Properties

Label 2366.4.a.s.1.3
Level $2366$
Weight $4$
Character 2366.1
Self dual yes
Analytic conductor $139.599$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,4,Mod(1,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2366.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-10,1,20,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(139.598519074\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 95x^{3} + 122x^{2} + 2074x - 2668 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 182)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.28617\) of defining polynomial
Character \(\chi\) \(=\) 2366.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +1.28617 q^{3} +4.00000 q^{4} -10.0966 q^{5} -2.57235 q^{6} +7.00000 q^{7} -8.00000 q^{8} -25.3458 q^{9} +20.1932 q^{10} +20.1087 q^{11} +5.14470 q^{12} -14.0000 q^{14} -12.9860 q^{15} +16.0000 q^{16} -63.2530 q^{17} +50.6915 q^{18} -17.1914 q^{19} -40.3864 q^{20} +9.00322 q^{21} -40.2174 q^{22} +199.470 q^{23} -10.2894 q^{24} -23.0588 q^{25} -67.3258 q^{27} +28.0000 q^{28} -3.58751 q^{29} +25.9720 q^{30} +61.0025 q^{31} -32.0000 q^{32} +25.8633 q^{33} +126.506 q^{34} -70.6762 q^{35} -101.383 q^{36} +41.1154 q^{37} +34.3829 q^{38} +80.7728 q^{40} +32.4853 q^{41} -18.0064 q^{42} +234.902 q^{43} +80.4349 q^{44} +255.906 q^{45} -398.941 q^{46} +263.044 q^{47} +20.5788 q^{48} +49.0000 q^{49} +46.1175 q^{50} -81.3544 q^{51} -369.147 q^{53} +134.652 q^{54} -203.030 q^{55} -56.0000 q^{56} -22.1112 q^{57} +7.17503 q^{58} -410.974 q^{59} -51.9439 q^{60} -148.061 q^{61} -122.005 q^{62} -177.420 q^{63} +64.0000 q^{64} -51.7266 q^{66} +45.8863 q^{67} -253.012 q^{68} +256.554 q^{69} +141.352 q^{70} +854.901 q^{71} +202.766 q^{72} +457.581 q^{73} -82.2309 q^{74} -29.6576 q^{75} -68.7657 q^{76} +140.761 q^{77} -1200.31 q^{79} -161.546 q^{80} +597.743 q^{81} -64.9705 q^{82} +271.489 q^{83} +36.0129 q^{84} +638.640 q^{85} -469.804 q^{86} -4.61417 q^{87} -160.870 q^{88} +1182.71 q^{89} -511.812 q^{90} +797.882 q^{92} +78.4598 q^{93} -526.088 q^{94} +173.575 q^{95} -41.1576 q^{96} +832.124 q^{97} -98.0000 q^{98} -509.671 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 10 q^{2} + q^{3} + 20 q^{4} + 6 q^{5} - 2 q^{6} + 35 q^{7} - 40 q^{8} + 56 q^{9} - 12 q^{10} - 9 q^{11} + 4 q^{12} - 70 q^{14} + 137 q^{15} + 80 q^{16} - 89 q^{17} - 112 q^{18} - 49 q^{19} + 24 q^{20}+ \cdots + 81 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 1.28617 0.247524 0.123762 0.992312i \(-0.460504\pi\)
0.123762 + 0.992312i \(0.460504\pi\)
\(4\) 4.00000 0.500000
\(5\) −10.0966 −0.903067 −0.451533 0.892254i \(-0.649123\pi\)
−0.451533 + 0.892254i \(0.649123\pi\)
\(6\) −2.57235 −0.175026
\(7\) 7.00000 0.377964
\(8\) −8.00000 −0.353553
\(9\) −25.3458 −0.938732
\(10\) 20.1932 0.638565
\(11\) 20.1087 0.551182 0.275591 0.961275i \(-0.411126\pi\)
0.275591 + 0.961275i \(0.411126\pi\)
\(12\) 5.14470 0.123762
\(13\) 0 0
\(14\) −14.0000 −0.267261
\(15\) −12.9860 −0.223531
\(16\) 16.0000 0.250000
\(17\) −63.2530 −0.902418 −0.451209 0.892418i \(-0.649007\pi\)
−0.451209 + 0.892418i \(0.649007\pi\)
\(18\) 50.6915 0.663784
\(19\) −17.1914 −0.207578 −0.103789 0.994599i \(-0.533097\pi\)
−0.103789 + 0.994599i \(0.533097\pi\)
\(20\) −40.3864 −0.451533
\(21\) 9.00322 0.0935554
\(22\) −40.2174 −0.389745
\(23\) 199.470 1.80837 0.904184 0.427143i \(-0.140480\pi\)
0.904184 + 0.427143i \(0.140480\pi\)
\(24\) −10.2894 −0.0875131
\(25\) −23.0588 −0.184470
\(26\) 0 0
\(27\) −67.3258 −0.479883
\(28\) 28.0000 0.188982
\(29\) −3.58751 −0.0229719 −0.0114859 0.999934i \(-0.503656\pi\)
−0.0114859 + 0.999934i \(0.503656\pi\)
\(30\) 25.9720 0.158060
\(31\) 61.0025 0.353431 0.176716 0.984262i \(-0.443453\pi\)
0.176716 + 0.984262i \(0.443453\pi\)
\(32\) −32.0000 −0.176777
\(33\) 25.8633 0.136431
\(34\) 126.506 0.638106
\(35\) −70.6762 −0.341327
\(36\) −101.383 −0.469366
\(37\) 41.1154 0.182685 0.0913424 0.995820i \(-0.470884\pi\)
0.0913424 + 0.995820i \(0.470884\pi\)
\(38\) 34.3829 0.146780
\(39\) 0 0
\(40\) 80.7728 0.319282
\(41\) 32.4853 0.123740 0.0618701 0.998084i \(-0.480294\pi\)
0.0618701 + 0.998084i \(0.480294\pi\)
\(42\) −18.0064 −0.0661537
\(43\) 234.902 0.833075 0.416537 0.909119i \(-0.363243\pi\)
0.416537 + 0.909119i \(0.363243\pi\)
\(44\) 80.4349 0.275591
\(45\) 255.906 0.847738
\(46\) −398.941 −1.27871
\(47\) 263.044 0.816360 0.408180 0.912901i \(-0.366163\pi\)
0.408180 + 0.912901i \(0.366163\pi\)
\(48\) 20.5788 0.0618811
\(49\) 49.0000 0.142857
\(50\) 46.1175 0.130440
\(51\) −81.3544 −0.223370
\(52\) 0 0
\(53\) −369.147 −0.956723 −0.478361 0.878163i \(-0.658769\pi\)
−0.478361 + 0.878163i \(0.658769\pi\)
\(54\) 134.652 0.339329
\(55\) −203.030 −0.497755
\(56\) −56.0000 −0.133631
\(57\) −22.1112 −0.0513807
\(58\) 7.17503 0.0162436
\(59\) −410.974 −0.906851 −0.453425 0.891294i \(-0.649798\pi\)
−0.453425 + 0.891294i \(0.649798\pi\)
\(60\) −51.9439 −0.111766
\(61\) −148.061 −0.310775 −0.155388 0.987854i \(-0.549663\pi\)
−0.155388 + 0.987854i \(0.549663\pi\)
\(62\) −122.005 −0.249914
\(63\) −177.420 −0.354807
