −2.08593 −0.151729
\(190\) 0 0
\(191\) −0.158352 −0.0114579 −0.00572896 0.999984i \(-0.501824\pi\)
−0.00572896 + 0.999984i \(0.501824\pi\)
\(192\) 0 0
\(193\) 21.0203 1.51307 0.756536 0.653952i \(-0.226890\pi\)
0.756536 + 0.653952i \(0.226890\pi\)
\(194\) 0 0
\(195\) 1.59815 + 0.593847i 0.114446 + 0.0425263i
\(196\) 0 0
\(197\) 6.07546 0.432859 0.216429 0.976298i \(-0.430559\pi\)
0.216429 + 0.976298i \(0.430559\pi\)
\(198\) 0 0
\(199\) 19.2707i 1.36607i 0.730388 + 0.683033i \(0.239339\pi\)
−0.730388 + 0.683033i \(0.760661\pi\)
\(200\) 0 0
\(201\) 4.88477i 0.344545i
\(202\) 0 0
\(203\) 4.14905i 0.291206i
\(204\) 0 0
\(205\) 11.4746 + 4.26379i 0.801422 + 0.297796i
\(206\) 0 0
\(207\) −3.35135 −0.232935
\(208\) 0 0
\(209\) 15.8638i 1.09732i
\(210\) 0 0
\(211\) 8.69402i 0.598521i 0.954171 + 0.299261i \(0.0967400\pi\)
−0.954171 + 0.299261i \(0.903260\pi\)
\(212\) 0 0
\(213\) 4.03489i 0.276466i
\(214\) 0 0
\(215\) 18.3288 + 6.81070i 1.25002 + 0.464486i
\(216\) 0 0
\(217\) 0.597440i 0.0405569i
\(218\) 0 0
\(219\) 3.36360 0.227291
\(220\) 0 0
\(221\) −6.35705 + 6.16083i −0.427622 + 0.414422i
\(222\) 0 0
\(223\) 14.8220i 0.992553i −0.868164 0.496277i \(-0.834700\pi\)
0.868164 0.496277i \(-0.165300\pi\)
\(224\) 0 0
\(225\) 10.8828 + 9.38332i 0.725517 + 0.625555i
\(226\) 0 0
\(227\) −7.72487 −0.512717 −0.256359 0.966582i \(-0.582523\pi\)
−0.256359 + 0.966582i \(0.582523\pi\)
\(228\) 0 0
\(229\) −26.2190 −1.73260 −0.866301 0.499523i \(-0.833509\pi\)
−0.866301 + 0.499523i \(0.833509\pi\)
\(230\) 0 0
\(231\) 1.17135i 0.0770691i
\(232\) 0 0
\(233\) 0.678913 0.0444771 0.0222385 0.999753i \(-0.492921\pi\)
0.0222385 + 0.999753i \(0.492921\pi\)
\(234\) 0 0
\(235\) 3.70353 + 1.37617i 0.241592 + 0.0897717i
\(236\) 0 0
\(237\) 2.29811i 0.149278i
\(238\) 0 0
\(239\) −0.224261 −0.0145062 −0.00725312 0.999974i \(-0.502309\pi\)
−0.00725312 + 0.999974i \(0.502309\pi\)
\(240\) 0 0
\(241\) 1.44464i 0.0930573i −0.998917 0.0465287i \(-0.985184\pi\)
0.998917 0.0465287i \(-0.0148159\pi\)
\(242\) 0 0
\(243\) 9.05644 0.580971
\(244\) 0 0
\(245\) 0.778855 2.09604i 0.0497592 0.133911i
\(246\) 0 0
\(247\) 10.3261i 0.657035i
\(248\) 0 0
\(249\) 4.21783i 0.267294i
\(250\) 0 0
\(251\) −17.7068 −1.11765 −0.558823 0.829287i \(-0.688747\pi\)
−0.558823 + 0.829287i \(0.688747\pi\)
\(252\) 0 0
\(253\) 3.84647i 0.241826i
\(254\) 0 0
\(255\) 2.99750 1.31691i 0.187711 0.0824682i
\(256\) 0 0
\(257\) 15.1319i 0.943903i −0.881624 0.471952i \(-0.843550\pi\)
0.881624 0.471952i \(-0.156450\pi\)
\(258\) 0 0
\(259\) 3.57132 0.221911
\(260\) 0 0
\(261\) 11.9239i 0.738072i
\(262\) 0 0
\(263\) 8.26196i 0.509454i −0.967013 0.254727i \(-0.918014\pi\)
0.967013 0.254727i \(-0.0819856\pi\)
\(264\) 0 0
\(265\) −16.5576 6.15255i −1.01713 0.377948i
\(266\) 0 0
\(267\) 1.98957 0.121760
\(268\) 0 0
\(269\) 3.53275i 0.215396i −0.994184 0.107698i \(-0.965652\pi\)
0.994184 0.107698i \(-0.0343479\pi\)
\(270\) 0 0
\(271\) −15.7283 −0.955426 −0.477713 0.878516i \(-0.658534\pi\)
−0.477713 + 0.878516i \(0.658534\pi\)
\(272\) 0 0
\(273\) 0.762461i 0.0461462i
\(274\) 0 0
\(275\) 10.7696 12.4906i 0.649432 0.753210i
\(276\) 0 0
\(277\) −16.4543 −0.988644 −0.494322 0.869279i \(-0.664584\pi\)
−0.494322 + 0.869279i \(0.664584\pi\)
\(278\) 0 0
\(279\) 1.71698i 0.102793i
\(280\) 0 0
\(281\) 9.97526 0.595074 0.297537 0.954710i \(-0.403835\pi\)
0.297537 + 0.954710i \(0.403835\pi\)
\(282\) 0 0
\(283\) −27.7913 −1.65202 −0.826009 0.563656i \(-0.809394\pi\)
