Properties

Label 2366.4.a.s.1.2
Level $2366$
Weight $4$
Character 2366.1
Self dual yes
Analytic conductor $139.599$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,4,Mod(1,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2366.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-10,1,20,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(139.598519074\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 95x^{3} + 122x^{2} + 2074x - 2668 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 182)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.70204\) of defining polynomial
Character \(\chi\) \(=\) 2366.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -5.70204 q^{3} +4.00000 q^{4} +9.31361 q^{5} +11.4041 q^{6} +7.00000 q^{7} -8.00000 q^{8} +5.51321 q^{9} -18.6272 q^{10} -43.9477 q^{11} -22.8081 q^{12} -14.0000 q^{14} -53.1065 q^{15} +16.0000 q^{16} -66.0485 q^{17} -11.0264 q^{18} +41.0983 q^{19} +37.2544 q^{20} -39.9143 q^{21} +87.8953 q^{22} +79.3462 q^{23} +45.6163 q^{24} -38.2567 q^{25} +122.518 q^{27} +28.0000 q^{28} +94.2019 q^{29} +106.213 q^{30} +53.4525 q^{31} -32.0000 q^{32} +250.591 q^{33} +132.097 q^{34} +65.1952 q^{35} +22.0528 q^{36} +56.6658 q^{37} -82.1965 q^{38} -74.5089 q^{40} -93.8897 q^{41} +79.8285 q^{42} +11.9989 q^{43} -175.791 q^{44} +51.3479 q^{45} -158.692 q^{46} +155.931 q^{47} -91.2326 q^{48} +49.0000 q^{49} +76.5134 q^{50} +376.611 q^{51} +431.367 q^{53} -245.037 q^{54} -409.311 q^{55} -56.0000 q^{56} -234.344 q^{57} -188.404 q^{58} -516.538 q^{59} -212.426 q^{60} +126.857 q^{61} -106.905 q^{62} +38.5925 q^{63} +64.0000 q^{64} -501.182 q^{66} -779.421 q^{67} -264.194 q^{68} -452.435 q^{69} -130.390 q^{70} -338.952 q^{71} -44.1057 q^{72} -73.6584 q^{73} -113.332 q^{74} +218.141 q^{75} +164.393 q^{76} -307.634 q^{77} +584.714 q^{79} +149.018 q^{80} -847.461 q^{81} +187.779 q^{82} +633.536 q^{83} -159.657 q^{84} -615.150 q^{85} -23.9979 q^{86} -537.142 q^{87} +351.581 q^{88} +1603.47 q^{89} -102.696 q^{90} +317.385 q^{92} -304.788 q^{93} -311.862 q^{94} +382.773 q^{95} +182.465 q^{96} -1587.64 q^{97} -98.0000 q^{98} -242.293 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 10 q^{2} + q^{3} + 20 q^{4} + 6 q^{5} - 2 q^{6} + 35 q^{7} - 40 q^{8} + 56 q^{9} - 12 q^{10} - 9 q^{11} + 4 q^{12} - 70 q^{14} + 137 q^{15} + 80 q^{16} - 89 q^{17} - 112 q^{18} - 49 q^{19} + 24 q^{20}+ \cdots + 81 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −5.70204 −1.09736 −0.548679 0.836033i \(-0.684869\pi\)
−0.548679 + 0.836033i \(0.684869\pi\)
\(4\) 4.00000 0.500000
\(5\) 9.31361 0.833034 0.416517 0.909128i \(-0.363251\pi\)
0.416517 + 0.909128i \(0.363251\pi\)
\(6\) 11.4041 0.775949
\(7\) 7.00000 0.377964
\(8\) −8.00000 −0.353553
\(9\) 5.51321 0.204193
\(10\) −18.6272 −0.589044
\(11\) −43.9477 −1.20461 −0.602305 0.798266i \(-0.705751\pi\)
−0.602305 + 0.798266i \(0.705751\pi\)
\(12\) −22.8081 −0.548679
\(13\) 0 0
\(14\) −14.0000 −0.267261
\(15\) −53.1065 −0.914136
\(16\) 16.0000 0.250000
\(17\) −66.0485 −0.942301 −0.471150 0.882053i \(-0.656161\pi\)
−0.471150 + 0.882053i \(0.656161\pi\)
\(18\) −11.0264 −0.144386
\(19\) 41.0983 0.496242 0.248121 0.968729i \(-0.420187\pi\)
0.248121 + 0.968729i \(0.420187\pi\)
\(20\) 37.2544 0.416517
\(21\) −39.9143 −0.414762
\(22\) 87.8953 0.851788
\(23\) 79.3462 0.719340 0.359670 0.933079i \(-0.382889\pi\)
0.359670 + 0.933079i \(0.382889\pi\)
\(24\) 45.6163 0.387974
\(25\) −38.2567 −0.306054
\(26\) 0 0
\(27\) 122.518 0.873285
\(28\) 28.0000 0.188982
\(29\) 94.2019 0.603202 0.301601 0.953434i \(-0.402479\pi\)
0.301601 + 0.953434i \(0.402479\pi\)
\(30\) 106.213 0.646392
\(31\) 53.4525 0.309689 0.154844 0.987939i \(-0.450512\pi\)
0.154844 + 0.987939i \(0.450512\pi\)
\(32\) −32.0000 −0.176777
\(33\) 250.591 1.32189
\(34\) 132.097 0.666307
\(35\) 65.1952 0.314857
\(36\) 22.0528 0.102097
\(37\) 56.6658 0.251778 0.125889 0.992044i \(-0.459822\pi\)
0.125889 + 0.992044i \(0.459822\pi\)
\(38\) −82.1965 −0.350896
\(39\) 0 0
\(40\) −74.5089 −0.294522
\(41\) −93.8897 −0.357637 −0.178818 0.983882i \(-0.557227\pi\)
−0.178818 + 0.983882i \(0.557227\pi\)
\(42\) 79.8285 0.293281
\(43\) 11.9989 0.0425540 0.0212770 0.999774i \(-0.493227\pi\)
0.0212770 + 0.999774i \(0.493227\pi\)
\(44\) −175.791 −0.602305
\(45\) 51.3479 0.170100
\(46\) −158.692 −0.508650
\(47\) 155.931 0.483933 0.241966 0.970285i \(-0.422208\pi\)
0.241966 + 0.970285i \(0.422208\pi\)
\(48\) −91.2326 −0.274339
\(49\) 49.0000 0.142857
\(50\) 76.5134 0.216413
\(51\) 376.611 1.03404
\(52\) 0 0
\(53\) 431.367 1.11798 0.558989 0.829175i \(-0.311189\pi\)
0.558989 + 0.829175i \(0.311189\pi\)
\(54\) −245.037 −0.617505
\(55\) −409.311 −1.00348
\(56\) −56.0000 −0.133631
\(57\) −234.344 −0.544554
\(58\) −188.404 −0.426528
\(59\) −516.538 −1.13979 −0.569895 0.821718i \(-0.693016\pi\)
−0.569895 + 0.821718i \(0.693016\pi\)
\(60\) −212.426 −0.457068
\(61\) 126.857 0.266269 0.133134 0.991098i \(-0.457496\pi\)
0.133134 + 0.991098i \(0.457496\pi\)
\(62\) −106.905 −0.218983
\(63\) 38.5925 0.0771777