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −51.7266 −0.0964713
\(67\) 45.8863 0.0836702 0.0418351 0.999125i \(-0.486680\pi\)
0.0418351 + 0.999125i \(0.486680\pi\)
\(68\) −253.012 −0.451209
\(69\) 256.554 0.447615
\(70\) 141.352 0.241355
\(71\) 854.901 1.42899 0.714494 0.699642i \(-0.246657\pi\)
0.714494 + 0.699642i \(0.246657\pi\)
\(72\) 202.766 0.331892
\(73\) 457.581 0.733641 0.366821 0.930292i \(-0.380446\pi\)
0.366821 + 0.930292i \(0.380446\pi\)
\(74\) −82.2309 −0.129178
\(75\) −29.6576 −0.0456608
\(76\) −68.7657 −0.103789
\(77\) 140.761 0.208327
\(78\) 0 0
\(79\) −1200.31 −1.70943 −0.854716 0.519096i \(-0.826269\pi\)
−0.854716 + 0.519096i \(0.826269\pi\)
\(80\) −161.546 −0.225767
\(81\) 597.743 0.819949
\(82\) −64.9705 −0.0874975
\(83\) 271.489 0.359033 0.179517 0.983755i \(-0.442547\pi\)
0.179517 + 0.983755i \(0.442547\pi\)
\(84\) 36.0129 0.0467777
\(85\) 638.640 0.814944
\(86\) −469.804 −0.589073
\(87\) −4.61417 −0.00568610
\(88\) −160.870 −0.194872
\(89\) 1182.71 1.40862 0.704309 0.709893i \(-0.251257\pi\)
0.704309 + 0.709893i \(0.251257\pi\)
\(90\) −511.812 −0.599441
\(91\) 0 0
\(92\) 797.882 0.904184
\(93\) 78.4598 0.0874828
\(94\) −526.088 −0.577254
\(95\) 173.575 0.187457
\(96\) −41.1576 −0.0437565
\(97\) 832.124 0.871024 0.435512 0.900183i \(-0.356567\pi\)
0.435512 + 0.900183i \(0.356567\pi\)
\(98\) −98.0000 −0.101015
\(99\) −509.671 −0.517412
\(100\) −92.2350 −0.0922350
\(101\) −534.753 −0.526830 −0.263415 0.964683i \(-0.584849\pi\)
−0.263415 + 0.964683i \(0.584849\pi\)
\(102\) 162.709 0.157947
\(103\) −1003.88 −0.960340 −0.480170 0.877175i \(-0.659425\pi\)
−0.480170 + 0.877175i \(0.659425\pi\)
\(104\) 0 0
\(105\) −90.9019 −0.0844868
\(106\) 738.295 0.676505
\(107\) −223.333 −0.201779 −0.100890 0.994898i \(-0.532169\pi\)
−0.100890 + 0.994898i \(0.532169\pi\)
\(108\) −269.303 −0.239942
\(109\) 627.309 0.551242 0.275621 0.961266i \(-0.411117\pi\)
0.275621 + 0.961266i \(0.411117\pi\)
\(110\) 406.059 0.351966
\(111\) 52.8816 0.0452189
\(112\) 112.000 0.0944911
\(113\) −1465.75 −1.22023 −0.610117 0.792311i \(-0.708878\pi\)
−0.610117 + 0.792311i \(0.708878\pi\)
\(114\) 44.2224 0.0363316
\(115\) −2013.97 −1.63308
\(116\) −14.3501 −0.0114859
\(117\) 0 0
\(118\) 821.947 0.641240
\(119\) −442.771 −0.341082
\(120\) 103.888 0.0790302
\(121\) −926.639 −0.696198
\(122\) 296.122 0.219751
\(123\) 41.7817 0.0306287
\(124\) 244.010 0.176716
\(125\) 1494.89 1.06966
\(126\) 354.841 0.250887
\(127\) −1622.68 −1.13378 −0.566890 0.823794i \(-0.691853\pi\)
−0.566890 + 0.823794i \(0.691853\pi\)
\(128\) −128.000 −0.0883883
\(129\) 302.125 0.206206
\(130\) 0 0
\(131\) 1276.93 0.851651 0.425826 0.904805i \(-0.359984\pi\)
0.425826 + 0.904805i \(0.359984\pi\)
\(132\) 103.453 0.0682155
\(133\) −120.340 −0.0784572
\(134\) −91.7726 −0.0591638
\(135\) 679.761 0.433367
\(136\) 506.024 0.319053
\(137\) −2071.67 −1.29193 −0.645967 0.763366i \(-0.723545\pi\)
−0.645967 + 0.763366i \(0.723545\pi\)
\(138\) −513.108 −0.316512
\(139\) 755.679 0.461121 0.230560 0.973058i \(-0.425944\pi\)
0.230560 + 0.973058i \(0.425944\pi\)
\(140\) −282.705 −0.170664
\(141\) 338.321 0.202069
\(142\) −1709.80 −1.01045
\(143\) 0 0
\(144\) −405.532 −0.234683
\(145\) 36.2217 0.0207451
\(146\) −915.162 −0.518763
\(147\) 63.0225 0.0353606
\(148\) 164.462 0.0913424
\(149\) 1076.80 0.592049 0.296024 0.955180i \(-0.404339\pi\)
0.296024 + 0.955180i \(0.404339\pi\)
\(150\) 59.3152 0.0322871
\(151\) −311.861 −0.168072 −0.0840361 0.996463i \(-0.526781\pi\)
−0.0840361 + 0.996463i \(0.526781\pi\)
\(152\) 137.531 0.0733900
\(153\) 1603.19 0.847128
\(154\) −281.522 −0.147310
\(155\) −615.917 −0.319172
\(156\) 0 0
\(157\) 2442.87 1.24180 0.620898 0.783891i \(-0.286768\pi\)
0.620898 + 0.783891i \(0.286768\pi\)
\(158\) 2400.61 1.20875
\(159\) −474.788 −0.236812
\(160\) 323.091 0.159641
\(161\) 1396.29 0.683499
\(162\) −1195.49 −0.579791
\(163\) −1633.00 −0.784702 −0.392351 0.919815i \(-0.628338\pi\)
−0.392351 + 0.919815i \(0.628338\pi\)
\(164\) 129.941 0.0618701
\(165\) −261.131 −0.123206
\(166\) −542.978 −0.253875
\(167\) −583.144 −0.270210 −0.135105 0.990831i \(-0.543137\pi\)
−0.135105 + 0.990831i \(0.543137\pi\)
\(168\) −72.0258 −0.0330768
\(169\) 0 0
\(170\) −1277.28 −0.576252
\(171\) 435.730 0.194860
\(172\) 939.608 0.416537
\(173\) −3771.82 −1.65761 −0.828803 0.559540i \(-0.810978\pi\)
−0.828803 + 0.559540i \(0.810978\pi\)
\(174\) 9.22834 0.00402068
\(175\) −161.411 −0.0697231
\(176\) 321.740 0.137796
\(177\) −528.584 −0.224468
\(178\) −2365.42 −0.996044
\(179\) 3393.20 1.41687 0.708435 0.705776i \(-0.249401\pi\)
0.708435 + 0.705776i \(0.249401\pi\)
\(180\) 1023.62 0.423869
\(181\) 464.782 0.190867 0.0954337 0.995436i \(-0.469576\pi\)
0.0954337 + 0.995436i \(0.469576\pi\)
\(182\) 0 0
\(183\) −190.432 −0.0769245
\(184\) −1595.76 −0.639355
\(185\) −415.126 −0.164977
\(186\) −156.920 −0.0618597
\(187\) −1271.94 −0.497397
\(188\) 1052.18 0.408180
\(189\) −471.280 −0.181379
\(190\) −347.150 −0.132552
\(191\) −3094.71 −1.17238 −0.586191 0.810173i \(-0.699373\pi\)