−0.826009 + 0.563656i \(0.809394\pi\)
\(284\) 0 0
\(285\) 1.33022 3.57985i 0.0787952 0.212052i
\(286\) 0 0
\(287\) 5.47443i 0.323145i
\(288\) 0 0
\(289\) −0.532847 + 16.9916i −0.0313439 + 0.999509i
\(290\) 0 0
\(291\) −4.80339 −0.281579
\(292\) 0 0
\(293\) 0.174404i 0.0101888i 0.999987 + 0.00509440i \(0.00162160\pi\)
−0.999987 + 0.00509440i \(0.998378\pi\)
\(294\) 0 0
\(295\) 8.99921 24.2185i 0.523954 1.41005i
\(296\) 0 0
\(297\) 6.88038i 0.399240i
\(298\) 0 0
\(299\) 2.50377i 0.144797i
\(300\) 0 0
\(301\) 8.74450i 0.504025i
\(302\) 0 0
\(303\) 3.02247 0.173636
\(304\) 0 0
\(305\) 18.0115 + 6.69278i 1.03133 + 0.383227i
\(306\) 0 0
\(307\) 7.52700i 0.429588i 0.976659 + 0.214794i \(0.0689081\pi\)
−0.976659 + 0.214794i \(0.931092\pi\)
\(308\) 0 0
\(309\) 0.0116368i 0.000661993i
\(310\) 0 0
\(311\) 2.57441i 0.145982i 0.997333 + 0.0729908i \(0.0232544\pi\)
−0.997333 + 0.0729908i \(0.976746\pi\)
\(312\) 0 0
\(313\) 6.72127 0.379909 0.189954 0.981793i \(-0.439166\pi\)
0.189954 + 0.981793i \(0.439166\pi\)
\(314\) 0 0
\(315\) −2.23835 + 6.02379i −0.126116 + 0.339402i
\(316\) 0 0
\(317\) 3.48442 0.195705 0.0978524 0.995201i \(-0.468803\pi\)
0.0978524 + 0.995201i \(0.468803\pi\)
\(318\) 0 0
\(319\) −13.6856 −0.766244
\(320\) 0 0
\(321\) 2.52487 0.140924
\(322\) 0 0
\(323\) 13.8002 + 14.2398i 0.767866 + 0.792323i
\(324\) 0 0
\(325\) 7.01021 8.13043i 0.388857 0.450995i
\(326\) 0 0
\(327\) 0.964491i 0.0533365i
\(328\) 0 0
\(329\) 1.76692i 0.0974133i
\(330\) 0 0
\(331\) −28.8742 −1.58707 −0.793535 0.608525i \(-0.791762\pi\)
−0.793535 + 0.608525i \(0.791762\pi\)
\(332\) 0 0
\(333\) −10.2636 −0.562441
\(334\) 0 0
\(335\) −28.8317 10.7134i −1.57525 0.585337i
\(336\) 0 0
\(337\) 28.0825 1.52975 0.764877 0.644176i \(-0.222800\pi\)
0.764877 + 0.644176i \(0.222800\pi\)
\(338\) 0 0
\(339\) −6.34990 −0.344879
\(340\) 0 0
\(341\) 1.97064 0.106716
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0.322537 0.868004i 0.0173648 0.0467318i
\(346\) 0 0
\(347\) −26.8782 −1.44290 −0.721448 0.692469i \(-0.756523\pi\)
−0.721448 + 0.692469i \(0.756523\pi\)
\(348\) 0 0
\(349\) −9.64141 −0.516093 −0.258047 0.966132i \(-0.583079\pi\)
−0.258047 + 0.966132i \(0.583079\pi\)
\(350\) 0 0
\(351\) 4.47861i 0.239051i
\(352\) 0 0
\(353\) 1.14787i 0.0610948i −0.999533 0.0305474i \(-0.990275\pi\)
0.999533 0.0305474i \(-0.00972505\pi\)
\(354\) 0 0
\(355\) 23.8154 + 8.84944i 1.26399 + 0.469680i
\(356\) 0 0
\(357\) 1.01898 + 1.05144i 0.0539303 + 0.0556481i
\(358\) 0 0
\(359\) −12.2435 −0.646189 −0.323095 0.946367i \(-0.604723\pi\)
−0.323095 + 0.946367i \(0.604723\pi\)
\(360\) 0 0
\(361\) 4.13050 0.217395
\(362\) 0 0
\(363\) 0.0426304 0.00223752
\(364\) 0 0
\(365\) 7.37715 19.8532i 0.386138 1.03917i
\(366\) 0 0
\(367\) −12.9156 −0.674187 −0.337094 0.941471i \(-0.609444\pi\)
−0.337094 + 0.941471i \(0.609444\pi\)
\(368\) 0 0
\(369\) 15.7329i 0.819023i
\(370\) 0 0
\(371\) 7.89948i 0.410120i
\(372\) 0 0
\(373\) 23.2100i 1.20177i 0.799335 + 0.600885i \(0.205185\pi\)
−0.799335 + 0.600885i \(0.794815\pi\)
\(374\) 0 0
\(375\) −3.47766 + 1.91559i −0.179586 + 0.0989208i
\(376\) 0 0
\(377\) −8.90827 −0.458799
\(378\) 0 0
\(379\) 30.8530i 1.58481i −0.609996 0.792405i \(-0.708829\pi\)
0.609996 0.792405i \(-0.291171\pi\)
\(380\) 0 0
\(381\) 0 0.000932904i 0 4.77941e-5i
\(382\) 0 0
\(383\) 3.48763i 0.178210i 0.996022 + 0.0891048i \(0.0284006\pi\)
−0.996022 + 0.0891048i \(0.971599\pi\)
\(384\) 0 0
\(385\) 6.91374 + 2.56904i 0.352357 + 0.130930i
\(386\) 0 0