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −501.182 −0.934716
\(67\) −779.421 −1.42121 −0.710607 0.703589i \(-0.751580\pi\)
−0.710607 + 0.703589i \(0.751580\pi\)
\(68\) −264.194 −0.471150
\(69\) −452.435 −0.789373
\(70\) −130.390 −0.222638
\(71\) −338.952 −0.566566 −0.283283 0.959036i \(-0.591424\pi\)
−0.283283 + 0.959036i \(0.591424\pi\)
\(72\) −44.1057 −0.0721931
\(73\) −73.6584 −0.118097 −0.0590484 0.998255i \(-0.518807\pi\)
−0.0590484 + 0.998255i \(0.518807\pi\)
\(74\) −113.332 −0.178034
\(75\) 218.141 0.335850
\(76\) 164.393 0.248121
\(77\) −307.634 −0.455300
\(78\) 0 0
\(79\) 584.714 0.832727 0.416364 0.909198i \(-0.363304\pi\)
0.416364 + 0.909198i \(0.363304\pi\)
\(80\) 149.018 0.208259
\(81\) −847.461 −1.16250
\(82\) 187.779 0.252887
\(83\) 633.536 0.837827 0.418913 0.908026i \(-0.362411\pi\)
0.418913 + 0.908026i \(0.362411\pi\)
\(84\) −159.657 −0.207381
\(85\) −615.150 −0.784969
\(86\) −23.9979 −0.0300902
\(87\) −537.142 −0.661928
\(88\) 351.581 0.425894
\(89\) 1603.47 1.90975 0.954875 0.297008i \(-0.0959887\pi\)
0.954875 + 0.297008i \(0.0959887\pi\)
\(90\) −102.696 −0.120279
\(91\) 0 0
\(92\) 317.385 0.359670
\(93\) −304.788 −0.339839
\(94\) −311.862 −0.342192
\(95\) 382.773 0.413386
\(96\) 182.465 0.193987
\(97\) −1587.64 −1.66186 −0.830930 0.556377i \(-0.812191\pi\)
−0.830930 + 0.556377i \(0.812191\pi\)
\(98\) −98.0000 −0.101015
\(99\) −242.293 −0.245973
\(100\) −153.027 −0.153027
\(101\) −203.646 −0.200629 −0.100315 0.994956i \(-0.531985\pi\)
−0.100315 + 0.994956i \(0.531985\pi\)
\(102\) −753.222 −0.731177
\(103\) −820.107 −0.784540 −0.392270 0.919850i \(-0.628310\pi\)
−0.392270 + 0.919850i \(0.628310\pi\)
\(104\) 0 0
\(105\) −371.746 −0.345511
\(106\) −862.734 −0.790530
\(107\) −1117.96 −1.01007 −0.505034 0.863099i \(-0.668520\pi\)
−0.505034 + 0.863099i \(0.668520\pi\)
\(108\) 490.074 0.436642
\(109\) 1488.63 1.30812 0.654061 0.756442i \(-0.273064\pi\)
0.654061 + 0.756442i \(0.273064\pi\)
\(110\) 818.622 0.709569
\(111\) −323.110 −0.276291
\(112\) 112.000 0.0944911
\(113\) −780.189 −0.649504 −0.324752 0.945799i \(-0.605281\pi\)
−0.324752 + 0.945799i \(0.605281\pi\)
\(114\) 468.688 0.385058
\(115\) 738.999 0.599235
\(116\) 376.808 0.301601
\(117\) 0 0
\(118\) 1033.08 0.805953
\(119\) −462.339 −0.356156
\(120\) 424.852 0.323196
\(121\) 600.396 0.451087
\(122\) −253.714 −0.188280
\(123\) 535.362 0.392455
\(124\) 213.810 0.154844
\(125\) −1520.51 −1.08799
\(126\) −77.1850 −0.0545729
\(127\) 1838.12 1.28430 0.642152 0.766577i \(-0.278042\pi\)
0.642152 + 0.766577i \(0.278042\pi\)
\(128\) −128.000 −0.0883883
\(129\) −68.4184 −0.0466969
\(130\) 0 0
\(131\) 347.583 0.231820 0.115910 0.993260i \(-0.463022\pi\)
0.115910 + 0.993260i \(0.463022\pi\)
\(132\) 1002.36 0.660944
\(133\) 287.688 0.187562
\(134\) 1558.84 1.00495
\(135\) 1141.09 0.727476
\(136\) 528.388 0.333154
\(137\) 2560.83 1.59698 0.798491 0.602007i \(-0.205632\pi\)
0.798491 + 0.602007i \(0.205632\pi\)
\(138\) 904.870 0.558171
\(139\) 1048.09 0.639553 0.319776 0.947493i \(-0.396392\pi\)
0.319776 + 0.947493i \(0.396392\pi\)
\(140\) 260.781 0.157429
\(141\) −889.123 −0.531047
\(142\) 677.903 0.400622
\(143\) 0 0
\(144\) 88.2114 0.0510483
\(145\) 877.359 0.502488
\(146\) 147.317 0.0835070
\(147\) −279.400 −0.156765
\(148\) 226.663 0.125889
\(149\) 3581.03 1.96892 0.984462 0.175597i \(-0.0561856\pi\)
0.984462 + 0.175597i \(0.0561856\pi\)
\(150\) −436.282 −0.237482
\(151\) −1444.52 −0.778497 −0.389249 0.921133i \(-0.627265\pi\)
−0.389249 + 0.921133i \(0.627265\pi\)
\(152\) −328.786 −0.175448
\(153\) −364.139 −0.192411
\(154\) 615.267 0.321946
\(155\) 497.836 0.257981
\(156\) 0 0
\(157\) −2441.16 −1.24093 −0.620465 0.784234i \(-0.713056\pi\)
−0.620465 + 0.784234i \(0.713056\pi\)
\(158\) −1169.43 −0.588827
\(159\) −2459.67 −1.22682
\(160\) −298.035 −0.147261
\(161\) 555.424 0.271885
\(162\) 1694.92 0.822010
\(163\) −2667.17 −1.28165 −0.640826 0.767686i \(-0.721408\pi\)
−0.640826 + 0.767686i \(0.721408\pi\)
\(164\) −375.559 −0.178818
\(165\) 2333.91 1.10118
\(166\) −1267.07 −0.592433
\(167\) 3824.25 1.77203 0.886015 0.463656i \(-0.153463\pi\)
0.886015 + 0.463656i \(0.153463\pi\)
\(168\) 319.314 0.146641
\(169\) 0 0
\(170\) 1230.30 0.555057
\(171\) 226.583 0.101329
\(172\) 47.9958 0.0212770
\(173\) 1707.92 0.750584 0.375292 0.926907i \(-0.377542\pi\)
0.375292 + 0.926907i \(0.377542\pi\)
\(174\) 1074.28 0.468054
\(175\) −267.797 −0.115677
\(176\) −703.162 −0.301153
\(177\) 2945.32 1.25076
\(178\) −3206.95 −1.35040
\(179\) −2151.89 −0.898547 −0.449273 0.893394i \(-0.648317\pi\)
−0.449273 + 0.893394i \(0.648317\pi\)
\(180\) 205.392 0.0850499
\(181\) −4083.35 −1.67687 −0.838435 0.545002i \(-0.816529\pi\)
−0.838435 + 0.545002i \(0.816529\pi\)
\(182\) 0 0
\(183\) −723.344 −0.292192
\(184\) −634.770 −0.254325
\(185\) 527.763 0.209740
\(186\) 609.576 0.240303
\(187\) 2902.68 1.13511
\(188\) 623.723 0.241966
\(189\) 857.629 0.330071
\(190\) −765.546 −0.292308
\(191\) 1928.79 0.730693 0.365346 0.930872i \(-0.380951\pi\)