−0.586191 + 0.810173i \(0.699373\pi\)
\(192\) 82.3152 0.0309405
\(193\) 1560.11 0.581862 0.290931 0.956744i \(-0.406035\pi\)
0.290931 + 0.956744i \(0.406035\pi\)
\(194\) −1664.25 −0.615907
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) −4795.28 −1.73426 −0.867131 0.498080i \(-0.834039\pi\)
−0.867131 + 0.498080i \(0.834039\pi\)
\(198\) 1019.34 0.365866
\(199\) 2554.82 0.910084 0.455042 0.890470i \(-0.349624\pi\)
0.455042 + 0.890470i \(0.349624\pi\)
\(200\) 184.470 0.0652200
\(201\) 59.0178 0.0207104
\(202\) 1069.51 0.372525
\(203\) −25.1126 −0.00868256
\(204\) −325.417 −0.111685
\(205\) −327.991 −0.111746
\(206\) 2007.76 0.679063
\(207\) −5055.73 −1.69757
\(208\) 0 0
\(209\) −345.698 −0.114413
\(210\) 181.804 0.0597412
\(211\) −4309.86 −1.40618 −0.703088 0.711103i \(-0.748196\pi\)
−0.703088 + 0.711103i \(0.748196\pi\)
\(212\) −1476.59 −0.478361
\(213\) 1099.55 0.353709
\(214\) 446.666 0.142680
\(215\) −2371.71 −0.752322
\(216\) 538.606 0.169664
\(217\) 427.017 0.133584
\(218\) −1254.62 −0.389787
\(219\) 588.529 0.181594
\(220\) −812.118 −0.248877
\(221\) 0 0
\(222\) −105.763 −0.0319746
\(223\) −6022.44 −1.80849 −0.904243 0.427018i \(-0.859564\pi\)
−0.904243 + 0.427018i \(0.859564\pi\)
\(224\) −224.000 −0.0668153
\(225\) 584.442 0.173168
\(226\) 2931.51 0.862836
\(227\) 5027.42 1.46996 0.734982 0.678087i \(-0.237191\pi\)
0.734982 + 0.678087i \(0.237191\pi\)
\(228\) −88.4447 −0.0256903
\(229\) −1251.97 −0.361279 −0.180639 0.983549i \(-0.557817\pi\)
−0.180639 + 0.983549i \(0.557817\pi\)
\(230\) 4027.95 1.15476
\(231\) 181.043 0.0515661
\(232\) 28.7001 0.00812179
\(233\) −2527.42 −0.710629 −0.355315 0.934747i \(-0.615626\pi\)
−0.355315 + 0.934747i \(0.615626\pi\)
\(234\) 0 0
\(235\) −2655.85 −0.737228
\(236\) −1643.89 −0.453425
\(237\) −1543.80 −0.423126
\(238\) 885.542 0.241181
\(239\) 2340.32 0.633401 0.316700 0.948526i \(-0.397425\pi\)
0.316700 + 0.948526i \(0.397425\pi\)
\(240\) −207.776 −0.0558828
\(241\) −2052.01 −0.548471 −0.274236 0.961663i \(-0.588425\pi\)
−0.274236 + 0.961663i \(0.588425\pi\)
\(242\) 1853.28 0.492286
\(243\) 2586.60 0.682841
\(244\) −592.245 −0.155388
\(245\) −494.733 −0.129010
\(246\) −83.5634 −0.0216578
\(247\) 0 0
\(248\) −488.020 −0.124957
\(249\) 349.182 0.0888695
\(250\) −2989.78 −0.756361
\(251\) −2598.68 −0.653496 −0.326748 0.945112i \(-0.605953\pi\)
−0.326748 + 0.945112i \(0.605953\pi\)
\(252\) −709.681 −0.177404
\(253\) 4011.10 0.996741
\(254\) 3245.37 0.801703
\(255\) 821.402 0.201718
\(256\) 256.000 0.0625000
\(257\) 5577.60 1.35378 0.676890 0.736084i \(-0.263327\pi\)
0.676890 + 0.736084i \(0.263327\pi\)
\(258\) −604.250 −0.145810
\(259\) 287.808 0.0690484
\(260\) 0 0
\(261\) 90.9283 0.0215644
\(262\) −2553.87 −0.602208
\(263\) 3792.97 0.889295 0.444647 0.895706i \(-0.353329\pi\)
0.444647 + 0.895706i \(0.353329\pi\)
\(264\) −206.907 −0.0482357
\(265\) 3727.13 0.863984
\(266\) 240.680 0.0554776
\(267\) 1521.17 0.348668
\(268\) 183.545 0.0418351
\(269\) 8045.89 1.82367 0.911834 0.410559i \(-0.134666\pi\)
0.911834 + 0.410559i \(0.134666\pi\)
\(270\) −1359.52 −0.306437
\(271\) −7606.20 −1.70496 −0.852479 0.522761i \(-0.824902\pi\)
−0.852479 + 0.522761i \(0.824902\pi\)
\(272\) −1012.05 −0.225604
\(273\) 0 0
\(274\) 4143.34 0.913535
\(275\) −463.682 −0.101677
\(276\) 1026.22 0.223808
\(277\) 2593.54 0.562566 0.281283 0.959625i \(-0.409240\pi\)
0.281283 + 0.959625i \(0.409240\pi\)
\(278\) −1511.36 −0.326062
\(279\) −1546.15 −0.331777
\(280\) 565.409 0.120677
\(281\) −4886.24 −1.03733 −0.518663 0.854979i \(-0.673570\pi\)
−0.518663 + 0.854979i \(0.673570\pi\)
\(282\) −676.641 −0.142884
\(283\) −6749.94 −1.41782 −0.708908 0.705300i \(-0.750812\pi\)
−0.708908 + 0.705300i \(0.750812\pi\)
\(284\) 3419.60 0.714494
\(285\) 223.248 0.0464002
\(286\) 0 0
\(287\) 227.397 0.0467694
\(288\) 811.064 0.165946
\(289\) −912.060 −0.185642
\(290\) −72.4434 −0.0146690
\(291\) 1070.26 0.215600
\(292\) 1830.32 0.366821
\(293\) −6844.98 −1.36481 −0.682403 0.730976i \(-0.739065\pi\)
−0.682403 + 0.730976i \(0.739065\pi\)
\(294\) −126.045 −0.0250037
\(295\) 4149.43 0.818947
\(296\) −328.924 −0.0645888
\(297\) −1353.83 −0.264503
\(298\) −2153.61 −0.418642
\(299\) 0 0
\(300\) −118.630 −0.0228304
\(301\) 1644.31 0.314873
\(302\) 623.722 0.118845
\(303\) −687.785 −0.130403
\(304\) −275.063 −0.0518946
\(305\) 1494.91 0.280651
\(306\) −3206.39 −0.599010
\(307\) 1739.96 0.323468 0.161734 0.986834i \(-0.448291\pi\)
0.161734 + 0.986834i \(0.448291\pi\)
\(308\) 563.044 0.104164
\(309\) −1291.16 −0.237708
\(310\) 1231.83 0.225689
\(311\) −9225.55 −1.68210 −0.841050 0.540958i \(-0.818062\pi\)
−0.841050 + 0.540958i \(0.818062\pi\)
\(312\) 0 0
\(313\) −3367.68 −0.608155 −0.304078 0.952647i \(-0.598348\pi\)
−0.304078 + 0.952647i \(0.598348\pi\)
\(314\) −4885.73 −0.878082
\(315\) 1791.34 0.320415
\(316\) −4801.23 −0.854716
\(317\) 8919.62 1.58036 0.790182 0.612872i \(-0.209986\pi\)
0.790182 + 0.612872i \(0.209986\pi\)
\(318\) 949.576 0.167451
\(319\) −72.1403 −0.0126617
\(320\) −646.182 −0.112883