\(387\) 25.1308i 1.27747i
\(388\) 0 0
\(389\) 2.03369 0.103112 0.0515560 0.998670i \(-0.483582\pi\)
0.0515560 + 0.998670i \(0.483582\pi\)
\(390\) 0 0
\(391\) 3.34614 + 3.45271i 0.169221 + 0.174611i
\(392\) 0 0
\(393\) 0.0928239i 0.00468235i
\(394\) 0 0
\(395\) −13.5643 5.04028i −0.682494 0.253604i
\(396\) 0 0
\(397\) 11.5647 0.580415 0.290207 0.956964i \(-0.406276\pi\)
0.290207 + 0.956964i \(0.406276\pi\)
\(398\) 0 0
\(399\) 1.70791 0.0855026
\(400\) 0 0
\(401\) 8.53917i 0.426426i −0.977006 0.213213i \(-0.931607\pi\)
0.977006 0.213213i \(-0.0683928\pi\)
\(402\) 0 0
\(403\) 1.28274 0.0638979
\(404\) 0 0
\(405\) 6.13810 16.5187i 0.305005 0.820822i
\(406\) 0 0
\(407\) 11.7799i 0.583909i
\(408\) 0 0
\(409\) 5.37632 0.265842 0.132921 0.991127i \(-0.457564\pi\)
0.132921 + 0.991127i \(0.457564\pi\)
\(410\) 0 0
\(411\) 0.894766i 0.0441356i
\(412\) 0 0
\(413\) 11.5544 0.568555
\(414\) 0 0
\(415\) −24.8952 9.25066i −1.22206 0.454097i
\(416\) 0 0
\(417\) 2.57459i 0.126078i
\(418\) 0 0
\(419\) 9.88962i 0.483140i −0.970383 0.241570i \(-0.922338\pi\)
0.970383 0.241570i \(-0.0776623\pi\)
\(420\) 0 0
\(421\) −37.9792 −1.85099 −0.925496 0.378756i \(-0.876352\pi\)
−0.925496 + 0.378756i \(0.876352\pi\)
\(422\) 0 0
\(423\) 5.07793i 0.246897i
\(424\) 0 0
\(425\) −1.19870 20.5806i −0.0581456 0.998308i
\(426\) 0 0
\(427\) 8.59309i 0.415849i
\(428\) 0 0
\(429\) −2.51496 −0.121423
\(430\) 0 0
\(431\) 23.8422i 1.14844i 0.818702 + 0.574218i \(0.194694\pi\)
−0.818702 + 0.574218i \(0.805306\pi\)
\(432\) 0 0
\(433\) 36.3440i 1.74658i −0.487200 0.873291i \(-0.661982\pi\)
0.487200 0.873291i \(-0.338018\pi\)
\(434\) 0 0
\(435\) 3.08831 + 1.14757i 0.148073 + 0.0550217i
\(436\) 0 0
\(437\) 5.60844 0.268288
\(438\) 0 0
\(439\) 32.2663i 1.53999i −0.638052 0.769993i \(-0.720260\pi\)
0.638052 0.769993i \(-0.279740\pi\)
\(440\) 0 0
\(441\) −2.87389 −0.136852
\(442\) 0 0
\(443\) 28.0680i 1.33355i 0.745258 + 0.666776i \(0.232326\pi\)
−0.745258 + 0.666776i \(0.767674\pi\)
\(444\) 0 0
\(445\) 4.36358 11.7432i 0.206854 0.556680i
\(446\) 0 0
\(447\) 5.26285 0.248924
\(448\) 0 0
\(449\) 9.53121i 0.449806i 0.974381 + 0.224903i \(0.0722065\pi\)
−0.974381 + 0.224903i \(0.927794\pi\)
\(450\) 0 0
\(451\) −18.0573 −0.850284
\(452\) 0 0
\(453\) −7.89931 −0.371142
\(454\) 0 0
\(455\) 4.50033 + 1.67225i 0.210979 + 0.0783963i
\(456\) 0 0
\(457\) 0.0138664i 0.000648642i −1.00000 0.000324321i \(-0.999897\pi\)
1.00000 0.000324321i \(-0.000103235\pi\)
\(458\) 0 0
\(459\) −5.98540 6.17604i −0.279375 0.288273i
\(460\) 0 0
\(461\) −5.43461 −0.253115 −0.126558 0.991959i \(-0.540393\pi\)
−0.126558 + 0.991959i \(0.540393\pi\)
\(462\) 0 0
\(463\) 18.6564i 0.867034i 0.901145 + 0.433517i \(0.142728\pi\)
−0.901145 + 0.433517i \(0.857272\pi\)
\(464\) 0 0
\(465\) −0.444700 0.165243i −0.0206225 0.00766298i
\(466\) 0 0
\(467\) 36.3031i 1.67991i 0.542657 + 0.839955i \(0.317419\pi\)
−0.542657 + 0.839955i \(0.682581\pi\)
\(468\) 0 0
\(469\) 13.7553i 0.635163i
\(470\) 0 0
\(471\) 2.30170i 0.106057i
\(472\) 0 0
\(473\) −28.8436 −1.32623
\(474\) 0 0
\(475\) −18.2122 15.7029i −0.835631 0.720497i
\(476\) 0 0
\(477\) 22.7022i 1.03946i
\(478\) 0 0
\(479\) 17.3889i 0.794518i −0.917707 0.397259i \(-0.869961\pi\)
0.917707 0.397259i \(-0.130039\pi\)
\(480\) 0 0
\(481\) 7.66785i 0.349624i
\(482\) 0 0
\(483\) 0.414116 0.0188429
\(484\) 0 0
\(485\) −10.5349 + 28.3514i −0.478366 + 1.28737i
\(486\) 0 0
\(487\) −7.45009 −0.337596 −0.168798 0.985651i \(-0.553989\pi\)
