Properties

Label 2380.2.m.d.169.12
Level $2380$
Weight $2$
Character 2380.169
Analytic conductor $19.004$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2380,2,Mod(169,2380)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2380.169"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2380, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [26,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.0043956811\)
Analytic rank: \(0\)
Dimension: \(26\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 169.12
Character \(\chi\) \(=\) 2380.169
Dual form 2380.2.m.d.169.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0401658 q^{3} +(1.78015 - 1.35317i) q^{5} +1.00000 q^{7} -2.99839 q^{9} +4.41190i q^{11} +0.124430i q^{13} +(-0.0715012 + 0.0543509i) q^{15} +(-3.87296 - 1.41427i) q^{17} -5.48398 q^{19} -0.0401658 q^{21} -5.88539 q^{23} +(1.33789 - 4.81768i) q^{25} +0.240930 q^{27} +1.55880i q^{29} -7.94462i q^{31} -0.177207i q^{33} +(1.78015 - 1.35317i) q^{35} -8.67968 q^{37} -0.00499783i q^{39} -12.2935i q^{41} +3.08398i q^{43} +(-5.33759 + 4.05731i) q^{45} -4.44458i q^{47} +1.00000 q^{49} +(0.155560 + 0.0568053i) q^{51} -3.96580i q^{53} +(5.97003 + 7.85385i) q^{55} +0.220268 q^{57} -5.88784 q^{59} -5.75018i q^{61} -2.99839 q^{63} +(0.168374 + 0.221504i) q^{65} +11.9079i q^{67} +0.236391 q^{69} -13.3221i q^{71} +1.87848 q^{73} +(-0.0537372 + 0.193506i) q^{75} +4.41190i q^{77} +5.59040i q^{79} +8.98548 q^{81} +8.93663i q^{83} +(-8.80821 + 2.72314i) q^{85} -0.0626105i q^{87} -0.343504 q^{89} +0.124430i q^{91} +0.319102i q^{93} +(-9.76233 + 7.42074i) q^{95} -9.97802 q^{97} -13.2286i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 6 q^{3} - 4 q^{5} + 26 q^{7} + 32 q^{9} + 10 q^{15} - 11 q^{17} + 6 q^{21} - 16 q^{23} + 4 q^{25} + 6 q^{27} - 4 q^{35} - 20 q^{37} - 18 q^{45} + 26 q^{49} + 9 q^{51} - 14 q^{55} + 32 q^{59} + 32 q^{63}+ \cdots - 46 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2380\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(1191\) \(1261\) \(1361\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0401658 −0.0231897 −0.0115949 0.999933i \(-0.503691\pi\)
−0.0115949 + 0.999933i \(0.503691\pi\)
\(4\) 0 0
\(5\) 1.78015 1.35317i 0.796108 0.605154i
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.99839 −0.999462
\(10\) 0 0
\(11\) 4.41190i 1.33024i 0.746738 + 0.665119i \(0.231619\pi\)
−0.746738 + 0.665119i \(0.768381\pi\)
\(12\) 0 0
\(13\) 0.124430i 0.0345107i 0.999851 + 0.0172553i \(0.00549282\pi\)
−0.999851 + 0.0172553i \(0.994507\pi\)
\(14\) 0 0
\(15\) −0.0715012 + 0.0543509i −0.0184615 + 0.0140333i
\(16\) 0 0
\(17\) −3.87296 1.41427i −0.939331 0.343011i
\(18\) 0 0
\(19\) −5.48398 −1.25811 −0.629056 0.777360i \(-0.716558\pi\)
−0.629056 + 0.777360i \(0.716558\pi\)
\(20\) 0 0
\(21\) −0.0401658 −0.00876489
\(22\) 0 0
\(23\) −5.88539 −1.22719 −0.613594 0.789622i \(-0.710277\pi\)
−0.613594 + 0.789622i \(0.710277\pi\)
\(24\) 0 0
\(25\) 1.33789 4.81768i 0.267577 0.963536i
\(26\) 0 0
\(27\) 0.240930 0.0463669
\(28\) 0 0
\(29\) 1.55880i 0.289462i 0.989471 + 0.144731i \(0.0462317\pi\)
−0.989471 + 0.144731i \(0.953768\pi\)
\(30\) 0 0
\(31\) 7.94462i 1.42690i −0.700708 0.713448i \(-0.747133\pi\)
0.700708 0.713448i \(-0.252867\pi\)
\(32\) 0 0
\(33\) 0.177207i 0.0308478i
\(34\) 0 0
\(35\) 1.78015 1.35317i 0.300901 0.228727i
\(36\) 0 0
\(37\) −8.67968 −1.42693 −0.713465 0.700691i \(-0.752875\pi\)
−0.713465 + 0.700691i \(0.752875\pi\)
\(38\) 0 0
\(39\) 0.00499783i 0.000800293i
\(40\) 0 0
\(41\) 12.2935i 1.91993i −0.280122 0.959964i \(-0.590375\pi\)
0.280122 0.959964i \(-0.409625\pi\)
\(42\) 0 0
\(43\) 3.08398i 0.470303i 0.971959 + 0.235152i \(0.0755586\pi\)
−0.971959 + 0.235152i \(0.924441\pi\)
\(44\) 0 0
\(45\) −5.33759 + 4.05731i −0.795680 + 0.604829i
\(46\) 0 0
\(47\) 4.44458i 0.648309i −0.946004 0.324155i \(-0.894920\pi\)
0.946004 0.324155i \(-0.105080\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0.155560 + 0.0568053i 0.0217828 + 0.00795433i
\(52\) 0 0
\(53\) 3.96580i 0.544744i −0.962192 0.272372i \(-0.912192\pi\)
0.962192 0.272372i \(-0.0878082\pi\)
\(54\) 0 0
\(55\) 5.97003 + 7.85385i 0.804998 + 1.05901i
\(56\) 0 0
\(57\) 0.220268 0.0291752
\(58\) 0 0
\(59\) −5.88784 −0.766531 −0.383265 0.923638i \(-0.625201\pi\)
−0.383265 + 0.923638i \(0.625201\pi\)
\(60\) 0 0
\(61\) 5.75018i 0.736235i −0.929779 0.368117i \(-0.880002\pi\)
0.929779 0.368117i \(-0.119998\pi\)
\(62\) 0 0
\(63\) −2.99839 −0.377761
\(64\) 0 0
\(65\) 0.168374 + 0.221504i 0.0208843 + 0.0274743i
\(66\) 0 0
\(67\) 11.9079i 1.45478i 0.686225 + 0.727389i \(0.259266\pi\)
−0.686225 + 0.727389i \(0.740734\pi\)