\(321\) −287.245 −0.0499453
\(322\) −2792.59 −0.483307
\(323\) 1087.41 0.187322
\(324\) 2390.97 0.409974
\(325\) 0 0
\(326\) 3266.00 0.554868
\(327\) 806.829 0.136446
\(328\) −259.882 −0.0437488
\(329\) 1841.31 0.308555
\(330\) 522.263 0.0871201
\(331\) −1857.79 −0.308499 −0.154250 0.988032i \(-0.549296\pi\)
−0.154250 + 0.988032i \(0.549296\pi\)
\(332\) 1085.96 0.179517
\(333\) −1042.10 −0.171492
\(334\) 1166.29 0.191067
\(335\) −463.295 −0.0755598
\(336\) 144.052 0.0233889
\(337\) 894.541 0.144596 0.0722978 0.997383i \(-0.476967\pi\)
0.0722978 + 0.997383i \(0.476967\pi\)
\(338\) 0 0
\(339\) −1885.21 −0.302038
\(340\) 2554.56 0.407472
\(341\) 1226.68 0.194805
\(342\) −871.460 −0.137787
\(343\) 343.000 0.0539949
\(344\) −1879.22 −0.294536
\(345\) −2590.32 −0.404226
\(346\) 7543.63 1.17210
\(347\) 3743.70 0.579172 0.289586 0.957152i \(-0.406482\pi\)
0.289586 + 0.957152i \(0.406482\pi\)
\(348\) −18.4567 −0.00284305
\(349\) 7542.34 1.15683 0.578413 0.815744i \(-0.303672\pi\)
0.578413 + 0.815744i \(0.303672\pi\)
\(350\) 322.823 0.0493017
\(351\) 0 0
\(352\) −643.479 −0.0974362
\(353\) 10820.7 1.63152 0.815761 0.578389i \(-0.196318\pi\)
0.815761 + 0.578389i \(0.196318\pi\)
\(354\) 1057.17 0.158723
\(355\) −8631.59 −1.29047
\(356\) 4730.84 0.704309
\(357\) −569.481 −0.0844261
\(358\) −6786.40 −1.00188
\(359\) −4757.76 −0.699457 −0.349729 0.936851i \(-0.613726\pi\)
−0.349729 + 0.936851i \(0.613726\pi\)
\(360\) −2047.25 −0.299720
\(361\) −6563.45 −0.956911
\(362\) −929.564 −0.134964
\(363\) −1191.82 −0.172326
\(364\) 0 0
\(365\) −4620.01 −0.662527
\(366\) 380.865 0.0543938
\(367\) 1350.57 0.192096 0.0960481 0.995377i \(-0.469380\pi\)
0.0960481 + 0.995377i \(0.469380\pi\)
\(368\) 3191.53 0.452092
\(369\) −823.364 −0.116159
\(370\) 830.252 0.116656
\(371\) −2584.03 −0.361607
\(372\) 313.839 0.0437414
\(373\) −9024.75 −1.25277 −0.626386 0.779513i \(-0.715466\pi\)
−0.626386 + 0.779513i \(0.715466\pi\)
\(374\) 2543.87 0.351713
\(375\) 1922.69 0.264766
\(376\) −2104.35 −0.288627
\(377\) 0 0
\(378\) 942.561 0.128254
\(379\) −4574.02 −0.619925 −0.309963 0.950749i \(-0.600317\pi\)
−0.309963 + 0.950749i \(0.600317\pi\)
\(380\) 694.300 0.0937285
\(381\) −2087.05 −0.280638
\(382\) 6189.41 0.829000
\(383\) −5952.75 −0.794181 −0.397091 0.917779i \(-0.629980\pi\)
−0.397091 + 0.917779i \(0.629980\pi\)
\(384\) −164.630 −0.0218783
\(385\) −1421.21 −0.188134
\(386\) −3120.22 −0.411438
\(387\) −5953.77 −0.782034
\(388\) 3328.49 0.435512
\(389\) 3307.15 0.431051 0.215526 0.976498i \(-0.430853\pi\)
0.215526 + 0.976498i \(0.430853\pi\)
\(390\) 0 0
\(391\) −12617.1 −1.63190
\(392\) −392.000 −0.0505076
\(393\) 1642.36 0.210804
\(394\) 9590.56 1.22631
\(395\) 12119.0 1.54373
\(396\) −2038.68 −0.258706
\(397\) −13605.7 −1.72003 −0.860013 0.510271i \(-0.829545\pi\)
−0.860013 + 0.510271i \(0.829545\pi\)
\(398\) −5109.65 −0.643527
\(399\) −154.778 −0.0194201
\(400\) −368.940 −0.0461175
\(401\) 267.509 0.0333136 0.0166568 0.999861i \(-0.494698\pi\)
0.0166568 + 0.999861i \(0.494698\pi\)
\(402\) −118.036 −0.0146445
\(403\) 0 0
\(404\) −2139.01 −0.263415
\(405\) −6035.17 −0.740469
\(406\) 50.2252 0.00613949
\(407\) 826.779 0.100693
\(408\) 650.835 0.0789734
\(409\) −51.9055 −0.00627522 −0.00313761 0.999995i \(-0.500999\pi\)
−0.00313761 + 0.999995i \(0.500999\pi\)
\(410\) 655.981 0.0790161
\(411\) −2664.53 −0.319785
\(412\) −4015.51 −0.480170
\(413\) −2876.81 −0.342757
\(414\) 10111.5 1.20036
\(415\) −2741.11 −0.324231
\(416\) 0 0
\(417\) 971.934 0.114139
\(418\) 691.396 0.0809025
\(419\) −2053.19 −0.239391 −0.119695 0.992811i \(-0.538192\pi\)
−0.119695 + 0.992811i \(0.538192\pi\)
\(420\) −363.607 −0.0422434
\(421\) −5807.91 −0.672352 −0.336176 0.941799i \(-0.609134\pi\)
−0.336176 + 0.941799i \(0.609134\pi\)
\(422\) 8619.72 0.994316
\(423\) −6667.05 −0.766343
\(424\) 2953.18 0.338252
\(425\) 1458.54 0.166469
\(426\) −2199.10 −0.250110
\(427\) −1036.43 −0.117462
\(428\) −893.331 −0.100890
\(429\) 0 0
\(430\) 4743.42 0.531972
\(431\) −1341.49 −0.149924 −0.0749620 0.997186i \(-0.523884\pi\)
−0.0749620 + 0.997186i \(0.523884\pi\)
\(432\) −1077.21 −0.119971
\(433\) −8216.08 −0.911869 −0.455935 0.890013i \(-0.650695\pi\)
−0.455935 + 0.890013i \(0.650695\pi\)
\(434\) −854.035 −0.0944585
\(435\) 46.5874 0.00513493
\(436\) 2509.24 0.275621
\(437\) −3429.18 −0.375378
\(438\) −1177.06 −0.128406
\(439\) −16733.8 −1.81928 −0.909638 0.415402i \(-0.863641\pi\)
−0.909638 + 0.415402i \(0.863641\pi\)
\(440\) 1624.24 0.175983
\(441\) −1241.94 −0.134105
\(442\) 0 0
\(443\) −9550.55 −1.02429 −0.512145 0.858899i \(-0.671149\pi\)
−0.512145 + 0.858899i \(0.671149\pi\)
\(444\) 211.526 0.0226095
\(445\) −11941.4 −1.27208
\(446\) 12044.9 1.27879
\(447\) 1384.96 0.146546
\(448\) 448.000 0.0472456
\(449\) −4799.99 −0.504511 −0.252255 0.967661i \(-0.581172\pi\)
−0.252255 + 0.967661i \(0.581172\pi\)
\(450\) −1168.88 −0.122448
\(451\) 653.237 0.0682034
\(452\) −5863.02 −0.610117
\(453\) −401.108 −0.0416020
\(454\) −10054.8 −1.03942
\(455\) 0 0
\(456\) 176.889 0.0181658