−0.168798 + 0.985651i \(0.553989\pi\)
\(488\) 0 0
\(489\) −0.240657 −0.0108829
\(490\) 0 0
\(491\) 2.24667 0.101391 0.0506954 0.998714i \(-0.483856\pi\)
0.0506954 + 0.998714i \(0.483856\pi\)
\(492\) 0 0
\(493\) −12.2846 + 11.9054i −0.553269 + 0.536191i
\(494\) 0 0
\(495\) −19.8693 7.38313i −0.893060 0.331847i
\(496\) 0 0
\(497\) 11.3621i 0.509660i
\(498\) 0 0
\(499\) 12.5132i 0.560170i −0.959975 0.280085i \(-0.909637\pi\)
0.959975 0.280085i \(-0.0903626\pi\)
\(500\) 0 0
\(501\) 2.70135 0.120688
\(502\) 0 0
\(503\) 1.17869 0.0525553 0.0262777 0.999655i \(-0.491635\pi\)
0.0262777 + 0.999655i \(0.491635\pi\)
\(504\) 0 0
\(505\) 6.62897 17.8397i 0.294985 0.793858i
\(506\) 0 0
\(507\) 2.97949 0.132324
\(508\) 0 0
\(509\) 17.1333 0.759419 0.379710 0.925106i \(-0.376024\pi\)
0.379710 + 0.925106i \(0.376024\pi\)
\(510\) 0 0
\(511\) 9.47179 0.419007
\(512\) 0 0
\(513\) −10.0321 −0.442928
\(514\) 0 0
\(515\) 0.0686846 + 0.0255221i 0.00302661 + 0.00112464i
\(516\) 0 0
\(517\) −5.82814 −0.256321
\(518\) 0 0
\(519\) 6.68367 0.293381
\(520\) 0 0
\(521\) 17.5140i 0.767303i 0.923478 + 0.383651i \(0.125334\pi\)
−0.923478 + 0.383651i \(0.874666\pi\)
\(522\) 0 0
\(523\) 11.8176i 0.516746i −0.966045 0.258373i \(-0.916814\pi\)
0.966045 0.258373i \(-0.0831864\pi\)
\(524\) 0 0
\(525\) −1.34475 1.15947i −0.0586897 0.0506034i
\(526\) 0 0
\(527\) 1.76891 1.71431i 0.0770549 0.0746764i
\(528\) 0 0
\(529\) −21.6401 −0.940875
\(530\) 0 0
\(531\) −33.2061 −1.44102
\(532\) 0 0
\(533\) −11.7539 −0.509120
\(534\) 0 0
\(535\) 5.53761 14.9027i 0.239412 0.644300i
\(536\) 0 0
\(537\) 3.67370 0.158532
\(538\) 0 0
\(539\) 3.29848i 0.142075i
\(540\) 0 0
\(541\) 21.5163i 0.925056i 0.886605 + 0.462528i \(0.153058\pi\)
−0.886605 + 0.462528i \(0.846942\pi\)
\(542\) 0 0
\(543\) 8.58753i 0.368526i
\(544\) 0 0
\(545\) 5.69279 + 2.11535i 0.243852 + 0.0906116i
\(546\) 0 0
\(547\) 39.2183 1.67685 0.838426 0.545015i \(-0.183476\pi\)
0.838426 + 0.545015i \(0.183476\pi\)
\(548\) 0 0
\(549\) 24.6956i 1.05398i
\(550\) 0 0
\(551\) 19.9545i 0.850092i
\(552\) 0 0
\(553\) 6.47139i 0.275192i
\(554\) 0 0
\(555\) 0.987777 2.65829i 0.0419288 0.112838i
\(556\) 0 0
\(557\) 42.2393i 1.78974i −0.446328 0.894869i \(-0.647269\pi\)
0.446328 0.894869i \(-0.352731\pi\)
\(558\) 0 0
\(559\) −18.7750 −0.794098
\(560\) 0 0
\(561\) −3.46815 + 3.36110i −0.146425 + 0.141906i
\(562\) 0 0
\(563\) 46.3025i 1.95142i −0.219074 0.975708i \(-0.570303\pi\)
0.219074 0.975708i \(-0.429697\pi\)
\(564\) 0 0
\(565\) −13.9268 + 37.4795i −0.585904 + 1.57677i
\(566\) 0 0
\(567\) 7.88092 0.330968
\(568\) 0 0
\(569\) 38.0346 1.59449 0.797247 0.603654i \(-0.206289\pi\)
0.797247 + 0.603654i \(0.206289\pi\)
\(570\) 0 0
\(571\) 14.3752i 0.601582i −0.953690 0.300791i \(-0.902749\pi\)
0.953690 0.300791i \(-0.0972507\pi\)
\(572\) 0 0
\(573\) −0.0562336 −0.00234919
\(574\) 0 0
\(575\) −4.41589 3.80746i −0.184155 0.158782i
\(576\) 0 0
\(577\) 1.49609i 0.0622831i −0.999515 0.0311415i \(-0.990086\pi\)
0.999515 0.0311415i \(-0.00991426\pi\)
\(578\) 0 0
\(579\) 7.46468 0.310222
\(580\) 0 0
\(581\) 11.8773i 0.492752i
\(582\) 0 0
\(583\) 26.0562 1.07914
\(584\) 0 0
\(585\) −12.9335 4.80587i −0.534733 0.198698i
\(586\) 0 0
\(587\) 28.7659i 1.18730i −0.804725 0.593648i \(-0.797687\pi\)
0.804725 0.593648i \(-0.202313\pi\)
\(588\) 0 0
\(589\) 2.87334i 0.118394i
\(590\) 0 0
\(591\) 2.15751 0.0887480
\(592\) 0 0
\(593\) 42.5871i 1.74884i −0.485169 0.874420i \(-0.661242\pi\)
0.485169 0.874420i \(-0.338758\pi\)