\(68\) 0 0
\(69\) 0.236391 0.0284581
\(70\) 0 0
\(71\) 13.3221i 1.58105i −0.612433 0.790523i \(-0.709809\pi\)
0.612433 0.790523i \(-0.290191\pi\)
\(72\) 0 0
\(73\) 1.87848 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(74\) 0 0
\(75\) −0.0537372 + 0.193506i −0.00620504 + 0.0223441i
\(76\) 0 0
\(77\) 4.41190i 0.502782i
\(78\) 0 0
\(79\) 5.59040i 0.628969i 0.949263 + 0.314485i \(0.101832\pi\)
−0.949263 + 0.314485i \(0.898168\pi\)
\(80\) 0 0
\(81\) 8.98548 0.998387
\(82\) 0 0
\(83\) 8.93663i 0.980922i 0.871463 + 0.490461i \(0.163172\pi\)
−0.871463 + 0.490461i \(0.836828\pi\)
\(84\) 0 0
\(85\) −8.80821 + 2.72314i −0.955384 + 0.295366i
\(86\) 0 0
\(87\) 0.0626105i 0.00671255i
\(88\) 0 0
\(89\) −0.343504 −0.0364114 −0.0182057 0.999834i \(-0.505795\pi\)
−0.0182057 + 0.999834i \(0.505795\pi\)
\(90\) 0 0
\(91\) 0.124430i 0.0130438i
\(92\) 0 0
\(93\) 0.319102i 0.0330893i
\(94\) 0 0
\(95\) −9.76233 + 7.42074i −1.00159 + 0.761351i
\(96\) 0 0
\(97\) −9.97802 −1.01311 −0.506557 0.862206i \(-0.669082\pi\)
−0.506557 + 0.862206i \(0.669082\pi\)
\(98\) 0 0
\(99\) 13.2286i 1.32952i
\(100\) 0 0
\(101\) 3.40363 0.338673 0.169337 0.985558i \(-0.445837\pi\)
0.169337 + 0.985558i \(0.445837\pi\)
\(102\) 0 0
\(103\) 0.471544i 0.0464626i 0.999730 + 0.0232313i \(0.00739542\pi\)
−0.999730 + 0.0232313i \(0.992605\pi\)
\(104\) 0 0
\(105\) −0.0715012 + 0.0543509i −0.00697780 + 0.00530411i
\(106\) 0 0
\(107\) 7.94370 0.767947 0.383973 0.923344i \(-0.374555\pi\)
0.383973 + 0.923344i \(0.374555\pi\)
\(108\) 0 0
\(109\) 3.72199i 0.356502i 0.983985 + 0.178251i \(0.0570439\pi\)
−0.983985 + 0.178251i \(0.942956\pi\)
\(110\) 0 0
\(111\) 0.348626 0.0330901
\(112\) 0 0
\(113\) −1.84147 −0.173231 −0.0866154 0.996242i \(-0.527605\pi\)
−0.0866154 + 0.996242i \(0.527605\pi\)
\(114\) 0 0
\(115\) −10.4769 + 7.96390i −0.976974 + 0.742638i
\(116\) 0 0
\(117\) 0.373089i 0.0344921i
\(118\) 0 0
\(119\) −3.87296 1.41427i −0.355034 0.129646i
\(120\) 0 0
\(121\) −8.46484 −0.769531
\(122\) 0 0
\(123\) 0.493779i 0.0445226i
\(124\) 0 0
\(125\) −4.13748 10.3866i −0.370067 0.929005i
\(126\) 0 0
\(127\) 1.91181i 0.169646i −0.996396 0.0848230i \(-0.972968\pi\)
0.996396 0.0848230i \(-0.0270325\pi\)
\(128\) 0 0
\(129\) 0.123871i 0.0109062i
\(130\) 0 0
\(131\) 8.21039i 0.717345i 0.933464 + 0.358672i \(0.116770\pi\)
−0.933464 + 0.358672i \(0.883230\pi\)
\(132\) 0 0
\(133\) −5.48398 −0.475522
\(134\) 0 0
\(135\) 0.428892 0.326018i 0.0369131 0.0280591i
\(136\) 0 0
\(137\) 23.0153i 1.96633i 0.182730 + 0.983163i \(0.441507\pi\)
−0.182730 + 0.983163i \(0.558493\pi\)
\(138\) 0 0
\(139\) 5.59882i 0.474885i −0.971402 0.237443i \(-0.923691\pi\)
0.971402 0.237443i \(-0.0763092\pi\)
\(140\) 0 0
\(141\) 0.178520i 0.0150341i
\(142\) 0 0
\(143\) −0.548973 −0.0459074
\(144\) 0 0
\(145\) 2.10932 + 2.77491i 0.175169 + 0.230443i
\(146\) 0 0
\(147\) −0.0401658 −0.00331282
\(148\) 0 0
\(149\) −14.1850 −1.16208 −0.581039 0.813875i \(-0.697354\pi\)
−0.581039 + 0.813875i \(0.697354\pi\)
\(150\) 0 0
\(151\) 4.66075 0.379287 0.189643 0.981853i \(-0.439267\pi\)
0.189643 + 0.981853i \(0.439267\pi\)
\(152\) 0 0
\(153\) 11.6126 + 4.24053i 0.938826 + 0.342827i
\(154\) 0 0
\(155\) −10.7504 14.1426i −0.863492 1.13596i
\(156\) 0 0
\(157\) 15.7578i 1.25761i −0.777564 0.628804i \(-0.783545\pi\)
0.777564 0.628804i \(-0.216455\pi\)
\(158\) 0 0
\(159\) 0.159289i 0.0126325i
\(160\) 0 0
\(161\) −5.88539 −0.463833
\(162\) 0 0
\(163\) 3.78015 0.296084 0.148042 0.988981i \(-0.452703\pi\)
0.148042 + 0.988981i \(0.452703\pi\)
\(164\) 0 0
\(165\) −0.239791 0.315456i −0.0186677 0.0245582i
\(166\) 0 0
\(167\) −2.19371 −0.169754 −0.0848770 0.996391i \(-0.527050\pi\)
−0.0848770 + 0.996391i \(0.527050\pi\)
\(168\) 0 0
\(169\) 12.9845 0.998809
\(170\) 0 0
\(171\) 16.4431 1.25744
\(172\) 0 0
\(173\) −16.7430 −1.27294 −0.636472 0.771300i \(-0.719607\pi\)
−0.636472 + 0.771300i \(0.719607\pi\)
\(174\) 0 0
\(175\) 1.33789 4.81768i 0.101135 0.364183i
\(176\) 0 0
\(177\) 0.236489 0.0177756
\(178\) 0 0
\(179\) 19.3684 1.44766 0.723830 0.689978i \(-0.242380\pi\)
0.723830 + 0.689978i \(0.242380\pi\)
\(180\) 0 0
\(181\) 2.45892i 0.182770i 0.995816 + 0.0913851i \(0.0291294\pi\)
−0.995816 + 0.0913851i \(0.970871\pi\)
\(182\) 0 0
\(183\) 0.230960i 0.0170731i
\(184\) 0 0
\(185\) −15.4512 + 11.7450i −1.13599 + 0.863513i
\(186\) 0 0
\(187\) 6.23962 17.0871i 0.456286 1.24953i
\(188\) 0 0
\(189\) 0.240930 0.0175251
\(190\) 0 0
\(191\) 23.3129 1.68687 0.843433 0.537235i \(-0.180531\pi\)
0.843433 + 0.537235i \(0.180531\pi\)
\(192\) 0 0
\(193\) 2.47857 0.178411 0.0892057 0.996013i \(-0.471567\pi\)
0.0892057 + 0.996013i \(0.471567\pi\)