0.365346 + 0.930872i \(0.380951\pi\)
\(192\) −364.930 −0.137170
\(193\) −210.728 −0.0785934 −0.0392967 0.999228i \(-0.512512\pi\)
−0.0392967 + 0.999228i \(0.512512\pi\)
\(194\) 3175.28 1.17511
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) −1095.68 −0.396266 −0.198133 0.980175i \(-0.563488\pi\)
−0.198133 + 0.980175i \(0.563488\pi\)
\(198\) 484.586 0.173929
\(199\) −3255.01 −1.15950 −0.579752 0.814793i \(-0.696851\pi\)
−0.579752 + 0.814793i \(0.696851\pi\)
\(200\) 306.054 0.108206
\(201\) 4444.28 1.55958
\(202\) 407.292 0.141866
\(203\) 659.413 0.227989
\(204\) 1506.44 0.517020
\(205\) −874.452 −0.297924
\(206\) 1640.21 0.554753
\(207\) 437.453 0.146884
\(208\) 0 0
\(209\) −1806.17 −0.597778
\(210\) 743.491 0.244313
\(211\) 1087.31 0.354757 0.177379 0.984143i \(-0.443238\pi\)
0.177379 + 0.984143i \(0.443238\pi\)
\(212\) 1725.47 0.558989
\(213\) 1932.71 0.621725
\(214\) 2235.92 0.714226
\(215\) 111.753 0.0354489
\(216\) −980.147 −0.308753
\(217\) 374.168 0.117051
\(218\) −2977.27 −0.924982
\(219\) 420.003 0.129594
\(220\) −1637.24 −0.501741
\(221\) 0 0
\(222\) 646.221 0.195367
\(223\) 6403.37 1.92288 0.961438 0.275020i \(-0.0886845\pi\)
0.961438 + 0.275020i \(0.0886845\pi\)
\(224\) −224.000 −0.0668153
\(225\) −210.917 −0.0624941
\(226\) 1560.38 0.459269
\(227\) −2744.12 −0.802350 −0.401175 0.916001i \(-0.631398\pi\)
−0.401175 + 0.916001i \(0.631398\pi\)
\(228\) −937.375 −0.272277
\(229\) 993.609 0.286723 0.143361 0.989670i \(-0.454209\pi\)
0.143361 + 0.989670i \(0.454209\pi\)
\(230\) −1478.00 −0.423723
\(231\) 1754.14 0.499627
\(232\) −753.615 −0.213264
\(233\) −5503.91 −1.54752 −0.773761 0.633477i \(-0.781627\pi\)
−0.773761 + 0.633477i \(0.781627\pi\)
\(234\) 0 0
\(235\) 1452.28 0.403133
\(236\) −2066.15 −0.569895
\(237\) −3334.06 −0.913799
\(238\) 924.679 0.251840
\(239\) 5926.80 1.60407 0.802035 0.597277i \(-0.203751\pi\)
0.802035 + 0.597277i \(0.203751\pi\)
\(240\) −849.704 −0.228534
\(241\) −29.2500 −0.00781808 −0.00390904 0.999992i \(-0.501244\pi\)
−0.00390904 + 0.999992i \(0.501244\pi\)
\(242\) −1200.79 −0.318966
\(243\) 1524.26 0.402391
\(244\) 507.429 0.133134
\(245\) 456.367 0.119005
\(246\) −1070.72 −0.277508
\(247\) 0 0
\(248\) −427.620 −0.109492
\(249\) −3612.44 −0.919395
\(250\) 3041.02 0.769323
\(251\) −2681.08 −0.674216 −0.337108 0.941466i \(-0.609449\pi\)
−0.337108 + 0.941466i \(0.609449\pi\)
\(252\) 154.370 0.0385889
\(253\) −3487.08 −0.866525
\(254\) −3676.24 −0.908141
\(255\) 3507.61 0.861391
\(256\) 256.000 0.0625000
\(257\) −1407.90 −0.341721 −0.170860 0.985295i \(-0.554655\pi\)
−0.170860 + 0.985295i \(0.554655\pi\)
\(258\) 136.837 0.0330197
\(259\) 396.660 0.0951632
\(260\) 0 0
\(261\) 519.355 0.123170
\(262\) −695.165 −0.163922
\(263\) 3355.50 0.786726 0.393363 0.919383i \(-0.371312\pi\)
0.393363 + 0.919383i \(0.371312\pi\)
\(264\) −2004.73 −0.467358
\(265\) 4017.58 0.931314
\(266\) −575.376 −0.132626
\(267\) −9143.06 −2.09568
\(268\) −3117.68 −0.710607
\(269\) −1873.33 −0.424606 −0.212303 0.977204i \(-0.568096\pi\)
−0.212303 + 0.977204i \(0.568096\pi\)
\(270\) −2282.18 −0.514403
\(271\) −3797.76 −0.851283 −0.425642 0.904892i \(-0.639952\pi\)
−0.425642 + 0.904892i \(0.639952\pi\)
\(272\) −1056.78 −0.235575
\(273\) 0 0
\(274\) −5121.66 −1.12924
\(275\) 1681.29 0.368676
\(276\) −1809.74 −0.394687
\(277\) −5523.72 −1.19815 −0.599076 0.800692i \(-0.704465\pi\)
−0.599076 + 0.800692i \(0.704465\pi\)
\(278\) −2096.18 −0.452232
\(279\) 294.695 0.0632363
\(280\) −521.562 −0.111319
\(281\) 2613.32 0.554796 0.277398 0.960755i \(-0.410528\pi\)
0.277398 + 0.960755i \(0.410528\pi\)
\(282\) 1778.25 0.375507
\(283\) 4399.28 0.924063 0.462032 0.886863i \(-0.347121\pi\)
0.462032 + 0.886863i \(0.347121\pi\)
\(284\) −1355.81 −0.283283
\(285\) −2182.59 −0.453632
\(286\) 0 0
\(287\) −657.228 −0.135174
\(288\) −176.423 −0.0360966
\(289\) −550.597 −0.112069
\(290\) −1754.72 −0.355312
\(291\) 9052.78 1.82365
\(292\) −294.633 −0.0590484
\(293\) −2316.91 −0.461963 −0.230981 0.972958i \(-0.574194\pi\)
−0.230981 + 0.972958i \(0.574194\pi\)
\(294\) 558.800 0.110850
\(295\) −4810.84 −0.949484
\(296\) −453.326 −0.0890171
\(297\) −5384.40 −1.05197
\(298\) −7162.07 −1.39224
\(299\) 0 0
\(300\) 872.565 0.167925
\(301\) 83.9926 0.0160839
\(302\) 2889.03 0.550481
\(303\) 1161.20 0.220162
\(304\) 657.572 0.124060
\(305\) 1181.50 0.221811
\(306\) 728.279 0.136055
\(307\) 999.339 0.185783 0.0928913 0.995676i \(-0.470389\pi\)
0.0928913 + 0.995676i \(0.470389\pi\)
\(308\) −1230.53 −0.227650
\(309\) 4676.28 0.860920
\(310\) −995.671 −0.182420
\(311\) −8702.74 −1.58677 −0.793387 0.608717i \(-0.791684\pi\)
−0.793387 + 0.608717i \(0.791684\pi\)
\(312\) 0 0
\(313\) −6409.06 −1.15739 −0.578693 0.815546i \(-0.696437\pi\)
−0.578693 + 0.815546i \(0.696437\pi\)
\(314\) 4882.33 0.877470
\(315\) 359.435 0.0642917
\(316\) 2338.86 0.416364
\(317\) −9233.74 −1.63602 −0.818010 0.575204i \(-0.804923\pi\)
−0.818010 + 0.575204i \(0.804923\pi\)
\(318\) 4919.34 0.867494
\(319\) −4139.95 −0.726623