\(457\) −10085.4 −1.03233 −0.516167 0.856488i \(-0.672642\pi\)
−0.516167 + 0.856488i \(0.672642\pi\)
\(458\) 2503.95 0.255463
\(459\) 4258.56 0.433055
\(460\) −8055.89 −0.816539
\(461\) 1186.34 0.119855 0.0599277 0.998203i \(-0.480913\pi\)
0.0599277 + 0.998203i \(0.480913\pi\)
\(462\) −362.086 −0.0364627
\(463\) 8088.41 0.811880 0.405940 0.913900i \(-0.366944\pi\)
0.405940 + 0.913900i \(0.366944\pi\)
\(464\) −57.4002 −0.00574297
\(465\) −792.177 −0.0790028
\(466\) 5054.84 0.502491
\(467\) 6613.77 0.655351 0.327676 0.944790i \(-0.393735\pi\)
0.327676 + 0.944790i \(0.393735\pi\)
\(468\) 0 0
\(469\) 321.204 0.0316244
\(470\) 5311.70 0.521299
\(471\) 3141.95 0.307375
\(472\) 3287.79 0.320620
\(473\) 4723.58 0.459176
\(474\) 3087.61 0.299195
\(475\) 396.413 0.0382920
\(476\) −1771.08 −0.170541
\(477\) 9356.32 0.898106
\(478\) −4680.64 −0.447882
\(479\) 70.4349 0.00671869 0.00335934 0.999994i \(-0.498931\pi\)
0.00335934 + 0.999994i \(0.498931\pi\)
\(480\) 415.551 0.0395151
\(481\) 0 0
\(482\) 4104.02 0.387828
\(483\) 1795.88 0.169183
\(484\) −3706.56 −0.348099
\(485\) −8401.62 −0.786593
\(486\) −5173.19 −0.482841
\(487\) −9403.87 −0.875011 −0.437505 0.899216i \(-0.644138\pi\)
−0.437505 + 0.899216i \(0.644138\pi\)
\(488\) 1184.49 0.109876
\(489\) −2100.32 −0.194233
\(490\) 989.466 0.0912235
\(491\) −9385.96 −0.862694 −0.431347 0.902186i \(-0.641961\pi\)
−0.431347 + 0.902186i \(0.641961\pi\)
\(492\) 167.127 0.0153144
\(493\) 226.921 0.0207302
\(494\) 0 0
\(495\) 5145.94 0.467258
\(496\) 976.039 0.0883578
\(497\) 5984.31 0.540106
\(498\) −698.364 −0.0628402
\(499\) 757.562 0.0679622 0.0339811 0.999422i \(-0.489181\pi\)
0.0339811 + 0.999422i \(0.489181\pi\)
\(500\) 5979.56 0.534828
\(501\) −750.024 −0.0668835
\(502\) 5197.37 0.462091
\(503\) −8692.50 −0.770535 −0.385268 0.922805i \(-0.625891\pi\)
−0.385268 + 0.922805i \(0.625891\pi\)
\(504\) 1419.36 0.125443
\(505\) 5399.18 0.475763
\(506\) −8022.19 −0.704802
\(507\) 0 0
\(508\) −6490.74 −0.566890
\(509\) −17169.2 −1.49511 −0.747557 0.664197i \(-0.768773\pi\)
−0.747557 + 0.664197i \(0.768773\pi\)
\(510\) −1642.80 −0.142636
\(511\) 3203.07 0.277290
\(512\) −512.000 −0.0441942
\(513\) 1157.43 0.0996133
\(514\) −11155.2 −0.957267
\(515\) 10135.7 0.867251
\(516\) 1208.50 0.103103
\(517\) 5289.48 0.449964
\(518\) −575.616 −0.0488246
\(519\) −4851.21 −0.410298
\(520\) 0 0
\(521\) −2635.94 −0.221656 −0.110828 0.993840i \(-0.535350\pi\)
−0.110828 + 0.993840i \(0.535350\pi\)
\(522\) −181.857 −0.0152484
\(523\) −4967.76 −0.415344 −0.207672 0.978199i \(-0.566589\pi\)
−0.207672 + 0.978199i \(0.566589\pi\)
\(524\) 5107.74 0.425826
\(525\) −207.603 −0.0172582
\(526\) −7585.94 −0.628826
\(527\) −3858.59 −0.318943
\(528\) 413.813 0.0341078
\(529\) 27621.5 2.27020
\(530\) −7454.26 −0.610929
\(531\) 10416.4 0.851290
\(532\) −481.360 −0.0392286
\(533\) 0 0
\(534\) −3042.34 −0.246545
\(535\) 2254.90 0.182220
\(536\) −367.090 −0.0295819
\(537\) 4364.25 0.350710
\(538\) −16091.8 −1.28953
\(539\) 985.327 0.0787404
\(540\) 2719.04 0.216683
\(541\) −22793.4 −1.81140 −0.905698 0.423924i \(-0.860652\pi\)
−0.905698 + 0.423924i \(0.860652\pi\)
\(542\) 15212.4 1.20559
\(543\) 597.791 0.0472443
\(544\) 2024.10 0.159526
\(545\) −6333.69 −0.497808
\(546\) 0 0
\(547\) −18297.3 −1.43023 −0.715115 0.699006i \(-0.753626\pi\)
−0.715115 + 0.699006i \(0.753626\pi\)
\(548\) −8286.69 −0.645967
\(549\) 3752.72 0.291735
\(550\) 927.364 0.0718963
\(551\) 61.6745 0.00476846
\(552\) −2052.43 −0.158256
\(553\) −8402.15 −0.646104
\(554\) −5187.08 −0.397794
\(555\) −533.924 −0.0408357
\(556\) 3022.71 0.230560
\(557\) −20224.0 −1.53845 −0.769225 0.638978i \(-0.779358\pi\)
−0.769225 + 0.638978i \(0.779358\pi\)
\(558\) 3092.31 0.234602
\(559\) 0 0
\(560\) −1130.82 −0.0853318
\(561\) −1635.93 −0.123118
\(562\) 9772.48 0.733500
\(563\) −11421.3 −0.854975 −0.427488 0.904021i \(-0.640601\pi\)
−0.427488 + 0.904021i \(0.640601\pi\)
\(564\) 1353.28 0.101035
\(565\) 14799.1 1.10195
\(566\) 13499.9 1.00255
\(567\) 4184.20 0.309912
\(568\) −6839.21 −0.505223
\(569\) 8897.20 0.655518 0.327759 0.944761i \(-0.393707\pi\)
0.327759 + 0.944761i \(0.393707\pi\)
\(570\) −446.495 −0.0328099
\(571\) 4705.87 0.344894 0.172447 0.985019i \(-0.444833\pi\)
0.172447 + 0.985019i \(0.444833\pi\)
\(572\) 0 0
\(573\) −3980.33 −0.290193
\(574\) −454.794 −0.0330710
\(575\) −4599.54 −0.333590
\(576\) −1622.13 −0.117341
\(577\) 2764.45 0.199455 0.0997275 0.995015i \(-0.468203\pi\)
0.0997275 + 0.995015i \(0.468203\pi\)
\(578\) 1824.12 0.131269
\(579\) 2006.58 0.144025
\(580\) 144.887 0.0103726
\(581\) 1900.42 0.135702
\(582\) −2140.51 −0.152452
\(583\) −7423.08 −0.527329
\(584\) −3660.65 −0.259381
\(585\) 0 0
\(586\) 13690.0 0.965063
\(587\) 6635.35 0.466559 0.233280 0.972410i \(-0.425054\pi\)
0.233280 + 0.972410i \(0.425054\pi\)
\(588\) 252.090 0.0176803
\(589\) −1048.72 −0.0733646
\(590\) −8298.87 −0.579083
\(591\) −6167.57 −0.429272
\(592\) 657.847 0.0456712
\(593\) 25268.7 1.74985 0.874925 0.484258i \(-0.160910\pi\)
0.874925 + 0.484258i \(0.160910\pi\)