\(594\) 0 0
\(595\) 8.44085 3.70838i 0.346041 0.152029i
\(596\) 0 0
\(597\) 6.84339i 0.280081i
\(598\) 0 0
\(599\) 25.6616 1.04851 0.524253 0.851562i \(-0.324345\pi\)
0.524253 + 0.851562i \(0.324345\pi\)
\(600\) 0 0
\(601\) 3.97407i 0.162106i −0.996710 0.0810528i \(-0.974172\pi\)
0.996710 0.0810528i \(-0.0258282\pi\)
\(602\) 0 0
\(603\) 39.5314i 1.60984i
\(604\) 0 0
\(605\) 0.0934983 0.251621i 0.00380124 0.0102298i
\(606\) 0 0
\(607\) −6.79462 −0.275785 −0.137892 0.990447i \(-0.544033\pi\)
−0.137892 + 0.990447i \(0.544033\pi\)
\(608\) 0 0
\(609\) 1.47340i 0.0597054i
\(610\) 0 0
\(611\) −3.79368 −0.153476
\(612\) 0 0
\(613\) 9.29212i 0.375305i 0.982235 + 0.187653i \(0.0600879\pi\)
−0.982235 + 0.187653i \(0.939912\pi\)
\(614\) 0 0
\(615\) 4.07485 + 1.51415i 0.164314 + 0.0610564i
\(616\) 0 0
\(617\) −19.1313 −0.770197 −0.385099 0.922875i \(-0.625833\pi\)
−0.385099 + 0.922875i \(0.625833\pi\)
\(618\) 0 0
\(619\) 15.7073i 0.631331i −0.948871 0.315665i \(-0.897772\pi\)
0.948871 0.315665i \(-0.102228\pi\)
\(620\) 0 0
\(621\) −2.43247 −0.0976118
\(622\) 0 0
\(623\) 5.60255 0.224462
\(624\) 0 0
\(625\) 3.67923 + 24.7278i 0.147169 + 0.989111i
\(626\) 0 0
\(627\) 5.63351i 0.224981i
\(628\) 0 0
\(629\) 10.2476 + 10.5740i 0.408600 + 0.421614i
\(630\) 0 0
\(631\) 8.92291 0.355215 0.177608 0.984101i \(-0.443164\pi\)
0.177608 + 0.984101i \(0.443164\pi\)
\(632\) 0 0
\(633\) 3.08741i 0.122713i
\(634\) 0 0
\(635\) −0.00550635 0.00204607i −0.000218513 8.11959e-5i
\(636\) 0 0
\(637\) 2.14706i 0.0850697i
\(638\) 0 0
\(639\) 32.6535i 1.29175i
\(640\) 0 0
\(641\) 32.2020i 1.27190i 0.771729 + 0.635952i \(0.219392\pi\)
−0.771729 + 0.635952i \(0.780608\pi\)
\(642\) 0 0
\(643\) −41.6150 −1.64114 −0.820568 0.571548i \(-0.806343\pi\)
−0.820568 + 0.571548i \(0.806343\pi\)
\(644\) 0 0
\(645\) 6.50890 + 2.41861i 0.256288 + 0.0952325i
\(646\) 0 0
\(647\) 21.9180i 0.861686i 0.902427 + 0.430843i \(0.141784\pi\)
−0.902427 + 0.430843i \(0.858216\pi\)
\(648\) 0 0
\(649\) 38.1119i 1.49602i
\(650\) 0 0
\(651\) 0.212162i 0.00831528i
\(652\) 0 0
\(653\) 45.5809 1.78372 0.891859 0.452313i \(-0.149401\pi\)
0.891859 + 0.452313i \(0.149401\pi\)
\(654\) 0 0
\(655\) −0.547881 0.203584i −0.0214075 0.00795468i
\(656\) 0 0
\(657\) −27.2209 −1.06199
\(658\) 0 0
\(659\) −16.9857 −0.661667 −0.330834 0.943689i \(-0.607330\pi\)
−0.330834 + 0.943689i \(0.607330\pi\)
\(660\) 0 0
\(661\) −37.8502 −1.47220 −0.736101 0.676872i \(-0.763335\pi\)
−0.736101 + 0.676872i \(0.763335\pi\)
\(662\) 0 0
\(663\) −2.25751 + 2.18782i −0.0876743 + 0.0849680i
\(664\) 0 0
\(665\) 3.74584 10.0807i 0.145257 0.390914i
\(666\) 0 0
\(667\) 4.83836i 0.187342i
\(668\) 0 0
\(669\) 5.26356i 0.203501i
\(670\) 0 0
\(671\) −28.3441 −1.09421
\(672\) 0 0
\(673\) 14.9687 0.576999 0.288500 0.957480i \(-0.406844\pi\)
0.288500 + 0.957480i \(0.406844\pi\)
\(674\) 0 0
\(675\) 7.89892 + 6.81060i 0.304030 + 0.262140i
\(676\) 0 0
\(677\) −21.7580 −0.836230 −0.418115 0.908394i \(-0.637309\pi\)
−0.418115 + 0.908394i \(0.637309\pi\)
\(678\) 0 0
\(679\) −13.5262 −0.519086
\(680\) 0 0
\(681\) −2.74324 −0.105121
\(682\) 0 0
\(683\) −2.39193 −0.0915248 −0.0457624 0.998952i \(-0.514572\pi\)
−0.0457624 + 0.998952i \(0.514572\pi\)
\(684\) 0 0
\(685\) −5.28124 1.96243i −0.201786 0.0749805i
\(686\) 0 0
\(687\) −9.31085 −0.355231
\(688\) 0 0
\(689\) 16.9607 0.646150
\(690\) 0 0
\(691\) 0.227345i 0.00864860i −0.999991 0.00432430i \(-0.998624\pi\)
0.999991 0.00432430i \(-0.00137647\pi\)
\(692\) 0 0