\(320\) 596.071 0.104129
\(321\) 6374.65 1.10841
\(322\) −1110.85 −0.192252
\(323\) −2714.48 −0.467609
\(324\) −3389.84 −0.581249
\(325\) 0 0
\(326\) 5334.35 0.906265
\(327\) −8488.25 −1.43548
\(328\) 751.117 0.126444
\(329\) 1091.52 0.182909
\(330\) −4667.81 −0.778651
\(331\) 8022.96 1.33227 0.666135 0.745831i \(-0.267947\pi\)
0.666135 + 0.745831i \(0.267947\pi\)
\(332\) 2534.14 0.418913
\(333\) 312.410 0.0514114
\(334\) −7648.49 −1.25301
\(335\) −7259.22 −1.18392
\(336\) −638.628 −0.103691
\(337\) −8565.08 −1.38448 −0.692240 0.721667i \(-0.743376\pi\)
−0.692240 + 0.721667i \(0.743376\pi\)
\(338\) 0 0
\(339\) 4448.66 0.712738
\(340\) −2460.60 −0.392484
\(341\) −2349.11 −0.373054
\(342\) −453.167 −0.0716505
\(343\) 343.000 0.0539949
\(344\) −95.9915 −0.0150451
\(345\) −4213.80 −0.657575
\(346\) −3415.85 −0.530743
\(347\) 5310.82 0.821613 0.410807 0.911722i \(-0.365247\pi\)
0.410807 + 0.911722i \(0.365247\pi\)
\(348\) −2148.57 −0.330964
\(349\) −4736.28 −0.726439 −0.363220 0.931704i \(-0.618322\pi\)
−0.363220 + 0.931704i \(0.618322\pi\)
\(350\) 535.594 0.0817963
\(351\) 0 0
\(352\) 1406.32 0.212947
\(353\) −8380.32 −1.26357 −0.631784 0.775145i \(-0.717677\pi\)
−0.631784 + 0.775145i \(0.717677\pi\)
\(354\) −5890.64 −0.884418
\(355\) −3156.86 −0.471969
\(356\) 6413.89 0.954875
\(357\) 2636.28 0.390831
\(358\) 4303.78 0.635369
\(359\) 774.846 0.113913 0.0569566 0.998377i \(-0.481860\pi\)
0.0569566 + 0.998377i \(0.481860\pi\)
\(360\) −410.783 −0.0601394
\(361\) −5169.93 −0.753744
\(362\) 8166.71 1.18573
\(363\) −3423.48 −0.495003
\(364\) 0 0
\(365\) −686.025 −0.0983786
\(366\) 1446.69 0.206611
\(367\) 1660.76 0.236216 0.118108 0.993001i \(-0.462317\pi\)
0.118108 + 0.993001i \(0.462317\pi\)
\(368\) 1269.54 0.179835
\(369\) −517.634 −0.0730269
\(370\) −1055.53 −0.148309
\(371\) 3019.57 0.422556
\(372\) −1219.15 −0.169920
\(373\) 7199.78 0.999438 0.499719 0.866188i \(-0.333437\pi\)
0.499719 + 0.866188i \(0.333437\pi\)
\(374\) −5805.35 −0.802641
\(375\) 8670.00 1.19391
\(376\) −1247.45 −0.171096
\(377\) 0 0
\(378\) −1715.26 −0.233395
\(379\) −6386.48 −0.865571 −0.432785 0.901497i \(-0.642469\pi\)
−0.432785 + 0.901497i \(0.642469\pi\)
\(380\) 1531.09 0.206693
\(381\) −10481.0 −1.40934
\(382\) −3857.58 −0.516678
\(383\) 13384.3 1.78565 0.892825 0.450403i \(-0.148720\pi\)
0.892825 + 0.450403i \(0.148720\pi\)
\(384\) 729.861 0.0969936
\(385\) −2865.18 −0.379281
\(386\) 421.456 0.0555739
\(387\) 66.1527 0.00868923
\(388\) −6350.56 −0.830930
\(389\) −158.624 −0.0206749 −0.0103375 0.999947i \(-0.503291\pi\)
−0.0103375 + 0.999947i \(0.503291\pi\)
\(390\) 0 0
\(391\) −5240.70 −0.677835
\(392\) −392.000 −0.0505076
\(393\) −1981.93 −0.254390
\(394\) 2191.37 0.280202
\(395\) 5445.79 0.693690
\(396\) −969.171 −0.122987
\(397\) −14688.0 −1.85685 −0.928423 0.371524i \(-0.878835\pi\)
−0.928423 + 0.371524i \(0.878835\pi\)
\(398\) 6510.01 0.819893
\(399\) −1640.41 −0.205822
\(400\) −612.108 −0.0765134
\(401\) −8191.71 −1.02014 −0.510068 0.860134i \(-0.670380\pi\)
−0.510068 + 0.860134i \(0.670380\pi\)
\(402\) −8888.57 −1.10279
\(403\) 0 0
\(404\) −814.584 −0.100315
\(405\) −7892.92 −0.968401
\(406\) −1318.83 −0.161212
\(407\) −2490.33 −0.303295
\(408\) −3012.89 −0.365589
\(409\) −4642.23 −0.561231 −0.280615 0.959820i \(-0.590539\pi\)
−0.280615 + 0.959820i \(0.590539\pi\)
\(410\) 1748.90 0.210664
\(411\) −14601.9 −1.75246
\(412\) −3280.43 −0.392270
\(413\) −3615.77 −0.430800
\(414\) −874.905 −0.103863
\(415\) 5900.50 0.697938
\(416\) 0 0
\(417\) −5976.25 −0.701818
\(418\) 3612.35 0.422693
\(419\) −5304.72 −0.618503 −0.309251 0.950980i \(-0.600078\pi\)
−0.309251 + 0.950980i \(0.600078\pi\)
\(420\) −1486.98 −0.172756
\(421\) −10880.3 −1.25956 −0.629780 0.776774i \(-0.716855\pi\)
−0.629780 + 0.776774i \(0.716855\pi\)
\(422\) −2174.63 −0.250851
\(423\) 859.679 0.0988157
\(424\) −3450.94 −0.395265
\(425\) 2526.80 0.288395
\(426\) −3865.43 −0.439626
\(427\) 888.000 0.100640
\(428\) −4471.84 −0.505034
\(429\) 0 0
\(430\) −223.507 −0.0250662
\(431\) −7973.88 −0.891156 −0.445578 0.895243i \(-0.647002\pi\)
−0.445578 + 0.895243i \(0.647002\pi\)
\(432\) 1960.29 0.218321
\(433\) −1988.78 −0.220727 −0.110363 0.993891i \(-0.535201\pi\)
−0.110363 + 0.993891i \(0.535201\pi\)
\(434\) −748.335 −0.0827678
\(435\) −5002.73 −0.551409
\(436\) 5954.54 0.654061
\(437\) 3260.99 0.356967
\(438\) −840.005 −0.0916370
\(439\) 1254.30 0.136365 0.0681825 0.997673i \(-0.478280\pi\)
0.0681825 + 0.997673i \(0.478280\pi\)
\(440\) 3274.49 0.354784
\(441\) 270.147 0.0291704
\(442\) 0 0
\(443\) −1918.96 −0.205807 −0.102904 0.994691i \(-0.532813\pi\)
−0.102904 + 0.994691i \(0.532813\pi\)
\(444\) −1292.44 −0.138145
\(445\) 14934.1 1.59089
\(446\) −12806.7 −1.35968
\(447\) −20419.2 −2.16061
\(448\) 448.000 0.0472456
\(449\) −9778.85 −1.02782 −0.513911 0.857843i \(-0.671804\pi\)
−0.513911 + 0.857843i \(0.671804\pi\)
\(450\) 421.835 0.0441900
\(451\) 4126.23 0.430813
\(452\) −3120.76 −0.324752
\(453\) 8236.69 0.854290
\(454\) 5488.23 0.567347
\(455\) 0 0