\(194\) 0 0
\(195\) −0.00676289 0.00889689i −0.000484300 0.000637120i
\(196\) 0 0
\(197\) −25.7420 −1.83404 −0.917021 0.398838i \(-0.869413\pi\)
−0.917021 + 0.398838i \(0.869413\pi\)
\(198\) 0 0
\(199\) 0.857328i 0.0607744i −0.999538 0.0303872i \(-0.990326\pi\)
0.999538 0.0303872i \(-0.00967403\pi\)
\(200\) 0 0
\(201\) 0.478289i 0.0337359i
\(202\) 0 0
\(203\) 1.55880i 0.109406i
\(204\) 0 0
\(205\) −16.6352 21.8844i −1.16185 1.52847i
\(206\) 0 0
\(207\) 17.6467 1.22653
\(208\) 0 0
\(209\) 24.1948i 1.67359i
\(210\) 0 0
\(211\) 25.0841i 1.72686i 0.504465 + 0.863432i \(0.331690\pi\)
−0.504465 + 0.863432i \(0.668310\pi\)
\(212\) 0 0
\(213\) 0.535093i 0.0366640i
\(214\) 0 0
\(215\) 4.17314 + 5.48996i 0.284606 + 0.374412i
\(216\) 0 0
\(217\) 7.94462i 0.539316i
\(218\) 0 0
\(219\) −0.0754507 −0.00509849
\(220\) 0 0
\(221\) 0.175978 0.481913i 0.0118376 0.0324170i
\(222\) 0 0
\(223\) 18.3312i 1.22755i −0.789481 0.613775i \(-0.789650\pi\)
0.789481 0.613775i \(-0.210350\pi\)
\(224\) 0 0
\(225\) −4.01150 + 14.4453i −0.267433 + 0.963018i
\(226\) 0 0
\(227\) −23.4124 −1.55394 −0.776968 0.629540i \(-0.783244\pi\)
−0.776968 + 0.629540i \(0.783244\pi\)
\(228\) 0 0
\(229\) −12.1193 −0.800867 −0.400434 0.916326i \(-0.631140\pi\)
−0.400434 + 0.916326i \(0.631140\pi\)
\(230\) 0 0
\(231\) 0.177207i 0.0116594i
\(232\) 0 0
\(233\) −19.9972 −1.31006 −0.655032 0.755601i \(-0.727345\pi\)
−0.655032 + 0.755601i \(0.727345\pi\)
\(234\) 0 0
\(235\) −6.01426 7.91204i −0.392327 0.516124i
\(236\) 0 0
\(237\) 0.224543i 0.0145856i
\(238\) 0 0
\(239\) −21.3028 −1.37796 −0.688982 0.724778i \(-0.741942\pi\)
−0.688982 + 0.724778i \(0.741942\pi\)
\(240\) 0 0
\(241\) 11.8586i 0.763882i −0.924187 0.381941i \(-0.875256\pi\)
0.924187 0.381941i \(-0.124744\pi\)
\(242\) 0 0
\(243\) −1.08370 −0.0695192
\(244\) 0 0
\(245\) 1.78015 1.35317i 0.113730 0.0864506i
\(246\) 0 0
\(247\) 0.682372i 0.0434183i
\(248\) 0 0
\(249\) 0.358946i 0.0227473i
\(250\) 0 0
\(251\) 24.9516 1.57493 0.787464 0.616360i \(-0.211393\pi\)
0.787464 + 0.616360i \(0.211393\pi\)
\(252\) 0 0
\(253\) 25.9657i 1.63245i
\(254\) 0 0
\(255\) 0.353788 0.109377i 0.0221551 0.00684945i
\(256\) 0 0
\(257\) 24.6722i 1.53901i 0.638643 + 0.769503i \(0.279496\pi\)
−0.638643 + 0.769503i \(0.720504\pi\)
\(258\) 0 0
\(259\) −8.67968 −0.539329
\(260\) 0 0
\(261\) 4.67389i 0.289307i
\(262\) 0 0
\(263\) 10.4482i 0.644266i −0.946694 0.322133i \(-0.895600\pi\)
0.946694 0.322133i \(-0.104400\pi\)
\(264\) 0 0
\(265\) −5.36638 7.05973i −0.329654 0.433676i
\(266\) 0 0
\(267\) 0.0137971 0.000844369
\(268\) 0 0
\(269\) 16.8467i 1.02716i −0.858040 0.513582i \(-0.828318\pi\)
0.858040 0.513582i \(-0.171682\pi\)
\(270\) 0 0
\(271\) −2.70894 −0.164557 −0.0822783 0.996609i \(-0.526220\pi\)
−0.0822783 + 0.996609i \(0.526220\pi\)
\(272\) 0 0
\(273\) 0.00499783i 0.000302482i
\(274\) 0 0
\(275\) 21.2551 + 5.90262i 1.28173 + 0.355941i
\(276\) 0 0
\(277\) −6.60716 −0.396986 −0.198493 0.980102i \(-0.563605\pi\)
−0.198493 + 0.980102i \(0.563605\pi\)
\(278\) 0 0
\(279\) 23.8210i 1.42613i
\(280\) 0 0
\(281\) −6.96201 −0.415318 −0.207659 0.978201i \(-0.566585\pi\)
−0.207659 + 0.978201i \(0.566585\pi\)
\(282\) 0 0
\(283\) 14.2220 0.845413 0.422706 0.906267i \(-0.361080\pi\)
0.422706 + 0.906267i \(0.361080\pi\)
\(284\) 0 0
\(285\) 0.392111 0.298059i 0.0232267 0.0176555i
\(286\) 0 0
\(287\) 12.2935i 0.725665i
\(288\) 0 0
\(289\) 12.9997 + 10.9548i 0.764687 + 0.644402i
\(290\) 0 0
\(291\) 0.400775 0.0234938
\(292\) 0 0
\(293\) 27.9514i 1.63294i 0.577388 + 0.816470i \(0.304072\pi\)
−0.577388 + 0.816470i \(0.695928\pi\)
\(294\) 0 0
\(295\) −10.4812 + 7.96722i −0.610242 + 0.463869i
\(296\) 0 0
\(297\) 1.06296i 0.0616790i
\(298\) 0 0
\(299\) 0.732319i 0.0423511i
\(300\) 0 0
\(301\) 3.08398i 0.177758i
\(302\) 0 0
\(303\) −0.136709 −0.00785374
\(304\) 0 0
\(305\) −7.78094 10.2362i −0.445535 0.586123i
\(306\) 0 0
\(307\) 18.5924i 1.06113i 0.847645 + 0.530564i \(0.178020\pi\)
−0.847645 + 0.530564i \(0.821980\pi\)
\(308\) 0 0
\(309\) 0.0189399i 0.00107745i
\(310\) 0 0
\(311\) 14.4894i 0.821620i −0.911721 0.410810i \(-0.865246\pi\)
0.911721 0.410810i \(-0.134754\pi\)
\(312\) 0 0
\(313\) −23.8817 −1.34987 −0.674937 0.737875i \(-0.735829\pi\)
−0.674937 + 0.737875i \(0.735829\pi\)
\(314\) 0 0
\(315\) −5.33759 + 4.05731i −0.300739 + 0.228604i
\(316\) 0 0
\(317\) −8.43782 −0.473915 −0.236958 0.971520i \(-0.576150\pi\)
−0.236958 + 0.971520i \(0.576150\pi\)
\(318\) 0 0
\(319\) −6.87728 −0.385054
\(320\) 0 0
\(321\) −0.319065 −0.0178085
\(322\) 0 0
\(323\) 21.2393 + 7.75584i 1.18178 + 0.431547i
\(324\) 0 0
\(325\) 0.599464 + 0.166473i 0.0332523 + 0.00923427i