\(594\) 2707.67 0.187032
\(595\) 4470.48 0.308020
\(596\) 4307.22 0.296024
\(597\) 3285.95 0.225268
\(598\) 0 0
\(599\) −2579.57 −0.175957 −0.0879787 0.996122i \(-0.528041\pi\)
−0.0879787 + 0.996122i \(0.528041\pi\)
\(600\) 237.261 0.0161435
\(601\) 16399.7 1.11307 0.556537 0.830823i \(-0.312130\pi\)
0.556537 + 0.830823i \(0.312130\pi\)
\(602\) −3288.63 −0.222649
\(603\) −1163.02 −0.0785439
\(604\) −1247.44 −0.0840361
\(605\) 9355.90 0.628713
\(606\) 1375.57 0.0922091
\(607\) −19956.6 −1.33445 −0.667227 0.744855i \(-0.732519\pi\)
−0.667227 + 0.744855i \(0.732519\pi\)
\(608\) 550.126 0.0366950
\(609\) −32.2992 −0.00214914
\(610\) −2989.83 −0.198450
\(611\) 0 0
\(612\) 6412.78 0.423564
\(613\) −20630.8 −1.35933 −0.679665 0.733522i \(-0.737875\pi\)
−0.679665 + 0.733522i \(0.737875\pi\)
\(614\) −3479.92 −0.228727
\(615\) −421.853 −0.0276598
\(616\) −1126.09 −0.0736549
\(617\) 17517.8 1.14301 0.571507 0.820597i \(-0.306359\pi\)
0.571507 + 0.820597i \(0.306359\pi\)
\(618\) 2582.32 0.168085
\(619\) −5315.91 −0.345177 −0.172589 0.984994i \(-0.555213\pi\)
−0.172589 + 0.984994i \(0.555213\pi\)
\(620\) −2463.67 −0.159586
\(621\) −13429.5 −0.867806
\(622\) 18451.1 1.18942
\(623\) 8278.98 0.532408
\(624\) 0 0
\(625\) −12210.9 −0.781501
\(626\) 6735.36 0.430031
\(627\) −444.628 −0.0283201
\(628\) 9771.47 0.620898
\(629\) −2600.67 −0.164858
\(630\) −3582.68 −0.226567
\(631\) −17829.3 −1.12484 −0.562420 0.826852i \(-0.690130\pi\)
−0.562420 + 0.826852i \(0.690130\pi\)
\(632\) 9602.45 0.604375
\(633\) −5543.23 −0.348063
\(634\) −17839.2 −1.11749
\(635\) 16383.6 1.02388
\(636\) −1899.15 −0.118406
\(637\) 0 0
\(638\) 144.281 0.00895317
\(639\) −21668.1 −1.34144
\(640\) 1292.36 0.0798206
\(641\) −25756.8 −1.58710 −0.793550 0.608505i \(-0.791770\pi\)
−0.793550 + 0.608505i \(0.791770\pi\)
\(642\) 574.490 0.0353167
\(643\) −22080.1 −1.35421 −0.677104 0.735888i \(-0.736765\pi\)
−0.677104 + 0.735888i \(0.736765\pi\)
\(644\) 5585.17 0.341749
\(645\) −3050.43 −0.186218
\(646\) −2174.82 −0.132457
\(647\) 18439.2 1.12043 0.560216 0.828347i \(-0.310718\pi\)
0.560216 + 0.828347i \(0.310718\pi\)
\(648\) −4781.94 −0.289896
\(649\) −8264.15 −0.499840
\(650\) 0 0
\(651\) 549.219 0.0330654
\(652\) −6532.00 −0.392351
\(653\) −16124.1 −0.966284 −0.483142 0.875542i \(-0.660505\pi\)
−0.483142 + 0.875542i \(0.660505\pi\)
\(654\) −1613.66 −0.0964817
\(655\) −12892.7 −0.769098
\(656\) 519.764 0.0309350
\(657\) −11597.7 −0.688692
\(658\) −3682.62 −0.218182
\(659\) −3810.64 −0.225252 −0.112626 0.993637i \(-0.535926\pi\)
−0.112626 + 0.993637i \(0.535926\pi\)
\(660\) −1044.53 −0.0616032
\(661\) −16914.1 −0.995285 −0.497642 0.867382i \(-0.665801\pi\)
−0.497642 + 0.867382i \(0.665801\pi\)
\(662\) 3715.58 0.218142
\(663\) 0 0
\(664\) −2171.91 −0.126937
\(665\) 1215.02 0.0708521
\(666\) 2084.20 0.121263
\(667\) −715.603 −0.0415416
\(668\) −2332.57 −0.135105
\(669\) −7745.91 −0.447644
\(670\) 926.591 0.0534288
\(671\) −2977.32 −0.171294
\(672\) −288.103 −0.0165384
\(673\) 13683.4 0.783736 0.391868 0.920021i \(-0.371829\pi\)
0.391868 + 0.920021i \(0.371829\pi\)
\(674\) −1789.08 −0.102245
\(675\) 1552.45 0.0885241
\(676\) 0 0
\(677\) 13672.6 0.776187 0.388094 0.921620i \(-0.373134\pi\)
0.388094 + 0.921620i \(0.373134\pi\)
\(678\) 3770.43 0.213573
\(679\) 5824.87 0.329216
\(680\) −5109.12 −0.288126
\(681\) 6466.14 0.363852
\(682\) −2453.36 −0.137748
\(683\) −22577.7 −1.26488 −0.632439 0.774611i \(-0.717946\pi\)
−0.632439 + 0.774611i \(0.717946\pi\)
\(684\) 1742.92 0.0974301
\(685\) 20916.8 1.16670
\(686\) −686.000 −0.0381802
\(687\) −1610.26 −0.0894253
\(688\) 3758.43 0.208269
\(689\) 0 0
\(690\) 5180.64 0.285831
\(691\) 24591.0 1.35382 0.676908 0.736067i \(-0.263319\pi\)
0.676908 + 0.736067i \(0.263319\pi\)
\(692\) −15087.3 −0.828803
\(693\) −3567.69 −0.195564
\(694\) −7487.41 −0.409536
\(695\) −7629.78 −0.416423
\(696\) 36.9133 0.00201034
\(697\) −2054.79 −0.111665
\(698\) −15084.7 −0.817999
\(699\) −3250.70 −0.175898
\(700\) −645.645 −0.0348616
\(701\) 31427.9 1.69332 0.846658 0.532137i \(-0.178611\pi\)
0.846658 + 0.532137i \(0.178611\pi\)
\(702\) 0 0
\(703\) −706.833 −0.0379214
\(704\) 1286.96 0.0688978
\(705\) −3415.89 −0.182482
\(706\) −21641.4 −1.15366
\(707\) −3743.27 −0.199123
\(708\) −2114.33 −0.112234
\(709\) 28442.3 1.50659 0.753295 0.657683i \(-0.228463\pi\)
0.753295 + 0.657683i \(0.228463\pi\)
\(710\) 17263.2 0.912501
\(711\) 30422.7 1.60470
\(712\) −9461.69 −0.498022
\(713\) 12168.2 0.639134
\(714\) 1138.96 0.0596982
\(715\) 0 0
\(716\) 13572.8 0.708435
\(717\) 3010.06 0.156782
\(718\) 9515.53 0.494591
\(719\) −4213.94 −0.218572 −0.109286 0.994010i \(-0.534856\pi\)
−0.109286 + 0.994010i \(0.534856\pi\)
\(720\) 4094.49 0.211934
\(721\) −7027.15 −0.362974
\(722\) 13126.9 0.676638
\(723\) −2639.24 −0.135760
\(724\) 1859.13 0.0954337
\(725\) 82.7236 0.00423763
\(726\) 2383.64 0.121853
\(727\) −9573.02 −0.488368 −0.244184 0.969729i \(-0.578520\pi\)
−0.244184 + 0.969729i \(0.578520\pi\)
\(728\) 0 0
\(729\) −12812.2 −0.650929
\(730\) 9240.02 0.468478
