Properties

Label 2366.4.a.s
Level $2366$
Weight $4$
Character orbit 2366.a
Self dual yes
Analytic conductor $139.599$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,4,Mod(1,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2366.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-10,1,20,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(139.598519074\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 95x^{3} + 122x^{2} + 2074x - 2668 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 182)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + \beta_1 q^{3} + 4 q^{4} + (\beta_{3} + \beta_{2} + \beta_1 + 1) q^{5} - 2 \beta_1 q^{6} + 7 q^{7} - 8 q^{8} + (3 \beta_{2} + 10) q^{9} + ( - 2 \beta_{3} - 2 \beta_{2} + \cdots - 2) q^{10}+ \cdots + ( - 6 \beta_{4} - 73 \beta_{3} + \cdots + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 10 q^{2} + q^{3} + 20 q^{4} + 6 q^{5} - 2 q^{6} + 35 q^{7} - 40 q^{8} + 56 q^{9} - 12 q^{10} - 9 q^{11} + 4 q^{12} - 70 q^{14} + 137 q^{15} + 80 q^{16} - 89 q^{17} - 112 q^{18} - 49 q^{19} + 24 q^{20}+ \cdots + 81 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 95x^{3} + 122x^{2} + 2074x - 2668 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 37 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu^{2} - 52\nu + 61 ) / 9 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + 3\nu^{3} - 62\nu^{2} - 129\nu + 511 ) / 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} + 37 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 9\beta_{3} + 3\beta_{2} + 52\beta _1 - 24 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 9\beta_{4} - 27\beta_{3} + 177\beta_{2} - 27\beta _1 + 1855 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.06998
−5.70204
1.28617
6.12082
7.36502
−2.00000 −8.06998 4.00000 −9.92174 16.1400 7.00000 −8.00000 38.1246 19.8435
1.2 −2.00000 −5.70204 4.00000 9.31361 11.4041 7.00000 −8.00000 5.51321 −18.6272
1.3 −2.00000 1.28617 4.00000 −10.0966 −2.57235 7.00000 −8.00000 −25.3458 20.1932
1.4 −2.00000 6.12082 4.00000 0.00519876 −12.2416 7.00000 −8.00000 10.4644 −0.0103975
1.5 −2.00000 7.36502 4.00000 16.6995 −14.7300 7.00000 −8.00000 27.2435 −33.3991
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2366.4.a.s 5
13.b even 2 1 2366.4.a.t 5
13.c even 3 2 182.4.g.b 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
182.4.g.b 10 13.c even 3 2
2366.4.a.s 5 1.a even 1 1 trivial
2366.4.a.t 5 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2366))\):

\( T_{3}^{5} - T_{3}^{4} - 95T_{3}^{3} + 122T_{3}^{2} + 2074T_{3} - 2668 \) Copy content Toggle raw display
\( T_{5}^{5} - 6T_{5}^{4} - 265T_{5}^{3} + 509T_{5}^{2} + 15578T_{5} - 81 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - T^{4} + \cdots - 2668 \) Copy content Toggle raw display
$5$ \( T^{5} - 6 T^{4} + \cdots - 81 \) Copy content Toggle raw display
$7$ \( (T - 7)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} + 9 T^{4} + \cdots - 17878068 \) Copy content Toggle raw display
$13$ \( T^{5} \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots + 2516871123 \) Copy content Toggle raw display
$19$ \( T^{5} + 49 T^{4} + \cdots + 637349312 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 17531905104 \) Copy content Toggle raw display
$29$ \( T^{5} + 196 T^{4} + \cdots + 146086551 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 9196721532 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots + 4856825008 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 27700535772 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 79438805108 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 510478904208 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 7326385988883 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 55437062123244 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 77742611388 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 732135144212 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 57137783691456 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 1638605790124 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 62909566918592 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 12429069998436 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 325640751383016 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 10\!\cdots\!24 \) Copy content Toggle raw display
show more
show less