\(326\) 0 0
\(327\) 0.149497i 0.00826718i
\(328\) 0 0
\(329\) 4.44458i 0.245038i
\(330\) 0 0
\(331\) −4.80202 −0.263943 −0.131972 0.991254i \(-0.542131\pi\)
−0.131972 + 0.991254i \(0.542131\pi\)
\(332\) 0 0
\(333\) 26.0250 1.42616
\(334\) 0 0
\(335\) 16.1133 + 21.1978i 0.880365 + 1.15816i
\(336\) 0 0
\(337\) 13.9612 0.760516 0.380258 0.924880i \(-0.375835\pi\)
0.380258 + 0.924880i \(0.375835\pi\)
\(338\) 0 0
\(339\) 0.0739640 0.00401717
\(340\) 0 0
\(341\) 35.0509 1.89811
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0.420812 0.319876i 0.0226558 0.0172215i
\(346\) 0 0
\(347\) 12.6764 0.680505 0.340253 0.940334i \(-0.389487\pi\)
0.340253 + 0.940334i \(0.389487\pi\)
\(348\) 0 0
\(349\) 18.0226 0.964728 0.482364 0.875971i \(-0.339778\pi\)
0.482364 + 0.875971i \(0.339778\pi\)
\(350\) 0 0
\(351\) 0.0299789i 0.00160016i
\(352\) 0 0
\(353\) 15.6792i 0.834518i 0.908788 + 0.417259i \(0.137009\pi\)
−0.908788 + 0.417259i \(0.862991\pi\)
\(354\) 0 0
\(355\) −18.0270 23.7154i −0.956776 1.25868i
\(356\) 0 0
\(357\) 0.155560 + 0.0568053i 0.00823313 + 0.00300645i
\(358\) 0 0
\(359\) −25.3814 −1.33958 −0.669789 0.742551i \(-0.733616\pi\)
−0.669789 + 0.742551i \(0.733616\pi\)
\(360\) 0 0
\(361\) 11.0741 0.582846
\(362\) 0 0
\(363\) 0.339997 0.0178452
\(364\) 0 0
\(365\) 3.34399 2.54190i 0.175032 0.133049i
\(366\) 0 0
\(367\) 26.2380 1.36961 0.684805 0.728726i \(-0.259887\pi\)
0.684805 + 0.728726i \(0.259887\pi\)
\(368\) 0 0
\(369\) 36.8608i 1.91890i
\(370\) 0 0
\(371\) 3.96580i 0.205894i
\(372\) 0 0
\(373\) 5.61849i 0.290914i 0.989365 + 0.145457i \(0.0464653\pi\)
−0.989365 + 0.145457i \(0.953535\pi\)
\(374\) 0 0
\(375\) 0.166185 + 0.417185i 0.00858176 + 0.0215434i
\(376\) 0 0
\(377\) −0.193962 −0.00998954
\(378\) 0 0
\(379\) 34.9673i 1.79615i 0.439840 + 0.898076i \(0.355035\pi\)
−0.439840 + 0.898076i \(0.644965\pi\)
\(380\) 0 0
\(381\) 0.0767895i 0.00393404i
\(382\) 0 0
\(383\) 8.41466i 0.429969i 0.976617 + 0.214984i \(0.0689701\pi\)
−0.976617 + 0.214984i \(0.931030\pi\)
\(384\) 0 0
\(385\) 5.97003 + 7.85385i 0.304261 + 0.400269i
\(386\) 0 0
\(387\) 9.24698i 0.470050i
\(388\) 0 0
\(389\) −4.29965 −0.218001 −0.109000 0.994042i \(-0.534765\pi\)
−0.109000 + 0.994042i \(0.534765\pi\)
\(390\) 0 0
\(391\) 22.7939 + 8.32353i 1.15274 + 0.420939i
\(392\) 0 0
\(393\) 0.329776i 0.0166350i
\(394\) 0 0
\(395\) 7.56474 + 9.95177i 0.380623 + 0.500728i
\(396\) 0 0
\(397\) 20.3257 1.02012 0.510059 0.860140i \(-0.329624\pi\)
0.510059 + 0.860140i \(0.329624\pi\)
\(398\) 0 0
\(399\) 0.220268 0.0110272
\(400\) 0 0
\(401\) 5.19389i 0.259371i −0.991555 0.129685i \(-0.958603\pi\)
0.991555 0.129685i \(-0.0413967\pi\)
\(402\) 0 0
\(403\) 0.988550 0.0492432
\(404\) 0 0
\(405\) 15.9955 12.1588i 0.794824 0.604178i
\(406\) 0 0
\(407\) 38.2939i 1.89816i
\(408\) 0 0
\(409\) 22.9619 1.13540 0.567698 0.823237i \(-0.307834\pi\)
0.567698 + 0.823237i \(0.307834\pi\)
\(410\) 0 0
\(411\) 0.924425i 0.0455985i
\(412\) 0 0
\(413\) −5.88784 −0.289721
\(414\) 0 0
\(415\) 12.0927 + 15.9086i 0.593609 + 0.780920i
\(416\) 0 0
\(417\) 0.224881i 0.0110125i
\(418\) 0 0
\(419\) 10.7578i 0.525551i −0.964857 0.262776i \(-0.915362\pi\)
0.964857 0.262776i \(-0.0846379\pi\)
\(420\) 0 0
\(421\) −17.2909 −0.842705 −0.421353 0.906897i \(-0.638445\pi\)
−0.421353 + 0.906897i \(0.638445\pi\)
\(422\) 0 0
\(423\) 13.3266i 0.647961i
\(424\) 0 0
\(425\) −11.9951 + 16.7666i −0.581847 + 0.813298i
\(426\) 0 0
\(427\) 5.75018i 0.278271i
\(428\) 0 0
\(429\) 0.0220499 0.00106458
\(430\) 0 0
\(431\) 10.6368i 0.512355i −0.966630 0.256178i \(-0.917537\pi\)
0.966630 0.256178i \(-0.0824632\pi\)
\(432\) 0 0
\(433\) 13.3302i 0.640607i 0.947315 + 0.320303i \(0.103785\pi\)
−0.947315 + 0.320303i \(0.896215\pi\)
\(434\) 0 0
\(435\) −0.0847223 0.111456i −0.00406212 0.00534392i
\(436\) 0 0
\(437\) 32.2754 1.54394
\(438\) 0 0
\(439\) 9.24191i 0.441092i 0.975377 + 0.220546i \(0.0707840\pi\)
−0.975377 + 0.220546i \(0.929216\pi\)
\(440\) 0 0
\(441\) −2.99839 −0.142780
\(442\) 0 0
\(443\) 33.5874i 1.59579i −0.602799 0.797893i \(-0.705948\pi\)
0.602799 0.797893i \(-0.294052\pi\)
\(444\) 0 0
\(445\) −0.611490 + 0.464818i −0.0289874 + 0.0220345i
\(446\) 0 0
\(447\) 0.569750 0.0269483
\(448\) 0 0
\(449\) 29.3113i 1.38328i −0.722241 0.691642i \(-0.756888\pi\)
0.722241 0.691642i \(-0.243112\pi\)
\(450\) 0 0
\(451\) 54.2379 2.55396
\(452\) 0 0
\(453\) −0.187203 −0.00879555
\(454\) 0 0
\(455\) 0.168374 + 0.221504i 0.00789352 + 0.0103843i
\(456\) 0 0
\(457\) 14.5134i 0.678909i −0.940622 0.339454i \(-0.889758\pi\)
0.940622 0.339454i \(-0.110242\pi\)
\(458\) 0 0