\(456\) 1874.75 0.192529
\(457\) 10690.9 1.09431 0.547153 0.837032i \(-0.315711\pi\)
0.547153 + 0.837032i \(0.315711\pi\)
\(458\) −1987.22 −0.202744
\(459\) −8092.16 −0.822897
\(460\) 2956.00 0.299618
\(461\) −5804.85 −0.586462 −0.293231 0.956042i \(-0.594730\pi\)
−0.293231 + 0.956042i \(0.594730\pi\)
\(462\) −3508.28 −0.353289
\(463\) 11738.5 1.17826 0.589128 0.808040i \(-0.299472\pi\)
0.589128 + 0.808040i \(0.299472\pi\)
\(464\) 1507.23 0.150800
\(465\) −2838.68 −0.283098
\(466\) 11007.8 1.09426
\(467\) 2584.12 0.256057 0.128029 0.991770i \(-0.459135\pi\)
0.128029 + 0.991770i \(0.459135\pi\)
\(468\) 0 0
\(469\) −5455.94 −0.537169
\(470\) −2904.56 −0.285058
\(471\) 13919.6 1.36174
\(472\) 4132.31 0.402976
\(473\) −527.325 −0.0512610
\(474\) 6668.12 0.646154
\(475\) −1572.29 −0.151877
\(476\) −1849.36 −0.178078
\(477\) 2378.22 0.228283
\(478\) −11853.6 −1.13425
\(479\) 3410.64 0.325336 0.162668 0.986681i \(-0.447990\pi\)
0.162668 + 0.986681i \(0.447990\pi\)
\(480\) 1699.41 0.161598
\(481\) 0 0
\(482\) 58.5000 0.00552822
\(483\) −3167.04 −0.298355
\(484\) 2401.59 0.225543
\(485\) −14786.7 −1.38439
\(486\) −3048.51 −0.284534
\(487\) 4959.17 0.461440 0.230720 0.973020i \(-0.425892\pi\)
0.230720 + 0.973020i \(0.425892\pi\)
\(488\) −1014.86 −0.0941402
\(489\) 15208.3 1.40643
\(490\) −912.733 −0.0841492
\(491\) −18694.8 −1.71830 −0.859148 0.511727i \(-0.829006\pi\)
−0.859148 + 0.511727i \(0.829006\pi\)
\(492\) 2141.45 0.196228
\(493\) −6221.89 −0.568397
\(494\) 0 0
\(495\) −2256.62 −0.204904
\(496\) 855.240 0.0774222
\(497\) −2372.66 −0.214142
\(498\) 7224.89 0.650110
\(499\) 16434.4 1.47436 0.737179 0.675697i \(-0.236157\pi\)
0.737179 + 0.675697i \(0.236157\pi\)
\(500\) −6082.04 −0.543994
\(501\) −21806.0 −1.94455
\(502\) 5362.16 0.476743
\(503\) 15590.7 1.38202 0.691009 0.722846i \(-0.257167\pi\)
0.691009 + 0.722846i \(0.257167\pi\)
\(504\) −308.740 −0.0272864
\(505\) −1896.68 −0.167131
\(506\) 6974.16 0.612726
\(507\) 0 0
\(508\) 7352.48 0.642152
\(509\) 5617.81 0.489205 0.244602 0.969624i \(-0.421343\pi\)
0.244602 + 0.969624i \(0.421343\pi\)
\(510\) −7015.21 −0.609096
\(511\) −515.609 −0.0446364
\(512\) −512.000 −0.0441942
\(513\) 5035.30 0.433360
\(514\) 2815.79 0.241633
\(515\) −7638.16 −0.653548
\(516\) −273.674 −0.0233485
\(517\) −6852.79 −0.582951
\(518\) −793.321 −0.0672906
\(519\) −9738.64 −0.823659
\(520\) 0 0
\(521\) −15034.4 −1.26424 −0.632119 0.774872i \(-0.717814\pi\)
−0.632119 + 0.774872i \(0.717814\pi\)
\(522\) −1038.71 −0.0870941
\(523\) −15255.0 −1.27544 −0.637719 0.770269i \(-0.720122\pi\)
−0.637719 + 0.770269i \(0.720122\pi\)
\(524\) 1390.33 0.115910
\(525\) 1526.99 0.126940
\(526\) −6711.00 −0.556299
\(527\) −3530.46 −0.291820
\(528\) 4009.46 0.330472
\(529\) −5871.18 −0.482549
\(530\) −8035.17 −0.658539
\(531\) −2847.79 −0.232737
\(532\) 1150.75 0.0937808
\(533\) 0 0
\(534\) 18286.1 1.48187
\(535\) −10412.2 −0.841422
\(536\) 6235.36 0.502475
\(537\) 12270.2 0.986027
\(538\) 3746.66 0.300242
\(539\) −2153.44 −0.172087
\(540\) 4564.35 0.363738
\(541\) −6788.16 −0.539456 −0.269728 0.962937i \(-0.586934\pi\)
−0.269728 + 0.962937i \(0.586934\pi\)
\(542\) 7595.53 0.601948
\(543\) 23283.4 1.84013
\(544\) 2113.55 0.166577
\(545\) 13864.6 1.08971
\(546\) 0 0
\(547\) 5410.68 0.422932 0.211466 0.977385i \(-0.432176\pi\)
0.211466 + 0.977385i \(0.432176\pi\)
\(548\) 10243.3 0.798491
\(549\) 699.390 0.0543702
\(550\) −3362.59 −0.260693
\(551\) 3871.53 0.299334
\(552\) 3619.48 0.279086
\(553\) 4093.00 0.314741
\(554\) 11047.4 0.847222
\(555\) −3009.32 −0.230160
\(556\) 4192.36 0.319776
\(557\) 11170.2 0.849725 0.424863 0.905258i \(-0.360322\pi\)
0.424863 + 0.905258i \(0.360322\pi\)
\(558\) −589.390 −0.0447148
\(559\) 0 0
\(560\) 1043.12 0.0787143
\(561\) −16551.2 −1.24562
\(562\) −5226.64 −0.392300
\(563\) 11716.9 0.877102 0.438551 0.898706i \(-0.355492\pi\)
0.438551 + 0.898706i \(0.355492\pi\)
\(564\) −3556.49 −0.265524
\(565\) −7266.37 −0.541059
\(566\) −8798.55 −0.653411
\(567\) −5932.23 −0.439383
\(568\) 2711.61 0.200311
\(569\) −6040.44 −0.445041 −0.222521 0.974928i \(-0.571428\pi\)
−0.222521 + 0.974928i \(0.571428\pi\)
\(570\) 4365.17 0.320767
\(571\) −9726.47 −0.712855 −0.356427 0.934323i \(-0.616005\pi\)
−0.356427 + 0.934323i \(0.616005\pi\)
\(572\) 0 0
\(573\) −10998.0 −0.801831
\(574\) 1314.46 0.0955824
\(575\) −3035.53 −0.220157
\(576\) 352.846 0.0255241
\(577\) 10838.8 0.782016 0.391008 0.920387i \(-0.372126\pi\)
0.391008 + 0.920387i \(0.372126\pi\)
\(578\) 1101.19 0.0792450
\(579\) 1201.58 0.0862450
\(580\) 3509.44 0.251244
\(581\) 4434.75 0.316669
\(582\) −18105.6 −1.28952
\(583\) −18957.6 −1.34673
\(584\) 589.267 0.0417535
\(585\) 0 0
\(586\) 4633.81 0.326657
\(587\) 17711.2 1.24535 0.622673 0.782482i \(-0.286047\pi\)
0.622673 + 0.782482i \(0.286047\pi\)
\(588\) −1117.60 −0.0783827
\(589\) 2196.81 0.153680
\(590\) 9621.67 0.671386
\(591\) 6247.63 0.434845
\(592\) 906.652 0.0629446
\(593\) −20065.3 −1.38952 −0.694759 0.719243i \(-0.744489\pi\)