\(693\) 9.47947i 0.360095i
\(694\) 0 0
\(695\) −15.1962 5.64665i −0.576423 0.214190i
\(696\) 0 0
\(697\) −16.2088 + 15.7084i −0.613951 + 0.595000i
\(698\) 0 0
\(699\) 0.241094 0.00911903
\(700\) 0 0
\(701\) −22.4834 −0.849186 −0.424593 0.905384i \(-0.639583\pi\)
−0.424593 + 0.905384i \(0.639583\pi\)
\(702\) 0 0
\(703\) 17.1760 0.647804
\(704\) 0 0
\(705\) 1.31519 + 0.488704i 0.0495330 + 0.0184057i
\(706\) 0 0
\(707\) 8.51116 0.320095
\(708\) 0 0
\(709\) 46.9658i 1.76384i −0.471402 0.881919i \(-0.656252\pi\)
0.471402 0.881919i \(-0.343748\pi\)
\(710\) 0 0
\(711\) 18.5981i 0.697483i
\(712\) 0 0
\(713\) 0.696696i 0.0260915i
\(714\) 0 0
\(715\) −5.51588 + 14.8442i −0.206282 + 0.555143i
\(716\) 0 0
\(717\) −0.0796392 −0.00297418
\(718\) 0 0
\(719\) 30.3086i 1.13032i −0.824982 0.565159i \(-0.808815\pi\)
0.824982 0.565159i \(-0.191185\pi\)
\(720\) 0 0
\(721\) 0.0327687i 0.00122037i
\(722\) 0 0
\(723\) 0.513017i 0.0190793i
\(724\) 0 0
\(725\) 13.5468 15.7115i 0.503114 0.583511i
\(726\) 0 0
\(727\) 51.7572i 1.91957i −0.280740 0.959784i \(-0.590580\pi\)
0.280740 0.959784i \(-0.409420\pi\)
\(728\) 0 0
\(729\) −20.4267 −0.756543
\(730\) 0 0
\(731\) −25.8909 + 25.0917i −0.957608 + 0.928049i
\(732\) 0 0
\(733\) 39.1675i 1.44668i 0.690490 + 0.723342i \(0.257395\pi\)
−0.690490 + 0.723342i \(0.742605\pi\)
\(734\) 0 0
\(735\) 0.276586 0.744342i 0.0102020 0.0274555i
\(736\) 0 0
\(737\) 45.3717 1.67129
\(738\) 0 0
\(739\) 20.1659 0.741814 0.370907 0.928670i \(-0.379047\pi\)
0.370907 + 0.928670i \(0.379047\pi\)
\(740\) 0 0
\(741\) 3.66699i 0.134710i
\(742\) 0 0
\(743\) −3.29079 −0.120727 −0.0603636 0.998176i \(-0.519226\pi\)
−0.0603636 + 0.998176i \(0.519226\pi\)
\(744\) 0 0
\(745\) 11.5426 31.0633i 0.422890 1.13807i
\(746\) 0 0
\(747\) 34.1339i 1.24890i
\(748\) 0 0
\(749\) 7.10993 0.259791
\(750\) 0 0
\(751\) 16.7276i 0.610400i −0.952288 0.305200i \(-0.901277\pi\)
0.952288 0.305200i \(-0.0987233\pi\)
\(752\) 0 0
\(753\) −6.28802 −0.229148
\(754\) 0 0
\(755\) −17.3250 + 46.6247i −0.630521 + 1.69685i
\(756\) 0 0
\(757\) 22.2049i 0.807050i −0.914969 0.403525i \(-0.867785\pi\)
0.914969 0.403525i \(-0.132215\pi\)
\(758\) 0 0
\(759\) 1.36595i 0.0495809i
\(760\) 0 0
\(761\) 20.7812 0.753317 0.376658 0.926352i \(-0.377073\pi\)
0.376658 + 0.926352i \(0.377073\pi\)
\(762\) 0 0
\(763\) 2.71597i 0.0983248i
\(764\) 0 0
\(765\) −24.2581 + 10.6575i −0.877053 + 0.385321i
\(766\) 0 0
\(767\) 24.8080i 0.895766i
\(768\) 0 0
\(769\) 2.61151 0.0941734 0.0470867 0.998891i \(-0.485006\pi\)
0.0470867 + 0.998891i \(0.485006\pi\)
\(770\) 0 0
\(771\) 5.37362i 0.193526i
\(772\) 0 0
\(773\) 8.03760i 0.289092i −0.989498 0.144546i \(-0.953828\pi\)
0.989498 0.144546i \(-0.0461722\pi\)
\(774\) 0 0
\(775\) −1.95066 + 2.26237i −0.0700697 + 0.0812666i
\(776\) 0 0
\(777\) 1.26824 0.0454979
\(778\) 0 0
\(779\) 26.3288i 0.943328i
\(780\) 0 0
\(781\) −37.4777 −1.34106
\(782\) 0 0
\(783\) 8.65462i 0.309291i
\(784\) 0 0
\(785\) 13.5855 + 5.04815i 0.484886 + 0.180176i
\(786\) 0 0
\(787\) −51.3631 −1.83090 −0.915449 0.402435i \(-0.868164\pi\)
−0.915449 + 0.402435i \(0.868164\pi\)
\(788\) 0 0
\(789\) 2.93397i 0.104452i
\(790\) 0 0
\(791\) −17.8811 −0.635778
\(792\) 0 0
\(793\) −18.4499 −0.655175
\(794\) 0 0
\(795\) −5.87991 2.18488i −0.208539 0.0774898i
\(796\) 0 0
\(797\) 42.8333i 1.51723i −0.651538 0.758616i \(-0.725876\pi\)
0.651538 0.758616i \(-0.274124\pi\)
\(798\) 0 0
\(799\) −5.23152 + 5.07003i −0.185078 + 0.179365i
\(800\) 0 0