\(459\) −0.933112 0.340740i −0.0435539 0.0159044i
\(460\) 0 0
\(461\) 26.8490 1.25048 0.625241 0.780431i \(-0.285001\pi\)
0.625241 + 0.780431i \(0.285001\pi\)
\(462\) 0 0
\(463\) 3.70245i 0.172067i 0.996292 + 0.0860336i \(0.0274193\pi\)
−0.996292 + 0.0860336i \(0.972581\pi\)
\(464\) 0 0
\(465\) 0.431797 + 0.568050i 0.0200241 + 0.0263427i
\(466\) 0 0
\(467\) 23.9050i 1.10619i 0.833117 + 0.553097i \(0.186554\pi\)
−0.833117 + 0.553097i \(0.813446\pi\)
\(468\) 0 0
\(469\) 11.9079i 0.549855i
\(470\) 0 0
\(471\) 0.632923i 0.0291636i
\(472\) 0 0
\(473\) −13.6062 −0.625615
\(474\) 0 0
\(475\) −7.33694 + 26.4201i −0.336642 + 1.21224i
\(476\) 0 0
\(477\) 11.8910i 0.544451i
\(478\) 0 0
\(479\) 8.74666i 0.399645i 0.979832 + 0.199822i \(0.0640365\pi\)
−0.979832 + 0.199822i \(0.935963\pi\)
\(480\) 0 0
\(481\) 1.08001i 0.0492444i
\(482\) 0 0
\(483\) 0.236391 0.0107562
\(484\) 0 0
\(485\) −17.7624 + 13.5019i −0.806549 + 0.613090i
\(486\) 0 0
\(487\) 8.58421 0.388988 0.194494 0.980904i \(-0.437694\pi\)
0.194494 + 0.980904i \(0.437694\pi\)
\(488\) 0 0
\(489\) −0.151833 −0.00686611
\(490\) 0 0
\(491\) −12.2745 −0.553942 −0.276971 0.960878i \(-0.589331\pi\)
−0.276971 + 0.960878i \(0.589331\pi\)
\(492\) 0 0
\(493\) 2.20457 6.03718i 0.0992888 0.271901i
\(494\) 0 0
\(495\) −17.9005 23.5489i −0.804566 1.05844i
\(496\) 0 0
\(497\) 13.3221i 0.597579i
\(498\) 0 0
\(499\) 28.6807i 1.28393i −0.766736 0.641963i \(-0.778120\pi\)
0.766736 0.641963i \(-0.221880\pi\)
\(500\) 0 0
\(501\) 0.0881119 0.00393655
\(502\) 0 0
\(503\) 7.27389 0.324327 0.162163 0.986764i \(-0.448153\pi\)
0.162163 + 0.986764i \(0.448153\pi\)
\(504\) 0 0
\(505\) 6.05897 4.60567i 0.269621 0.204950i
\(506\) 0 0
\(507\) −0.521533 −0.0231621
\(508\) 0 0
\(509\) −9.37318 −0.415459 −0.207729 0.978186i \(-0.566607\pi\)
−0.207729 + 0.978186i \(0.566607\pi\)
\(510\) 0 0
\(511\) 1.87848 0.0830992
\(512\) 0 0
\(513\) −1.32125 −0.0583348
\(514\) 0 0
\(515\) 0.638077 + 0.839421i 0.0281171 + 0.0369893i
\(516\) 0 0
\(517\) 19.6091 0.862405
\(518\) 0 0
\(519\) 0.672493 0.0295192
\(520\) 0 0
\(521\) 28.5357i 1.25017i 0.780555 + 0.625087i \(0.214936\pi\)
−0.780555 + 0.625087i \(0.785064\pi\)
\(522\) 0 0
\(523\) 3.43057i 0.150008i −0.997183 0.0750042i \(-0.976103\pi\)
0.997183 0.0750042i \(-0.0238970\pi\)
\(524\) 0 0
\(525\) −0.0537372 + 0.193506i −0.00234528 + 0.00844529i
\(526\) 0 0
\(527\) −11.2359 + 30.7692i −0.489441 + 1.34033i
\(528\) 0 0
\(529\) 11.6378 0.505989
\(530\) 0 0
\(531\) 17.6540 0.766119
\(532\) 0 0
\(533\) 1.52969 0.0662581
\(534\) 0 0
\(535\) 14.1410 10.7491i 0.611369 0.464726i
\(536\) 0 0
\(537\) −0.777946 −0.0335708
\(538\) 0 0
\(539\) 4.41190i 0.190034i
\(540\) 0 0
\(541\) 16.7869i 0.721725i −0.932619 0.360862i \(-0.882482\pi\)
0.932619 0.360862i \(-0.117518\pi\)
\(542\) 0 0
\(543\) 0.0987645i 0.00423839i
\(544\) 0 0
\(545\) 5.03647 + 6.62571i 0.215739 + 0.283814i
\(546\) 0 0
\(547\) −6.39587 −0.273468 −0.136734 0.990608i \(-0.543660\pi\)
−0.136734 + 0.990608i \(0.543660\pi\)
\(548\) 0 0
\(549\) 17.2413i 0.735839i
\(550\) 0 0
\(551\) 8.54845i 0.364176i
\(552\) 0 0
\(553\) 5.59040i 0.237728i
\(554\) 0 0
\(555\) 0.620607 0.471748i 0.0263433 0.0200246i
\(556\) 0 0
\(557\) 22.4422i 0.950908i −0.879741 0.475454i \(-0.842284\pi\)
0.879741 0.475454i \(-0.157716\pi\)
\(558\) 0 0
\(559\) −0.383740 −0.0162305
\(560\) 0 0
\(561\) −0.250619 + 0.686317i −0.0105811 + 0.0289763i
\(562\) 0 0
\(563\) 1.15013i 0.0484722i 0.999706 + 0.0242361i \(0.00771535\pi\)
−0.999706 + 0.0242361i \(0.992285\pi\)
\(564\) 0 0
\(565\) −3.27809 + 2.49181i −0.137910 + 0.104831i
\(566\) 0 0
\(567\) 8.98548 0.377355
\(568\) 0 0
\(569\) −30.5170 −1.27934 −0.639670 0.768650i \(-0.720929\pi\)
−0.639670 + 0.768650i \(0.720929\pi\)
\(570\) 0 0
\(571\) 16.2445i 0.679809i 0.940460 + 0.339905i \(0.110395\pi\)
−0.940460 + 0.339905i \(0.889605\pi\)
\(572\) 0 0
\(573\) −0.936382 −0.0391179
\(574\) 0 0
\(575\) −7.87398 + 28.3539i −0.328367 + 1.18244i
\(576\) 0 0
\(577\) 9.90217i 0.412233i −0.978527 0.206116i \(-0.933917\pi\)
0.978527 0.206116i \(-0.0660825\pi\)
\(578\) 0 0
\(579\) −0.0995536 −0.00413731
\(580\) 0 0
\(581\) 8.93663i 0.370754i
\(582\) 0 0
\(583\) 17.4967 0.724639
\(584\) 0 0
\(585\) −0.504852 0.664156i −0.0208731 0.0274595i
\(586\) 0 0
\(587\) 9.43130i 0.389271i −0.980876 0.194636i \(-0.937648\pi\)
0.980876 0.194636i \(-0.0623524\pi\)
\(588\) 0 0
\(589\) 43.5682i 1.79519i
\(590\) 0 0
\(591\) 1.03395 0.0425309
\(592\) 0 0
\(593\) 45.0280i 1.84908i −0.381089 0.924539i \(-0.624451\pi\)
0.381089 0.924539i \(-0.375549\pi\)
\(594\) 0 0
\(595\) −8.80821 + 2.72314i −0.361101 + 0.111638i
\(596\) 0 0
\(597\) 0.0344352i 0.00140934i