−0.694759 + 0.719243i \(0.744489\pi\)
\(594\) 10768.8 0.743854
\(595\) −4306.05 −0.296690
\(596\) 14324.1 0.984462
\(597\) 18560.2 1.27239
\(598\) 0 0
\(599\) −18078.5 −1.23317 −0.616585 0.787289i \(-0.711484\pi\)
−0.616585 + 0.787289i \(0.711484\pi\)
\(600\) −1745.13 −0.118741
\(601\) −23058.3 −1.56500 −0.782501 0.622649i \(-0.786057\pi\)
−0.782501 + 0.622649i \(0.786057\pi\)
\(602\) −167.985 −0.0113730
\(603\) −4297.11 −0.290202
\(604\) −5778.07 −0.389249
\(605\) 5591.86 0.375771
\(606\) −2322.39 −0.155678
\(607\) −17731.8 −1.18568 −0.592842 0.805319i \(-0.701994\pi\)
−0.592842 + 0.805319i \(0.701994\pi\)
\(608\) −1315.14 −0.0877239
\(609\) −3760.00 −0.250185
\(610\) −2363.00 −0.156844
\(611\) 0 0
\(612\) −1456.56 −0.0962056
\(613\) 9772.69 0.643908 0.321954 0.946755i \(-0.395660\pi\)
0.321954 + 0.946755i \(0.395660\pi\)
\(614\) −1998.68 −0.131368
\(615\) 4986.15 0.326929
\(616\) 2461.07 0.160973
\(617\) −28475.5 −1.85799 −0.928994 0.370094i \(-0.879326\pi\)
−0.928994 + 0.370094i \(0.879326\pi\)
\(618\) −9352.56 −0.608763
\(619\) −13533.3 −0.878752 −0.439376 0.898303i \(-0.644800\pi\)
−0.439376 + 0.898303i \(0.644800\pi\)
\(620\) 1991.34 0.128991
\(621\) 9721.37 0.628189
\(622\) 17405.5 1.12202
\(623\) 11224.3 0.721818
\(624\) 0 0
\(625\) −9379.33 −0.600277
\(626\) 12818.1 0.818395
\(627\) 10298.9 0.655976
\(628\) −9764.65 −0.620465
\(629\) −3742.69 −0.237251
\(630\) −718.870 −0.0454611
\(631\) −17830.8 −1.12493 −0.562465 0.826821i \(-0.690147\pi\)
−0.562465 + 0.826821i \(0.690147\pi\)
\(632\) −4677.71 −0.294414
\(633\) −6199.90 −0.389295
\(634\) 18467.5 1.15684
\(635\) 17119.5 1.06987
\(636\) −9838.68 −0.613411
\(637\) 0 0
\(638\) 8279.90 0.513800
\(639\) −1868.71 −0.115689
\(640\) −1192.14 −0.0736305
\(641\) 9469.08 0.583473 0.291736 0.956499i \(-0.405767\pi\)
0.291736 + 0.956499i \(0.405767\pi\)
\(642\) −12749.3 −0.783762
\(643\) 24907.3 1.52760 0.763802 0.645451i \(-0.223331\pi\)
0.763802 + 0.645451i \(0.223331\pi\)
\(644\) 2221.69 0.135943
\(645\) −637.222 −0.0389001
\(646\) 5428.96 0.330649
\(647\) 15062.5 0.915249 0.457625 0.889145i \(-0.348700\pi\)
0.457625 + 0.889145i \(0.348700\pi\)
\(648\) 6779.69 0.411005
\(649\) 22700.7 1.37300
\(650\) 0 0
\(651\) −2133.52 −0.128447
\(652\) −10668.7 −0.640826
\(653\) −2322.39 −0.139176 −0.0695880 0.997576i \(-0.522168\pi\)
−0.0695880 + 0.997576i \(0.522168\pi\)
\(654\) 16976.5 1.01504
\(655\) 3237.25 0.193114
\(656\) −1502.23 −0.0894092
\(657\) −406.094 −0.0241145
\(658\) −2183.03 −0.129336
\(659\) −20890.9 −1.23489 −0.617447 0.786613i \(-0.711833\pi\)
−0.617447 + 0.786613i \(0.711833\pi\)
\(660\) 9335.63 0.550589
\(661\) −10200.5 −0.600235 −0.300117 0.953902i \(-0.597026\pi\)
−0.300117 + 0.953902i \(0.597026\pi\)
\(662\) −16045.9 −0.942057
\(663\) 0 0
\(664\) −5068.29 −0.296216
\(665\) 2679.41 0.156245
\(666\) −624.821 −0.0363533
\(667\) 7474.56 0.433907
\(668\) 15297.0 0.886015
\(669\) −36512.3 −2.11008
\(670\) 14518.4 0.837158
\(671\) −5575.07 −0.320750
\(672\) 1277.26 0.0733203
\(673\) −23440.2 −1.34258 −0.671289 0.741196i \(-0.734259\pi\)
−0.671289 + 0.741196i \(0.734259\pi\)
\(674\) 17130.2 0.978975
\(675\) −4687.15 −0.267272
\(676\) 0 0
\(677\) −25944.0 −1.47283 −0.736416 0.676528i \(-0.763484\pi\)
−0.736416 + 0.676528i \(0.763484\pi\)
\(678\) −8897.33 −0.503982
\(679\) −11113.5 −0.628124
\(680\) 4921.20 0.277528
\(681\) 15647.1 0.880465
\(682\) 4698.22 0.263789
\(683\) 12371.2 0.693074 0.346537 0.938036i \(-0.387358\pi\)
0.346537 + 0.938036i \(0.387358\pi\)
\(684\) 906.334 0.0506645
\(685\) 23850.6 1.33034
\(686\) −686.000 −0.0381802
\(687\) −5665.59 −0.314637
\(688\) 191.983 0.0106385
\(689\) 0 0
\(690\) 8427.60 0.464976
\(691\) 25322.2 1.39407 0.697035 0.717037i \(-0.254502\pi\)
0.697035 + 0.717037i \(0.254502\pi\)
\(692\) 6831.69 0.375292
\(693\) −1696.05 −0.0929691
\(694\) −10621.6 −0.580968
\(695\) 9761.50 0.532769
\(696\) 4297.14 0.234027
\(697\) 6201.27 0.337001
\(698\) 9472.56 0.513670
\(699\) 31383.5 1.69819
\(700\) −1071.19 −0.0578387
\(701\) 13634.6 0.734625 0.367312 0.930098i \(-0.380278\pi\)
0.367312 + 0.930098i \(0.380278\pi\)
\(702\) 0 0
\(703\) 2328.87 0.124943
\(704\) −2812.65 −0.150576
\(705\) −8280.94 −0.442381
\(706\) 16760.6 0.893477
\(707\) −1425.52 −0.0758307
\(708\) 11781.3 0.625378
\(709\) −6855.71 −0.363147 −0.181574 0.983377i \(-0.558119\pi\)
−0.181574 + 0.983377i \(0.558119\pi\)
\(710\) 6313.73 0.333732
\(711\) 3223.65 0.170037
\(712\) −12827.8 −0.675199
\(713\) 4241.25 0.222772
\(714\) −5272.55 −0.276359
\(715\) 0 0
\(716\) −8607.56 −0.449273
\(717\) −33794.8 −1.76024
\(718\) −1549.69 −0.0805487
\(719\) −13282.5 −0.688948 −0.344474 0.938796i \(-0.611943\pi\)
−0.344474 + 0.938796i \(0.611943\pi\)
\(720\) 821.566 0.0425250
\(721\) −5740.75 −0.296528
\(722\) 10339.9 0.532978
\(723\) 166.785 0.00857923
\(724\) −16333.4 −0.838435
\(725\) −3603.86 −0.184612
\(726\) 6846.96 0.350020
\(727\) 21170.4 1.08001 0.540003 0.841663i \(-0.318423\pi\)
0.540003 + 0.841663i \(0.318423\pi\)
\(728\) 0 0
\(729\) 14190.1 0.720931