\(801\) −16.1011 −0.568906
\(802\) 0 0
\(803\) 31.2425i 1.10252i
\(804\) 0 0
\(805\) 0.908251 2.44427i 0.0320117 0.0861491i
\(806\) 0 0
\(807\) 1.25454i 0.0441620i
\(808\) 0 0
\(809\) 33.2788i 1.17002i 0.811026 + 0.585010i \(0.198910\pi\)
−0.811026 + 0.585010i \(0.801090\pi\)
\(810\) 0 0
\(811\) 19.1048i 0.670861i −0.942065 0.335431i \(-0.891118\pi\)
0.942065 0.335431i \(-0.108882\pi\)
\(812\) 0 0
\(813\) −5.58540 −0.195889
\(814\) 0 0
\(815\) −0.527815 + 1.42045i −0.0184886 + 0.0497561i
\(816\) 0 0
\(817\) 42.0560i 1.47135i
\(818\) 0 0
\(819\) 6.17042i 0.215612i
\(820\) 0 0
\(821\) 46.5550i 1.62478i 0.583113 + 0.812391i \(0.301835\pi\)
−0.583113 + 0.812391i \(0.698165\pi\)
\(822\) 0 0
\(823\) −30.2959 −1.05605 −0.528024 0.849229i \(-0.677067\pi\)
−0.528024 + 0.849229i \(0.677067\pi\)
\(824\) 0 0
\(825\) 3.82448 4.43563i 0.133151 0.154429i
\(826\) 0 0
\(827\) 52.1956 1.81502 0.907510 0.420030i \(-0.137980\pi\)
0.907510 + 0.420030i \(0.137980\pi\)
\(828\) 0 0
\(829\) −35.4620 −1.23165 −0.615824 0.787884i \(-0.711177\pi\)
−0.615824 + 0.787884i \(0.711177\pi\)
\(830\) 0 0
\(831\) −5.84323 −0.202699
\(832\) 0 0
\(833\) 2.86942 + 2.96081i 0.0994195 + 0.102586i
\(834\) 0 0
\(835\) 5.92469 15.9444i 0.205032 0.551779i
\(836\) 0 0
\(837\) 1.24622i 0.0430755i
\(838\) 0 0
\(839\) 44.6333i 1.54091i −0.637493 0.770456i \(-0.720029\pi\)
0.637493 0.770456i \(-0.279971\pi\)
\(840\) 0 0
\(841\) 11.7854 0.406392
\(842\) 0 0
\(843\) 3.54240 0.122007
\(844\) 0 0
\(845\) 6.53469 17.5860i 0.224800 0.604978i
\(846\) 0 0
\(847\) 0.120046 0.00412482
\(848\) 0 0
\(849\) −9.86918 −0.338709
\(850\) 0 0
\(851\) 4.16465 0.142762
\(852\) 0 0
\(853\) −44.6089 −1.52738 −0.763689 0.645584i \(-0.776614\pi\)
−0.763689 + 0.645584i \(0.776614\pi\)
\(854\) 0 0
\(855\) −10.7651 + 28.9709i −0.368160 + 0.990785i
\(856\) 0 0
\(857\) 39.0389 1.33354 0.666772 0.745262i \(-0.267676\pi\)
0.666772 + 0.745262i \(0.267676\pi\)
\(858\) 0 0
\(859\) 9.24166 0.315321 0.157661 0.987493i \(-0.449605\pi\)
0.157661 + 0.987493i \(0.449605\pi\)
\(860\) 0 0
\(861\) 1.94407i 0.0662537i
\(862\) 0 0
\(863\) 21.2056i 0.721848i −0.932595 0.360924i \(-0.882461\pi\)
0.932595 0.360924i \(-0.117539\pi\)
\(864\) 0 0
\(865\) 14.6588 39.4495i 0.498415 1.34132i
\(866\) 0 0
\(867\) −0.189224 + 6.03404i −0.00642637 + 0.204927i
\(868\) 0 0
\(869\) 21.3458 0.724105
\(870\) 0 0
\(871\) 29.5336 1.00071
\(872\) 0 0
\(873\) 38.8727 1.31564
\(874\) 0 0
\(875\) −9.79297 + 5.39424i −0.331063 + 0.182359i
\(876\) 0 0
\(877\) 11.6267 0.392605 0.196302 0.980543i \(-0.437107\pi\)
0.196302 + 0.980543i \(0.437107\pi\)
\(878\) 0 0
\(879\) 0.0619341i 0.00208898i
\(880\) 0 0
\(881\) 26.2424i 0.884128i 0.896983 + 0.442064i \(0.145754\pi\)
−0.896983 + 0.442064i \(0.854246\pi\)
\(882\) 0 0
\(883\) 53.1453i 1.78848i −0.447587 0.894240i \(-0.647717\pi\)
0.447587 0.894240i \(-0.352283\pi\)
\(884\) 0 0
\(885\) 3.19578 8.60043i 0.107425 0.289100i
\(886\) 0 0
\(887\) −27.7176 −0.930666 −0.465333 0.885136i \(-0.654065\pi\)
−0.465333 + 0.885136i \(0.654065\pi\)
\(888\) 0 0
\(889\) 0.00262702i 8.81076e-5i
\(890\) 0 0
\(891\) 25.9950i 0.870867i
\(892\) 0 0
\(893\) 8.49785i 0.284370i
\(894\) 0 0
\(895\) 8.05726 21.6835i 0.269325 0.724801i
\(896\) 0 0
\(897\) 0.889133i 0.0296873i
\(898\) 0 0
\(899\) 2.47881 0.0826730
\(900\) 0 0
\(901\) 23.3889 22.6669i 0.779197 0.755145i
\(902\) 0 0
\(903\) 3.10533i 0.103339i
\(904\) 0 0
\(905\) 50.6868 + 18.8344i 1.68489 + 0.626077i
\(906\) 0 0