\(598\) 0 0
\(599\) −17.6020 −0.719200 −0.359600 0.933107i \(-0.617087\pi\)
−0.359600 + 0.933107i \(0.617087\pi\)
\(600\) 0 0
\(601\) 40.7666i 1.66291i −0.555595 0.831453i \(-0.687510\pi\)
0.555595 0.831453i \(-0.312490\pi\)
\(602\) 0 0
\(603\) 35.7044i 1.45400i
\(604\) 0 0
\(605\) −15.0687 + 11.4543i −0.612630 + 0.465685i
\(606\) 0 0
\(607\) 36.6008 1.48558 0.742791 0.669523i \(-0.233502\pi\)
0.742791 + 0.669523i \(0.233502\pi\)
\(608\) 0 0
\(609\) 0.0626105i 0.00253710i
\(610\) 0 0
\(611\) 0.553040 0.0223736
\(612\) 0 0
\(613\) 25.6102i 1.03438i 0.855869 + 0.517192i \(0.173023\pi\)
−0.855869 + 0.517192i \(0.826977\pi\)
\(614\) 0 0
\(615\) 0.668165 + 0.879003i 0.0269430 + 0.0354448i
\(616\) 0 0
\(617\) −31.1511 −1.25410 −0.627048 0.778981i \(-0.715737\pi\)
−0.627048 + 0.778981i \(0.715737\pi\)
\(618\) 0 0
\(619\) 22.8119i 0.916888i 0.888723 + 0.458444i \(0.151593\pi\)
−0.888723 + 0.458444i \(0.848407\pi\)
\(620\) 0 0
\(621\) −1.41796 −0.0569009
\(622\) 0 0
\(623\) −0.343504 −0.0137622
\(624\) 0 0
\(625\) −21.4201 12.8910i −0.856805 0.515641i
\(626\) 0 0
\(627\) 0.971801i 0.0388100i
\(628\) 0 0
\(629\) 33.6161 + 12.2754i 1.34036 + 0.489453i
\(630\) 0 0
\(631\) 17.1990 0.684683 0.342341 0.939576i \(-0.388780\pi\)
0.342341 + 0.939576i \(0.388780\pi\)
\(632\) 0 0
\(633\) 1.00752i 0.0400455i
\(634\) 0 0
\(635\) −2.58700 3.40332i −0.102662 0.135057i
\(636\) 0 0
\(637\) 0.124430i 0.00493010i
\(638\) 0 0
\(639\) 39.9449i 1.58019i
\(640\) 0 0
\(641\) 29.4142i 1.16179i −0.813978 0.580895i \(-0.802703\pi\)
0.813978 0.580895i \(-0.197297\pi\)
\(642\) 0 0
\(643\) 0.837979 0.0330467 0.0165233 0.999863i \(-0.494740\pi\)
0.0165233 + 0.999863i \(0.494740\pi\)
\(644\) 0 0
\(645\) −0.167617 0.220508i −0.00659993 0.00868251i
\(646\) 0 0
\(647\) 33.4902i 1.31664i 0.752740 + 0.658318i \(0.228732\pi\)
−0.752740 + 0.658318i \(0.771268\pi\)
\(648\) 0 0
\(649\) 25.9765i 1.01967i
\(650\) 0 0
\(651\) 0.319102i 0.0125066i
\(652\) 0 0
\(653\) 8.99856 0.352141 0.176070 0.984378i \(-0.443661\pi\)
0.176070 + 0.984378i \(0.443661\pi\)
\(654\) 0 0
\(655\) 11.1100 + 14.6157i 0.434104 + 0.571084i
\(656\) 0 0
\(657\) −5.63242 −0.219742
\(658\) 0 0
\(659\) −43.3245 −1.68768 −0.843841 0.536594i \(-0.819711\pi\)
−0.843841 + 0.536594i \(0.819711\pi\)
\(660\) 0 0
\(661\) −22.5144 −0.875709 −0.437854 0.899046i \(-0.644261\pi\)
−0.437854 + 0.899046i \(0.644261\pi\)
\(662\) 0 0
\(663\) −0.00706828 + 0.0193564i −0.000274509 + 0.000751740i
\(664\) 0 0
\(665\) −9.76233 + 7.42074i −0.378567 + 0.287764i
\(666\) 0 0
\(667\) 9.17415i 0.355225i
\(668\) 0 0
\(669\) 0.736287i 0.0284665i
\(670\) 0 0
\(671\) 25.3692 0.979367
\(672\) 0 0
\(673\) 42.0850 1.62226 0.811128 0.584868i \(-0.198854\pi\)
0.811128 + 0.584868i \(0.198854\pi\)
\(674\) 0 0
\(675\) 0.322337 1.16072i 0.0124067 0.0446762i
\(676\) 0 0
\(677\) 15.8497 0.609152 0.304576 0.952488i \(-0.401485\pi\)
0.304576 + 0.952488i \(0.401485\pi\)
\(678\) 0 0
\(679\) −9.97802 −0.382921
\(680\) 0 0
\(681\) 0.940377 0.0360353
\(682\) 0 0
\(683\) 11.8248 0.452464 0.226232 0.974073i \(-0.427359\pi\)
0.226232 + 0.974073i \(0.427359\pi\)
\(684\) 0 0
\(685\) 31.1435 + 40.9707i 1.18993 + 1.56541i
\(686\) 0 0
\(687\) 0.486782 0.0185719
\(688\) 0 0
\(689\) 0.493465 0.0187995
\(690\) 0 0
\(691\) 20.2191i 0.769170i −0.923089 0.384585i \(-0.874344\pi\)
0.923089 0.384585i \(-0.125656\pi\)
\(692\) 0 0
\(693\) 13.2286i 0.502512i
\(694\) 0 0
\(695\) −7.57613 9.96675i −0.287379 0.378060i
\(696\) 0 0
\(697\) −17.3864 + 47.6124i −0.658557 + 1.80345i
\(698\) 0 0
\(699\) 0.803204 0.0303800
\(700\) 0 0
\(701\) 16.8812 0.637594 0.318797 0.947823i \(-0.396721\pi\)
0.318797 + 0.947823i \(0.396721\pi\)
\(702\) 0 0
\(703\) 47.5992 1.79524
\(704\) 0 0
\(705\) 0.241567 + 0.317793i 0.00909795 + 0.0119688i
\(706\) 0 0
\(707\) 3.40363 0.128006
\(708\) 0 0
\(709\) 40.4270i 1.51827i −0.650934 0.759135i \(-0.725622\pi\)
0.650934 0.759135i \(-0.274378\pi\)
\(710\) 0 0
\(711\) 16.7622i 0.628631i
\(712\) 0 0
\(713\) 46.7571i 1.75107i
\(714\) 0 0
\(715\) −0.977255 + 0.742851i −0.0365473 + 0.0277811i
\(716\) 0 0
\(717\) 0.855643 0.0319546
\(718\) 0 0
\(719\) 25.2148i 0.940354i −0.882572 0.470177i \(-0.844190\pi\)
0.882572 0.470177i \(-0.155810\pi\)
\(720\) 0 0
\(721\) 0.471544i 0.0175612i
\(722\) 0 0
\(723\) 0.476311i 0.0177142i
\(724\) 0 0
\(725\) 7.50981 + 2.08550i 0.278908 + 0.0774535i
\(726\) 0 0
\(727\) 28.3494i 1.05142i −0.850664 0.525710i \(-0.823800\pi\)
0.850664 0.525710i \(-0.176200\pi\)
\(728\) 0 0
\(729\) −26.9129 −0.996775
\(730\) 0 0
\(731\) 4.36159 11.9442i 0.161319 0.441770i
\(732\) 0 0