\(730\) 1372.05 0.0695642
\(731\) −792.512 −0.0400986
\(732\) −2893.38 −0.146096
\(733\) −8482.75 −0.427445 −0.213723 0.976894i \(-0.568559\pi\)
−0.213723 + 0.976894i \(0.568559\pi\)
\(734\) −3321.53 −0.167030
\(735\) −2602.22 −0.130591
\(736\) −2539.08 −0.127163
\(737\) 34253.7 1.71201
\(738\) 1035.27 0.0516378
\(739\) −19695.8 −0.980409 −0.490205 0.871607i \(-0.663078\pi\)
−0.490205 + 0.871607i \(0.663078\pi\)
\(740\) 2111.05 0.104870
\(741\) 0 0
\(742\) −6039.14 −0.298792
\(743\) −18213.0 −0.899286 −0.449643 0.893208i \(-0.648449\pi\)
−0.449643 + 0.893208i \(0.648449\pi\)
\(744\) 2438.30 0.120151
\(745\) 33352.3 1.64018
\(746\) −14399.6 −0.706709
\(747\) 3492.82 0.171078
\(748\) 11610.7 0.567553
\(749\) −7825.73 −0.381770
\(750\) −17340.0 −0.844223
\(751\) −24649.3 −1.19769 −0.598845 0.800865i \(-0.704373\pi\)
−0.598845 + 0.800865i \(0.704373\pi\)
\(752\) 2494.89 0.120983
\(753\) 15287.6 0.739856
\(754\) 0 0
\(755\) −13453.7 −0.648515
\(756\) 3430.52 0.165035
\(757\) 27328.2 1.31210 0.656050 0.754717i \(-0.272226\pi\)
0.656050 + 0.754717i \(0.272226\pi\)
\(758\) 12773.0 0.612051
\(759\) 19883.5 0.950888
\(760\) −3062.19 −0.146154
\(761\) −15777.9 −0.751574 −0.375787 0.926706i \(-0.622628\pi\)
−0.375787 + 0.926706i \(0.622628\pi\)
\(762\) 20962.0 0.996555
\(763\) 10420.4 0.494424
\(764\) 7715.16 0.365346
\(765\) −3391.45 −0.160285
\(766\) −26768.5 −1.26265
\(767\) 0 0
\(768\) −1459.72 −0.0685848
\(769\) −27331.1 −1.28165 −0.640823 0.767688i \(-0.721407\pi\)
−0.640823 + 0.767688i \(0.721407\pi\)
\(770\) 5730.36 0.268192
\(771\) 8027.88 0.374990
\(772\) −842.911 −0.0392967
\(773\) −25696.7 −1.19566 −0.597831 0.801622i \(-0.703971\pi\)
−0.597831 + 0.801622i \(0.703971\pi\)
\(774\) −132.305 −0.00614421
\(775\) −2044.92 −0.0947814
\(776\) 12701.1 0.587556
\(777\) −2261.77 −0.104428
\(778\) 317.248 0.0146194
\(779\) −3858.70 −0.177474
\(780\) 0 0
\(781\) 14896.1 0.682491
\(782\) 10481.4 0.479302
\(783\) 11541.5 0.526767
\(784\) 784.000 0.0357143
\(785\) −22736.0 −1.03374
\(786\) 3963.86 0.179881
\(787\) 9837.00 0.445554 0.222777 0.974869i \(-0.428488\pi\)
0.222777 + 0.974869i \(0.428488\pi\)
\(788\) −4382.74 −0.198133
\(789\) −19133.2 −0.863319
\(790\) −10891.6 −0.490513
\(791\) −5461.32 −0.245490
\(792\) 1938.34 0.0869646
\(793\) 0 0
\(794\) 29375.9 1.31299
\(795\) −22908.4 −1.02198
\(796\) −13020.0 −0.579752
\(797\) −17598.7 −0.782153 −0.391077 0.920358i \(-0.627897\pi\)
−0.391077 + 0.920358i \(0.627897\pi\)
\(798\) 3280.81 0.145538
\(799\) −10299.0 −0.456010
\(800\) 1224.22 0.0541032
\(801\) 8840.29 0.389958
\(802\) 16383.4 0.721345
\(803\) 3237.11 0.142261
\(804\) 17777.1 0.779790
\(805\) 5173.00 0.226490
\(806\) 0 0
\(807\) 10681.8 0.465944
\(808\) 1629.17 0.0709331
\(809\) 39275.5 1.70686 0.853431 0.521206i \(-0.174518\pi\)
0.853431 + 0.521206i \(0.174518\pi\)
\(810\) 15785.8 0.684763
\(811\) 29158.8 1.26252 0.631259 0.775572i \(-0.282538\pi\)
0.631259 + 0.775572i \(0.282538\pi\)
\(812\) 2637.65 0.113994
\(813\) 21655.0 0.934162
\(814\) 4980.66 0.214462
\(815\) −24841.0 −1.06766
\(816\) 6025.77 0.258510
\(817\) 493.136 0.0211171
\(818\) 9284.46 0.396850
\(819\) 0 0
\(820\) −3497.81 −0.148962
\(821\) 33894.2 1.44082 0.720412 0.693546i \(-0.243953\pi\)
0.720412 + 0.693546i \(0.243953\pi\)
\(822\) 29203.9 1.23918
\(823\) 24281.6 1.02844 0.514218 0.857660i \(-0.328082\pi\)
0.514218 + 0.857660i \(0.328082\pi\)
\(824\) 6560.86 0.277377
\(825\) −9586.79 −0.404569
\(826\) 7231.54 0.304622
\(827\) −44432.6 −1.86828 −0.934142 0.356901i \(-0.883833\pi\)
−0.934142 + 0.356901i \(0.883833\pi\)
\(828\) 1749.81 0.0734422
\(829\) 27052.3 1.13337 0.566687 0.823933i \(-0.308225\pi\)
0.566687 + 0.823933i \(0.308225\pi\)
\(830\) −11801.0 −0.493517
\(831\) 31496.5 1.31480
\(832\) 0 0
\(833\) −3236.38 −0.134614
\(834\) 11952.5 0.496260
\(835\) 35617.5 1.47616
\(836\) −7224.69 −0.298889
\(837\) 6548.92 0.270446
\(838\) 10609.4 0.437347
\(839\) −19634.2 −0.807922 −0.403961 0.914776i \(-0.632367\pi\)
−0.403961 + 0.914776i \(0.632367\pi\)
\(840\) 2973.97 0.122157
\(841\) −15515.0 −0.636148
\(842\) 21760.7 0.890643
\(843\) −14901.2 −0.608809
\(844\) 4349.26 0.177379
\(845\) 0 0
\(846\) −1719.36 −0.0698733
\(847\) 4202.78 0.170495
\(848\) 6901.87 0.279495
\(849\) −25084.8 −1.01403
\(850\) −5053.60 −0.203926
\(851\) 4496.21 0.181114
\(852\) 7730.86 0.310862
\(853\) 11550.2 0.463624 0.231812 0.972761i \(-0.425535\pi\)
0.231812 + 0.972761i \(0.425535\pi\)
\(854\) −1776.00 −0.0711633
\(855\) 2110.31 0.0844106
\(856\) 8943.69 0.357113
\(857\) 34565.4 1.37775 0.688875 0.724880i \(-0.258105\pi\)
0.688875 + 0.724880i \(0.258105\pi\)
\(858\) 0 0
\(859\) 8682.32 0.344862 0.172431 0.985022i \(-0.444838\pi\)
0.172431 + 0.985022i \(0.444838\pi\)
\(860\) 447.014 0.0177245
\(861\) 3747.54 0.148334
\(862\) 15947.8 0.630143
\(863\) 5319.60 0.209828 0.104914 0.994481i \(-0.466543\pi\)
0.104914 + 0.994481i \(0.466543\pi\)
\(864\) −3920.59 −0.154376
\(865\) 15906.9 0.625262
\(866\) 3977.56 0.156077
\(867\) 3139.52 0.122980