\(731\) −14858.3 −0.751782
\(732\) −761.730 −0.0384622
\(733\) −28072.8 −1.41459 −0.707293 0.706920i \(-0.750084\pi\)
−0.707293 + 0.706920i \(0.750084\pi\)
\(734\) −2701.14 −0.135832
\(735\) −636.313 −0.0319330
\(736\) −6383.05 −0.319677
\(737\) 922.715 0.0461175
\(738\) 1646.73 0.0821367
\(739\) −28350.3 −1.41121 −0.705604 0.708607i \(-0.749324\pi\)
−0.705604 + 0.708607i \(0.749324\pi\)
\(740\) −1660.50 −0.0824883
\(741\) 0 0
\(742\) 5168.06 0.255695
\(743\) 12951.7 0.639503 0.319752 0.947501i \(-0.396401\pi\)
0.319752 + 0.947501i \(0.396401\pi\)
\(744\) −627.678 −0.0309298
\(745\) −10872.1 −0.534660
\(746\) 18049.5 0.885843
\(747\) −6881.09 −0.337036
\(748\) −5087.75 −0.248698
\(749\) −1563.33 −0.0762655
\(750\) −3845.38 −0.187218
\(751\) 32145.1 1.56191 0.780953 0.624589i \(-0.214734\pi\)
0.780953 + 0.624589i \(0.214734\pi\)
\(752\) 4208.71 0.204090
\(753\) −3342.36 −0.161756
\(754\) 0 0
\(755\) 3148.74 0.151780
\(756\) −1885.12 −0.0906894
\(757\) 19847.0 0.952906 0.476453 0.879200i \(-0.341922\pi\)
0.476453 + 0.879200i \(0.341922\pi\)
\(758\) 9148.04 0.438353
\(759\) 5158.97 0.246718
\(760\) −1388.60 −0.0662761
\(761\) −10596.0 −0.504739 −0.252369 0.967631i \(-0.581210\pi\)
−0.252369 + 0.967631i \(0.581210\pi\)
\(762\) 4174.11 0.198441
\(763\) 4391.16 0.208350
\(764\) −12378.8 −0.586191
\(765\) −16186.8 −0.765013
\(766\) 11905.5 0.561571
\(767\) 0 0
\(768\) 329.261 0.0154703
\(769\) 17945.5 0.841521 0.420761 0.907172i \(-0.361763\pi\)
0.420761 + 0.907172i \(0.361763\pi\)
\(770\) 2842.41 0.133031
\(771\) 7173.77 0.335093
\(772\) 6240.45 0.290931
\(773\) 4840.84 0.225243 0.112622 0.993638i \(-0.464075\pi\)
0.112622 + 0.993638i \(0.464075\pi\)
\(774\) 11907.5 0.552981
\(775\) −1406.64 −0.0651975
\(776\) −6656.99 −0.307954
\(777\) 370.171 0.0170911
\(778\) −6614.29 −0.304799
\(779\) −558.469 −0.0256858
\(780\) 0 0
\(781\) 17191.0 0.787633
\(782\) 25234.2 1.15393
\(783\) 241.532 0.0110238
\(784\) 784.000 0.0357143
\(785\) −24664.6 −1.12142
\(786\) −3284.72 −0.149061
\(787\) 2308.39 0.104556 0.0522778 0.998633i \(-0.483352\pi\)
0.0522778 + 0.998633i \(0.483352\pi\)
\(788\) −19181.1 −0.867131
\(789\) 4878.42 0.220122
\(790\) −24238.0 −1.09158
\(791\) −10260.3 −0.461205
\(792\) 4077.37 0.182933
\(793\) 0 0
\(794\) 27211.4 1.21624
\(795\) 4793.74 0.213857
\(796\) 10219.3 0.455042
\(797\) 12168.7 0.540826 0.270413 0.962744i \(-0.412840\pi\)
0.270413 + 0.962744i \(0.412840\pi\)
\(798\) 309.557 0.0137321
\(799\) −16638.3 −0.736698
\(800\) 737.880 0.0326100
\(801\) −29976.7 −1.32232
\(802\) −535.017 −0.0235563
\(803\) 9201.37 0.404370
\(804\) 236.071 0.0103552
\(805\) −14097.8 −0.617245
\(806\) 0 0
\(807\) 10348.4 0.451402
\(808\) 4278.02 0.186263
\(809\) −4400.44 −0.191237 −0.0956187 0.995418i \(-0.530483\pi\)
−0.0956187 + 0.995418i \(0.530483\pi\)
\(810\) 12070.3 0.523590
\(811\) 4690.58 0.203093 0.101547 0.994831i \(-0.467621\pi\)
0.101547 + 0.994831i \(0.467621\pi\)
\(812\) −100.450 −0.00434128
\(813\) −9782.90 −0.422019
\(814\) −1653.56 −0.0712004
\(815\) 16487.7 0.708639
\(816\) −1301.67 −0.0558426
\(817\) −4038.30 −0.172928
\(818\) 103.811 0.00443725
\(819\) 0 0
\(820\) −1311.96 −0.0558728
\(821\) −15023.4 −0.638638 −0.319319 0.947647i \(-0.603454\pi\)
−0.319319 + 0.947647i \(0.603454\pi\)
\(822\) 5329.06 0.226122
\(823\) −10720.4 −0.454057 −0.227028 0.973888i \(-0.572901\pi\)
−0.227028 + 0.973888i \(0.572901\pi\)
\(824\) 8031.02 0.339532
\(825\) −596.376 −0.0251675
\(826\) 5753.63 0.242366
\(827\) −29565.5 −1.24316 −0.621579 0.783352i \(-0.713508\pi\)
−0.621579 + 0.783352i \(0.713508\pi\)
\(828\) −20222.9 −0.848786
\(829\) 31645.4 1.32580 0.662901 0.748707i \(-0.269325\pi\)
0.662901 + 0.748707i \(0.269325\pi\)
\(830\) 5482.23 0.229266
\(831\) 3335.75 0.139249
\(832\) 0 0
\(833\) −3099.40 −0.128917
\(834\) −1943.87 −0.0807082
\(835\) 5887.76 0.244017
\(836\) −1382.79 −0.0572067
\(837\) −4107.04 −0.169606
\(838\) 4106.37 0.169275
\(839\) 15062.8 0.619817 0.309909 0.950766i \(-0.399702\pi\)
0.309909 + 0.950766i \(0.399702\pi\)
\(840\) 727.215 0.0298706
\(841\) −24376.1 −0.999472
\(842\) 11615.8 0.475424
\(843\) −6284.56 −0.256763
\(844\) −17239.4 −0.703088
\(845\) 0 0
\(846\) 13334.1 0.541887
\(847\) −6486.48 −0.263138
\(848\) −5906.36 −0.239181
\(849\) −8681.60 −0.350944
\(850\) −2917.07 −0.117711
\(851\) 8201.32 0.330361
\(852\) 4398.21 0.176855
\(853\) 28710.1 1.15242 0.576210 0.817302i \(-0.304531\pi\)
0.576210 + 0.817302i \(0.304531\pi\)
\(854\) 2072.86 0.0830582
\(855\) −4399.39 −0.175972
\(856\) 1786.66 0.0713398
\(857\) −4657.93 −0.185661 −0.0928307 0.995682i \(-0.529592\pi\)
−0.0928307 + 0.995682i \(0.529592\pi\)
\(858\) 0 0
\(859\) −46811.9 −1.85937 −0.929687 0.368351i \(-0.879922\pi\)
−0.929687 + 0.368351i \(0.879922\pi\)
\(860\) −9486.84 −0.376161
\(861\) 292.472 0.0115766
\(862\) 2682.98 0.106012
\(863\) 27491.0 1.08436 0.542181 0.840262i \(-0.317599\pi\)
0.542181 + 0.840262i \(0.317599\pi\)
\(864\) 2154.42 0.0848322
\(865\) 38082.5 1.49693
\(866\) 16432.2 0.644789
\(867\) −1173.07 −0.0459509