\(733\) 22.1845i 0.819403i −0.912220 0.409702i \(-0.865633\pi\)
0.912220 0.409702i \(-0.134367\pi\)
\(734\) 0 0
\(735\) −0.0715012 + 0.0543509i −0.00263736 + 0.00200476i
\(736\) 0 0
\(737\) −52.5363 −1.93520
\(738\) 0 0
\(739\) 6.41874 0.236117 0.118059 0.993007i \(-0.462333\pi\)
0.118059 + 0.993007i \(0.462333\pi\)
\(740\) 0 0
\(741\) 0.0274080i 0.00100686i
\(742\) 0 0
\(743\) 12.7967 0.469467 0.234734 0.972060i \(-0.424578\pi\)
0.234734 + 0.972060i \(0.424578\pi\)
\(744\) 0 0
\(745\) −25.2514 + 19.1946i −0.925141 + 0.703237i
\(746\) 0 0
\(747\) 26.7955i 0.980395i
\(748\) 0 0
\(749\) 7.94370 0.290257
\(750\) 0 0
\(751\) 26.9892i 0.984851i 0.870355 + 0.492426i \(0.163890\pi\)
−0.870355 + 0.492426i \(0.836110\pi\)
\(752\) 0 0
\(753\) −1.00220 −0.0365221
\(754\) 0 0
\(755\) 8.29685 6.30677i 0.301953 0.229527i
\(756\) 0 0
\(757\) 35.1468i 1.27743i −0.769442 0.638716i \(-0.779466\pi\)
0.769442 0.638716i \(-0.220534\pi\)
\(758\) 0 0
\(759\) 1.04293i 0.0378561i
\(760\) 0 0
\(761\) −16.5325 −0.599304 −0.299652 0.954049i \(-0.596870\pi\)
−0.299652 + 0.954049i \(0.596870\pi\)
\(762\) 0 0
\(763\) 3.72199i 0.134745i
\(764\) 0 0
\(765\) 26.4104 8.16503i 0.954870 0.295207i
\(766\) 0 0
\(767\) 0.732624i 0.0264535i
\(768\) 0 0
\(769\) 40.9878 1.47806 0.739029 0.673674i \(-0.235285\pi\)
0.739029 + 0.673674i \(0.235285\pi\)
\(770\) 0 0
\(771\) 0.990976i 0.0356891i
\(772\) 0 0
\(773\) 38.8349i 1.39680i −0.715710 0.698398i \(-0.753897\pi\)
0.715710 0.698398i \(-0.246103\pi\)
\(774\) 0 0
\(775\) −38.2747 10.6290i −1.37487 0.381805i
\(776\) 0 0
\(777\) 0.348626 0.0125069
\(778\) 0 0
\(779\) 67.4176i 2.41549i
\(780\) 0 0
\(781\) 58.7758 2.10317
\(782\) 0 0
\(783\) 0.375562i 0.0134215i
\(784\) 0 0
\(785\) −21.3229 28.0513i −0.761046 1.00119i
\(786\) 0 0
\(787\) −0.155779 −0.00555292 −0.00277646 0.999996i \(-0.500884\pi\)
−0.00277646 + 0.999996i \(0.500884\pi\)
\(788\) 0 0
\(789\) 0.419662i 0.0149403i
\(790\) 0 0
\(791\) −1.84147 −0.0654751
\(792\) 0 0
\(793\) 0.715495 0.0254080
\(794\) 0 0
\(795\) 0.215545 + 0.283559i 0.00764458 + 0.0100568i
\(796\) 0 0
\(797\) 19.0375i 0.674345i 0.941443 + 0.337172i \(0.109470\pi\)
−0.941443 + 0.337172i \(0.890530\pi\)
\(798\) 0 0
\(799\) −6.28585 + 17.2137i −0.222377 + 0.608977i
\(800\) 0 0
\(801\) 1.02996 0.0363918
\(802\) 0 0
\(803\) 8.28768i 0.292466i
\(804\) 0 0
\(805\) −10.4769 + 7.96390i −0.369262 + 0.280691i
\(806\) 0 0
\(807\) 0.676662i 0.0238196i
\(808\) 0 0
\(809\) 53.0643i 1.86564i −0.360339 0.932821i \(-0.617339\pi\)
0.360339 0.932821i \(-0.382661\pi\)
\(810\) 0 0
\(811\) 7.08316i 0.248723i −0.992237 0.124362i \(-0.960312\pi\)
0.992237 0.124362i \(-0.0396883\pi\)
\(812\) 0 0
\(813\) 0.108807 0.00381602
\(814\) 0 0
\(815\) 6.72925 5.11517i 0.235715 0.179177i
\(816\) 0 0
\(817\) 16.9125i 0.591694i
\(818\) 0 0
\(819\) 0.373089i 0.0130368i
\(820\) 0 0
\(821\) 22.6005i 0.788762i 0.918947 + 0.394381i \(0.129041\pi\)
−0.918947 + 0.394381i \(0.870959\pi\)
\(822\) 0 0
\(823\) −37.3499 −1.30194 −0.650968 0.759105i \(-0.725637\pi\)
−0.650968 + 0.759105i \(0.725637\pi\)
\(824\) 0 0
\(825\) −0.853728 0.237083i −0.0297230 0.00825417i
\(826\) 0 0
\(827\) −3.00350 −0.104442 −0.0522210 0.998636i \(-0.516630\pi\)
−0.0522210 + 0.998636i \(0.516630\pi\)
\(828\) 0 0
\(829\) −44.1018 −1.53172 −0.765860 0.643007i \(-0.777686\pi\)
−0.765860 + 0.643007i \(0.777686\pi\)
\(830\) 0 0
\(831\) 0.265382 0.00920598
\(832\) 0 0
\(833\) −3.87296 1.41427i −0.134190 0.0490016i
\(834\) 0 0
\(835\) −3.90513 + 2.96845i −0.135143 + 0.102727i
\(836\) 0 0
\(837\) 1.91410i 0.0661608i
\(838\) 0 0
\(839\) 26.8617i 0.927369i 0.886000 + 0.463685i \(0.153473\pi\)
−0.886000 + 0.463685i \(0.846527\pi\)
\(840\) 0 0
\(841\) 26.5701 0.916212
\(842\) 0 0
\(843\) 0.279634 0.00963111
\(844\) 0 0
\(845\) 23.1144 17.5702i 0.795160 0.604433i
\(846\) 0 0
\(847\) −8.46484 −0.290855
\(848\) 0 0
\(849\) −0.571239 −0.0196049
\(850\) 0 0
\(851\) 51.0833 1.75111
\(852\) 0 0
\(853\) −20.0239 −0.685605 −0.342803 0.939407i \(-0.611376\pi\)
−0.342803 + 0.939407i \(0.611376\pi\)
\(854\) 0 0
\(855\) 29.2712 22.2502i 1.00105 0.760942i
\(856\) 0 0
\(857\) 10.6832 0.364931 0.182466 0.983212i \(-0.441592\pi\)
0.182466 + 0.983212i \(0.441592\pi\)
\(858\) 0 0
\(859\) −27.5694 −0.940656 −0.470328 0.882492i \(-0.655864\pi\)
−0.470328 + 0.882492i \(0.655864\pi\)
\(860\) 0 0
\(861\) 0.493779i 0.0168280i
\(862\) 0 0
\(863\) 52.4099i 1.78405i −0.451982 0.892027i \(-0.649283\pi\)
0.451982 0.892027i \(-0.350717\pi\)
\(864\) 0 0
\(865\) −29.8050 + 22.6560i −1.01340 + 0.770327i
\(866\) 0 0
\(867\) −0.522142 0.440009i −0.0177329 0.0149435i
\(868\) 0 0
\(869\) −24.6643 −0.836678
\(870\) 0 0