\(907\) −19.8105 −0.657797 −0.328899 0.944365i \(-0.606677\pi\)
−0.328899 + 0.944365i \(0.606677\pi\)
\(908\) 0 0
\(909\) −24.4602 −0.811292
\(910\) 0 0
\(911\) 10.7641i 0.356631i 0.983973 + 0.178316i \(0.0570648\pi\)
−0.983973 + 0.178316i \(0.942935\pi\)
\(912\) 0 0
\(913\) 39.1769 1.29656
\(914\) 0 0
\(915\) 6.39620 + 2.37673i 0.211452 + 0.0785722i
\(916\) 0 0
\(917\) 0.261389i 0.00863181i
\(918\) 0 0
\(919\) 28.2712 0.932582 0.466291 0.884631i \(-0.345590\pi\)
0.466291 + 0.884631i \(0.345590\pi\)
\(920\) 0 0
\(921\) 2.67297i 0.0880775i
\(922\) 0 0
\(923\) −24.3952 −0.802977
\(924\) 0 0
\(925\) −13.5238 11.6605i −0.444659 0.383393i
\(926\) 0 0
\(927\) 0.0941738i 0.00309307i
\(928\) 0 0
\(929\) 36.7411i 1.20544i 0.797955 + 0.602718i \(0.205915\pi\)
−0.797955 + 0.602718i \(0.794085\pi\)
\(930\) 0 0
\(931\) 4.80942 0.157622
\(932\) 0 0
\(933\) 0.914221i 0.0299302i
\(934\) 0 0
\(935\) 12.2320 + 27.8420i 0.400029 + 0.910529i
\(936\) 0 0
\(937\) 11.1941i 0.365695i −0.983141 0.182848i \(-0.941468\pi\)
0.983141 0.182848i \(-0.0585315\pi\)
\(938\) 0 0
\(939\) 2.38684 0.0778917
\(940\) 0 0
\(941\) 16.0677i 0.523793i 0.965096 + 0.261897i \(0.0843480\pi\)
−0.965096 + 0.261897i \(0.915652\pi\)
\(942\) 0 0
\(943\) 6.38393i 0.207889i
\(944\) 0 0
\(945\) −1.62463 + 4.37218i −0.0528494 + 0.142227i
\(946\) 0 0
\(947\) 19.2299 0.624887 0.312443 0.949936i \(-0.398853\pi\)
0.312443 + 0.949936i \(0.398853\pi\)
\(948\) 0 0
\(949\) 20.3365i 0.660151i
\(950\) 0 0
\(951\) 1.23738 0.0401249
\(952\) 0 0
\(953\) 29.9519i 0.970239i 0.874448 + 0.485119i \(0.161224\pi\)
−0.874448 + 0.485119i \(0.838776\pi\)
\(954\) 0 0
\(955\) −0.123333 + 0.331912i −0.00399096 + 0.0107404i
\(956\) 0 0
\(957\) −4.85999 −0.157101
\(958\) 0 0
\(959\) 2.51963i 0.0813631i
\(960\) 0 0
\(961\) 30.6431 0.988486
\(962\) 0 0
\(963\) −20.4332 −0.658450
\(964\) 0 0
\(965\) 16.3718 44.0593i 0.527025 1.41832i
\(966\) 0 0
\(967\) 38.6834i 1.24397i −0.783027 0.621987i \(-0.786325\pi\)
0.783027 0.621987i \(-0.213675\pi\)
\(968\) 0 0
\(969\) 4.90072 + 5.05681i 0.157434 + 0.162448i
\(970\) 0 0
\(971\) −19.4526 −0.624264 −0.312132 0.950039i \(-0.601043\pi\)
−0.312132 + 0.950039i \(0.601043\pi\)
\(972\) 0 0
\(973\) 7.24994i 0.232422i
\(974\) 0 0
\(975\) 2.48945 2.88726i 0.0797263 0.0924664i
\(976\) 0 0
\(977\) 18.7338i 0.599348i −0.954042 0.299674i \(-0.903122\pi\)
0.954042 0.299674i \(-0.0968779\pi\)
\(978\) 0 0
\(979\) 18.4799i 0.590620i
\(980\) 0 0
\(981\) 7.80541i 0.249208i
\(982\) 0 0
\(983\) −39.3544 −1.25521 −0.627606 0.778531i \(-0.715965\pi\)
−0.627606 + 0.778531i \(0.715965\pi\)
\(984\) 0 0
\(985\) 4.73191 12.7344i 0.150771 0.405752i
\(986\) 0 0
\(987\) 0.627465i 0.0199724i
\(988\) 0 0
\(989\) 10.1973i 0.324255i
\(990\) 0 0
\(991\) 17.6529i 0.560763i −0.959889 0.280382i \(-0.909539\pi\)
0.959889 0.280382i \(-0.0904610\pi\)
\(992\) 0 0
\(993\) −10.2538 −0.325393
\(994\) 0 0
\(995\) 40.3922 + 15.0091i 1.28052 + 0.475821i
\(996\) 0 0
\(997\) 0.372742 0.0118049 0.00590243 0.999983i \(-0.498121\pi\)
0.00590243 + 0.999983i \(0.498121\pi\)
\(998\) 0 0
\(999\) −7.44951 −0.235692
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2380.2.m.d.169.13 yes 26
5.4 even 2 2380.2.m.c.169.13 26
17.16 even 2 2380.2.m.c.169.14 yes 26
85.84 even 2 inner 2380.2.m.d.169.14 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2380.2.m.c.169.13 26 5.4 even 2
2380.2.m.c.169.14 yes 26 17.16 even 2
2380.2.m.d.169.13 yes 26 1.1 even 1 trivial
2380.2.m.d.169.14 yes 26 85.84 even 2 inner