\(868\) 1496.67 0.0585257
\(869\) −25696.8 −1.00311
\(870\) 10005.5 0.389905
\(871\) 0 0
\(872\) −11909.1 −0.462491
\(873\) −8753.00 −0.339340
\(874\) −6521.98 −0.252414
\(875\) −10643.6 −0.411221
\(876\) 1680.01 0.0647971
\(877\) −12921.2 −0.497512 −0.248756 0.968566i \(-0.580022\pi\)
−0.248756 + 0.968566i \(0.580022\pi\)
\(878\) −2508.59 −0.0964246
\(879\) 13211.1 0.506938
\(880\) −6548.98 −0.250871
\(881\) 12996.9 0.497022 0.248511 0.968629i \(-0.420059\pi\)
0.248511 + 0.968629i \(0.420059\pi\)
\(882\) −540.295 −0.0206266
\(883\) −45885.0 −1.74876 −0.874379 0.485244i \(-0.838731\pi\)
−0.874379 + 0.485244i \(0.838731\pi\)
\(884\) 0 0
\(885\) 27431.6 1.04192
\(886\) 3837.93 0.145528
\(887\) −40508.1 −1.53340 −0.766702 0.642004i \(-0.778103\pi\)
−0.766702 + 0.642004i \(0.778103\pi\)
\(888\) 2584.88 0.0976835
\(889\) 12866.8 0.485422
\(890\) −29868.2 −1.12493
\(891\) 37243.9 1.40036
\(892\) 25613.5 0.961438
\(893\) 6408.49 0.240148
\(894\) 40838.4 1.52778
\(895\) −20041.9 −0.748520
\(896\) −896.000 −0.0334077
\(897\) 0 0
\(898\) 19557.7 0.726780
\(899\) 5035.33 0.186805
\(900\) −843.670 −0.0312470
\(901\) −28491.1 −1.05347
\(902\) −8252.46 −0.304631
\(903\) −478.929 −0.0176498
\(904\) 6241.51 0.229634
\(905\) −38030.8 −1.39689
\(906\) −16473.4 −0.604074
\(907\) −25270.2 −0.925120 −0.462560 0.886588i \(-0.653069\pi\)
−0.462560 + 0.886588i \(0.653069\pi\)
\(908\) −10976.5 −0.401175
\(909\) −1122.74 −0.0409671
\(910\) 0 0
\(911\) 10985.8 0.399534 0.199767 0.979843i \(-0.435981\pi\)
0.199767 + 0.979843i \(0.435981\pi\)
\(912\) −3749.50 −0.136139
\(913\) −27842.4 −1.00925
\(914\) −21381.8 −0.773792
\(915\) −6736.94 −0.243406
\(916\) 3974.43 0.143361
\(917\) 2433.08 0.0876198
\(918\) 16184.3 0.581876
\(919\) −34899.9 −1.25271 −0.626356 0.779537i \(-0.715454\pi\)
−0.626356 + 0.779537i \(0.715454\pi\)
\(920\) −5912.00 −0.211862
\(921\) −5698.27 −0.203870
\(922\) 11609.7 0.414691
\(923\) 0 0
\(924\) 7016.55 0.249813
\(925\) −2167.85 −0.0770577
\(926\) −23476.9 −0.833152
\(927\) −4521.43 −0.160198
\(928\) −3014.46 −0.106632
\(929\) 20551.8 0.725814 0.362907 0.931825i \(-0.381784\pi\)
0.362907 + 0.931825i \(0.381784\pi\)
\(930\) 5677.35 0.200180
\(931\) 2013.82 0.0708917
\(932\) −22015.6 −0.773761
\(933\) 49623.3 1.74126
\(934\) −5168.24 −0.181060
\(935\) 27034.4 0.945582
\(936\) 0 0
\(937\) 36992.4 1.28974 0.644871 0.764291i \(-0.276911\pi\)
0.644871 + 0.764291i \(0.276911\pi\)
\(938\) 10911.9 0.379836
\(939\) 36544.7 1.27006
\(940\) 5809.11 0.201566
\(941\) −17550.3 −0.607995 −0.303997 0.952673i \(-0.598321\pi\)
−0.303997 + 0.952673i \(0.598321\pi\)
\(942\) −27839.2 −0.962898
\(943\) −7449.79 −0.257263
\(944\) −8264.61 −0.284947
\(945\) 7987.62 0.274960
\(946\) 1054.65 0.0362470
\(947\) −39173.8 −1.34422 −0.672110 0.740451i \(-0.734612\pi\)
−0.672110 + 0.740451i \(0.734612\pi\)
\(948\) −13336.2 −0.456900
\(949\) 0 0
\(950\) 3144.57 0.107393
\(951\) 52651.1 1.79530
\(952\) 3698.72 0.125920
\(953\) 7508.84 0.255231 0.127615 0.991824i \(-0.459268\pi\)
0.127615 + 0.991824i \(0.459268\pi\)
\(954\) −4756.44 −0.161421
\(955\) 17964.0 0.608692
\(956\) 23707.2 0.802035
\(957\) 23606.2 0.797365
\(958\) −6821.28 −0.230047
\(959\) 17925.8 0.603602
\(960\) −3398.82 −0.114267
\(961\) −26933.8 −0.904093
\(962\) 0 0
\(963\) −6163.55 −0.206249
\(964\) −117.000 −0.00390904
\(965\) −1962.64 −0.0654710
\(966\) 6334.09 0.210969
\(967\) −43530.7 −1.44763 −0.723813 0.689996i \(-0.757612\pi\)
−0.723813 + 0.689996i \(0.757612\pi\)
\(968\) −4803.17 −0.159483
\(969\) 15478.1 0.513134
\(970\) 29573.3 0.978909
\(971\) 3890.59 0.128584 0.0642920 0.997931i \(-0.479521\pi\)
0.0642920 + 0.997931i \(0.479521\pi\)
\(972\) 6097.03 0.201196
\(973\) 7336.63 0.241728
\(974\) −9918.33 −0.326287
\(975\) 0 0
\(976\) 2029.71 0.0665672
\(977\) 25191.0 0.824905 0.412453 0.910979i \(-0.364672\pi\)
0.412453 + 0.910979i \(0.364672\pi\)
\(978\) −30416.7 −0.994496
\(979\) −70468.9 −2.30051
\(980\) 1825.47 0.0595025
\(981\) 8207.16 0.267109
\(982\) 37389.6 1.21502
\(983\) 3340.06 0.108374 0.0541869 0.998531i \(-0.482743\pi\)
0.0541869 + 0.998531i \(0.482743\pi\)
\(984\) −4282.90 −0.138754
\(985\) −10204.8 −0.330103
\(986\) 12443.8 0.401918
\(987\) −6223.86 −0.200717
\(988\) 0 0
\(989\) 952.070 0.0306108
\(990\) 4513.24 0.144889
\(991\) −33181.1 −1.06360 −0.531802 0.846868i \(-0.678485\pi\)
−0.531802 + 0.846868i \(0.678485\pi\)
\(992\) −1710.48 −0.0547458
\(993\) −45747.2 −1.46198
\(994\) 4745.32 0.151421
\(995\) −30315.9 −0.965907
\(996\) −14449.8 −0.459698
\(997\) −25239.9 −0.801760 −0.400880 0.916131i \(-0.631296\pi\)
−0.400880 + 0.916131i \(0.631296\pi\)
\(998\) −32868.8 −1.04253
\(999\) 6942.60 0.219874
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2366.4.a.s.1.2 5
13.3 even 3 182.4.g.b.113.4 yes 10
13.9 even 3 182.4.g.b.29.4 10
13.12 even 2 2366.4.a.t.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.4.g.b.29.4 10 13.9 even 3
182.4.g.b.113.4 yes 10 13.3 even 3
2366.4.a.s.1.2 5 1.1 even 1 trivial
2366.4.a.t.1.2 5 13.12 even 2