\(871\) −1.48170 −0.0502054
\(872\) 0 0
\(873\) 29.9180 1.01257
\(874\) 0 0
\(875\) −4.13748 10.3866i −0.139872 0.351131i
\(876\) 0 0
\(877\) −0.704352 −0.0237843 −0.0118921 0.999929i \(-0.503785\pi\)
−0.0118921 + 0.999929i \(0.503785\pi\)
\(878\) 0 0
\(879\) 1.12269i 0.0378674i
\(880\) 0 0
\(881\) 18.8242i 0.634204i 0.948391 + 0.317102i \(0.102710\pi\)
−0.948391 + 0.317102i \(0.897290\pi\)
\(882\) 0 0
\(883\) 38.2228i 1.28630i −0.765741 0.643150i \(-0.777627\pi\)
0.765741 0.643150i \(-0.222373\pi\)
\(884\) 0 0
\(885\) 0.420987 0.320009i 0.0141513 0.0107570i
\(886\) 0 0
\(887\) −34.0956 −1.14482 −0.572408 0.819969i \(-0.693991\pi\)
−0.572408 + 0.819969i \(0.693991\pi\)
\(888\) 0 0
\(889\) 1.91181i 0.0641202i
\(890\) 0 0
\(891\) 39.6430i 1.32809i
\(892\) 0 0
\(893\) 24.3740i 0.815646i
\(894\) 0 0
\(895\) 34.4787 26.2086i 1.15250 0.876058i
\(896\) 0 0
\(897\) 0.0294141i 0.000982109i
\(898\) 0 0
\(899\) 12.3841 0.413033
\(900\) 0 0
\(901\) −5.60872 + 15.3594i −0.186853 + 0.511695i
\(902\) 0 0
\(903\) 0.123871i 0.00412215i
\(904\) 0 0
\(905\) 3.32733 + 4.37726i 0.110604 + 0.145505i
\(906\) 0 0
\(907\) 51.7651 1.71883 0.859416 0.511277i \(-0.170827\pi\)
0.859416 + 0.511277i \(0.170827\pi\)
\(908\) 0 0
\(909\) −10.2054 −0.338491
\(910\) 0 0
\(911\) 37.9026i 1.25577i −0.778306 0.627885i \(-0.783921\pi\)
0.778306 0.627885i \(-0.216079\pi\)
\(912\) 0 0
\(913\) −39.4275 −1.30486
\(914\) 0 0
\(915\) 0.312527 + 0.411144i 0.0103318 + 0.0135920i
\(916\) 0 0
\(917\) 8.21039i 0.271131i
\(918\) 0 0
\(919\) 5.90232 0.194699 0.0973497 0.995250i \(-0.468963\pi\)
0.0973497 + 0.995250i \(0.468963\pi\)
\(920\) 0 0
\(921\) 0.746780i 0.0246072i
\(922\) 0 0
\(923\) 1.65767 0.0545630
\(924\) 0 0
\(925\) −11.6124 + 41.8159i −0.381814 + 1.37490i
\(926\) 0 0
\(927\) 1.41387i 0.0464377i
\(928\) 0 0
\(929\) 16.4841i 0.540825i −0.962745 0.270412i \(-0.912840\pi\)
0.962745 0.270412i \(-0.0871601\pi\)
\(930\) 0 0
\(931\) −5.48398 −0.179730
\(932\) 0 0
\(933\) 0.581978i 0.0190531i
\(934\) 0 0
\(935\) −12.0142 38.8609i −0.392907 1.27089i
\(936\) 0 0
\(937\) 35.5388i 1.16100i 0.814260 + 0.580500i \(0.197143\pi\)
−0.814260 + 0.580500i \(0.802857\pi\)
\(938\) 0 0
\(939\) 0.959227 0.0313032
\(940\) 0 0
\(941\) 8.02989i 0.261767i 0.991398 + 0.130883i \(0.0417814\pi\)
−0.991398 + 0.130883i \(0.958219\pi\)
\(942\) 0 0
\(943\) 72.3522i 2.35611i
\(944\) 0 0
\(945\) 0.428892 0.326018i 0.0139518 0.0106054i
\(946\) 0 0
\(947\) −50.9056 −1.65421 −0.827105 0.562048i \(-0.810014\pi\)
−0.827105 + 0.562048i \(0.810014\pi\)
\(948\) 0 0
\(949\) 0.233740i 0.00758752i
\(950\) 0 0
\(951\) 0.338911 0.0109900
\(952\) 0 0
\(953\) 46.6306i 1.51051i 0.655428 + 0.755257i \(0.272488\pi\)
−0.655428 + 0.755257i \(0.727512\pi\)
\(954\) 0 0
\(955\) 41.5006 31.5463i 1.34293 1.02081i
\(956\) 0 0
\(957\) 0.276231 0.00892928
\(958\) 0 0
\(959\) 23.0153i 0.743202i
\(960\) 0 0
\(961\) −32.1170 −1.03603
\(962\) 0 0
\(963\) −23.8183 −0.767534
\(964\) 0 0
\(965\) 4.41223 3.35392i 0.142035 0.107966i
\(966\) 0 0
\(967\) 3.87224i 0.124523i 0.998060 + 0.0622614i \(0.0198312\pi\)
−0.998060 + 0.0622614i \(0.980169\pi\)
\(968\) 0 0
\(969\) −0.853091 0.311519i −0.0274052 0.0100074i
\(970\) 0 0
\(971\) −22.0669 −0.708159 −0.354080 0.935215i \(-0.615206\pi\)
−0.354080 + 0.935215i \(0.615206\pi\)
\(972\) 0 0
\(973\) 5.59882i 0.179490i
\(974\) 0 0
\(975\) −0.0240779 0.00668652i −0.000771111 0.000214140i
\(976\) 0 0
\(977\) 5.95334i 0.190464i 0.995455 + 0.0952322i \(0.0303594\pi\)
−0.995455 + 0.0952322i \(0.969641\pi\)
\(978\) 0 0
\(979\) 1.51551i 0.0484358i
\(980\) 0 0
\(981\) 11.1600i 0.356310i
\(982\) 0 0
\(983\) −53.6308 −1.71056 −0.855279 0.518168i \(-0.826614\pi\)
−0.855279 + 0.518168i \(0.826614\pi\)
\(984\) 0 0
\(985\) −45.8247 + 34.8332i −1.46010 + 1.10988i
\(986\) 0 0
\(987\) 0.178520i 0.00568236i
\(988\) 0 0
\(989\) 18.1504i 0.577150i
\(990\) 0 0
\(991\) 15.7975i 0.501825i −0.968010 0.250913i \(-0.919269\pi\)
0.968010 0.250913i \(-0.0807307\pi\)
\(992\) 0 0
\(993\) 0.192877 0.00612076
\(994\) 0 0
\(995\) −1.16011 1.52617i −0.0367779 0.0483830i
\(996\) 0 0
\(997\) 34.2790 1.08563 0.542814 0.839853i \(-0.317359\pi\)
0.542814 + 0.839853i \(0.317359\pi\)
\(998\) 0 0
\(999\) −2.09119 −0.0661624
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2380.2.m.d.169.12 yes 26
5.4 even 2 2380.2.m.c.169.16 yes 26
17.16 even 2 2380.2.m.c.169.15 26
85.84 even 2 inner 2380.2.m.d.169.11 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2380.2.m.c.169.15 26 17.16 even 2
2380.2.m.c.169.16 yes 26 5.4 even 2
2380.2.m.d.169.11 yes 26 85.84 even 2 inner
2380.2.m.d.169.12 yes 26 1.1 even 1 trivial