\(868\) 1708.07 0.0667922
\(869\) −24136.6 −0.942209
\(870\) −93.1748 −0.00363094
\(871\) 0 0
\(872\) −5018.47 −0.194893
\(873\) −21090.8 −0.817658
\(874\) 6858.37 0.265432
\(875\) 10464.2 0.404292
\(876\) 2354.12 0.0907971
\(877\) −7751.91 −0.298476 −0.149238 0.988801i \(-0.547682\pi\)
−0.149238 + 0.988801i \(0.547682\pi\)
\(878\) 33467.7 1.28642
\(879\) −8803.84 −0.337823
\(880\) −3248.47 −0.124439
\(881\) 12398.8 0.474150 0.237075 0.971491i \(-0.423811\pi\)
0.237075 + 0.971491i \(0.423811\pi\)
\(882\) 2483.88 0.0948262
\(883\) 42621.6 1.62438 0.812192 0.583390i \(-0.198274\pi\)
0.812192 + 0.583390i \(0.198274\pi\)
\(884\) 0 0
\(885\) 5336.89 0.202709
\(886\) 19101.1 0.724282
\(887\) −19752.4 −0.747713 −0.373856 0.927487i \(-0.621965\pi\)
−0.373856 + 0.927487i \(0.621965\pi\)
\(888\) −423.053 −0.0159873
\(889\) −11358.8 −0.428528
\(890\) 23882.7 0.899494
\(891\) 12019.8 0.451941
\(892\) −24089.8 −0.904243
\(893\) −4522.11 −0.169459
\(894\) −2769.92 −0.103624
\(895\) −34259.8 −1.27953
\(896\) −896.000 −0.0334077
\(897\) 0 0
\(898\) 9599.97 0.356743
\(899\) −218.847 −0.00811898
\(900\) 2337.77 0.0865840
\(901\) 23349.7 0.863363
\(902\) −1306.47 −0.0482271
\(903\) 2114.87 0.0779387
\(904\) 11726.0 0.431418
\(905\) −4692.72 −0.172366
\(906\) 802.216 0.0294170
\(907\) 43586.8 1.59567 0.797837 0.602873i \(-0.205977\pi\)
0.797837 + 0.602873i \(0.205977\pi\)
\(908\) 20109.7 0.734982
\(909\) 13553.7 0.494552
\(910\) 0 0
\(911\) −40214.4 −1.46253 −0.731263 0.682095i \(-0.761069\pi\)
−0.731263 + 0.682095i \(0.761069\pi\)
\(912\) −353.779 −0.0128452
\(913\) 5459.29 0.197893
\(914\) 20170.9 0.729971
\(915\) 1922.72 0.0694679
\(916\) −5007.90 −0.180639
\(917\) 8938.54 0.321894
\(918\) −8517.11 −0.306216
\(919\) 1088.55 0.0390727 0.0195364 0.999809i \(-0.493781\pi\)
0.0195364 + 0.999809i \(0.493781\pi\)
\(920\) 16111.8 0.577380
\(921\) 2237.89 0.0800662
\(922\) −2372.68 −0.0847506
\(923\) 0 0
\(924\) 724.173 0.0257831
\(925\) −948.071 −0.0336999
\(926\) −16176.8 −0.574086
\(927\) 25444.0 0.901502
\(928\) 114.800 0.00406089
\(929\) 42990.0 1.51825 0.759126 0.650944i \(-0.225627\pi\)
0.759126 + 0.650944i \(0.225627\pi\)
\(930\) 1584.35 0.0558634
\(931\) −842.380 −0.0296540
\(932\) −10109.7 −0.355315
\(933\) −11865.7 −0.416361
\(934\) −13227.5 −0.463403
\(935\) 12842.2 0.449183
\(936\) 0 0
\(937\) −1310.49 −0.0456903 −0.0228451 0.999739i \(-0.507272\pi\)
−0.0228451 + 0.999739i \(0.507272\pi\)
\(938\) −642.408 −0.0223618
\(939\) −4331.43 −0.150533
\(940\) −10623.4 −0.368614
\(941\) 34271.0 1.18725 0.593626 0.804741i \(-0.297696\pi\)
0.593626 + 0.804741i \(0.297696\pi\)
\(942\) −6283.90 −0.217347
\(943\) 6479.85 0.223768
\(944\) −6575.58 −0.226713
\(945\) 4758.33 0.163797
\(946\) −9447.16 −0.324687
\(947\) 3275.78 0.112406 0.0562030 0.998419i \(-0.482101\pi\)
0.0562030 + 0.998419i \(0.482101\pi\)
\(948\) −6175.22 −0.211563
\(949\) 0 0
\(950\) −792.826 −0.0270765
\(951\) 11472.2 0.391179
\(952\) 3542.17 0.120591
\(953\) 12804.0 0.435217 0.217608 0.976036i \(-0.430174\pi\)
0.217608 + 0.976036i \(0.430174\pi\)
\(954\) −18712.6 −0.635057
\(955\) 31246.0 1.05874
\(956\) 9361.29 0.316700
\(957\) −92.7850 −0.00313408
\(958\) −140.870 −0.00475083
\(959\) −14501.7 −0.488305
\(960\) −831.103 −0.0279414
\(961\) −26069.7 −0.875086
\(962\) 0 0
\(963\) 5660.54 0.189417
\(964\) −8208.04 −0.274236
\(965\) −15751.8 −0.525460
\(966\) −3591.75 −0.119630
\(967\) 33358.1 1.10933 0.554667 0.832073i \(-0.312846\pi\)
0.554667 + 0.832073i \(0.312846\pi\)
\(968\) 7413.12 0.246143
\(969\) 1398.60 0.0463668
\(970\) 16803.2 0.556205
\(971\) −29682.0 −0.980988 −0.490494 0.871445i \(-0.663184\pi\)
−0.490494 + 0.871445i \(0.663184\pi\)
\(972\) 10346.4 0.341420
\(973\) 5289.75 0.174287
\(974\) 18807.7 0.618726
\(975\) 0 0
\(976\) −2368.98 −0.0776938
\(977\) 15783.2 0.516836 0.258418 0.966033i \(-0.416799\pi\)
0.258418 + 0.966033i \(0.416799\pi\)
\(978\) 4200.65 0.137343
\(979\) 23782.8 0.776406
\(980\) −1978.93 −0.0645048
\(981\) −15899.6 −0.517468
\(982\) 18771.9 0.610016
\(983\) 48753.0 1.58187 0.790935 0.611901i \(-0.209595\pi\)
0.790935 + 0.611901i \(0.209595\pi\)
\(984\) −334.254 −0.0108289
\(985\) 48416.0 1.56616
\(986\) −453.842 −0.0146585
\(987\) 2368.24 0.0763749
\(988\) 0 0
\(989\) 46856.0 1.50651
\(990\) −10291.9 −0.330401
\(991\) 54660.8 1.75213 0.876063 0.482196i \(-0.160161\pi\)
0.876063 + 0.482196i \(0.160161\pi\)
\(992\) −1952.08 −0.0624784
\(993\) −2389.44 −0.0763611
\(994\) −11968.6 −0.381913
\(995\) −25795.0 −0.821867
\(996\) 1396.73 0.0444348
\(997\) −52523.4 −1.66844 −0.834220 0.551432i \(-0.814082\pi\)
−0.834220 + 0.551432i \(0.814082\pi\)
\(998\) −1515.12 −0.0480565
\(999\) −2768.13 −0.0876674
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2366.4.a.s.1.3 5
13.3 even 3 182.4.g.b.113.3 yes 10
13.9 even 3 182.4.g.b.29.3 10
13.12 even 2 2366.4.a.t.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.4.g.b.29.3 10 13.9 even 3
182.4.g.b.113.3 yes 10 13.3 even 3
2366.4.a.s.1.3 5 1.1 even 1 trivial
2366.4.a.t.1.3 5 13.12 even 2