Properties

Label 2366.4
Level 2366
Weight 4
Dimension 161328
Nonzero newspaces 30
Sturm bound 1362816
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 30 \)
Sturm bound: \(1362816\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(2366))\).

Total New Old
Modular forms 513792 161328 352464
Cusp forms 508320 161328 346992
Eisenstein series 5472 0 5472

Trace form

\( 161328 q + 12 q^{3} - 24 q^{5} - 36 q^{6} + 96 q^{7} + 96 q^{8} + 42 q^{9} - 324 q^{10} - 438 q^{11} - 144 q^{12} - 576 q^{13} - 108 q^{14} - 588 q^{15} + 798 q^{17} + 912 q^{18} + 2676 q^{19} + 408 q^{20}+ \cdots + 33996 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(2366))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2366.4.a \(\chi_{2366}(1, \cdot)\) 2366.4.a.a 1 1
2366.4.a.b 1
2366.4.a.c 1
2366.4.a.d 1
2366.4.a.e 1
2366.4.a.f 1
2366.4.a.g 1
2366.4.a.h 1
2366.4.a.i 2
2366.4.a.j 2
2366.4.a.k 2
2366.4.a.l 2
2366.4.a.m 3
2366.4.a.n 3
2366.4.a.o 3
2366.4.a.p 3
2366.4.a.q 4
2366.4.a.r 4
2366.4.a.s 5
2366.4.a.t 5
2366.4.a.u 6
2366.4.a.v 6
2366.4.a.w 6
2366.4.a.x 6
2366.4.a.y 7
2366.4.a.z 7
2366.4.a.ba 8
2366.4.a.bb 8
2366.4.a.bc 12
2366.4.a.bd 12
2366.4.a.be 12
2366.4.a.bf 12
2366.4.a.bg 12
2366.4.a.bh 12
2366.4.a.bi 15
2366.4.a.bj 15
2366.4.a.bk 15
2366.4.a.bl 15
2366.4.d \(\chi_{2366}(337, \cdot)\) n/a 232 1
2366.4.e \(\chi_{2366}(529, \cdot)\) n/a 616 2
2366.4.f \(\chi_{2366}(1353, \cdot)\) n/a 620 2
2366.4.g \(\chi_{2366}(1205, \cdot)\) n/a 460 2
2366.4.h \(\chi_{2366}(191, \cdot)\) n/a 616 2
2366.4.i \(\chi_{2366}(2127, \cdot)\) n/a 616 2
2366.4.m \(\chi_{2366}(1037, \cdot)\) n/a 464 2
2366.4.n \(\chi_{2366}(1689, \cdot)\) n/a 616 2
2366.4.o \(\chi_{2366}(23, \cdot)\) n/a 616 2
2366.4.v \(\chi_{2366}(361, \cdot)\) n/a 616 2
2366.4.w \(\chi_{2366}(19, \cdot)\) n/a 1232 4
2366.4.ba \(\chi_{2366}(587, \cdot)\) n/a 1232 4
2366.4.bb \(\chi_{2366}(437, \cdot)\) n/a 1232 4
2366.4.bc \(\chi_{2366}(89, \cdot)\) n/a 1232 4
2366.4.be \(\chi_{2366}(183, \cdot)\) n/a 3288 12
2366.4.bf \(\chi_{2366}(155, \cdot)\) n/a 3264 12
2366.4.bi \(\chi_{2366}(9, \cdot)\) n/a 8736 24
2366.4.bj \(\chi_{2366}(29, \cdot)\) n/a 6576 24
2366.4.bk \(\chi_{2366}(53, \cdot)\) n/a 8736 24
2366.4.bl \(\chi_{2366}(107, \cdot)\) n/a 8736 24
2366.4.bn \(\chi_{2366}(83, \cdot)\) n/a 8736 24
2366.4.bo \(\chi_{2366}(121, \cdot)\) n/a 8736 24
2366.4.bv \(\chi_{2366}(95, \cdot)\) n/a 8736 24
2366.4.bw \(\chi_{2366}(25, \cdot)\) n/a 8736 24
2366.4.bx \(\chi_{2366}(43, \cdot)\) n/a 6528 24
2366.4.cb \(\chi_{2366}(45, \cdot)\) n/a 17472 48
2366.4.cc \(\chi_{2366}(5, \cdot)\) n/a 17472 48
2366.4.cd \(\chi_{2366}(41, \cdot)\) n/a 17472 48
2366.4.ch \(\chi_{2366}(33, \cdot)\) n/a 17472 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(2366))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(2366)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(91))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(182))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(1183))\)\(^{\oplus 2}\)