Properties

Label 2366.4.a.r.1.2
Level $2366$
Weight $4$
Character 2366.1
Self dual yes
Analytic conductor $139.599$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,4,Mod(1,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2366.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,8,-7,16,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(139.598519074\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.8805372.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 33x^{2} - 12x + 162 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.20283\) of defining polynomial
Character \(\chi\) \(=\) 2366.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -5.20283 q^{3} +4.00000 q^{4} +17.5606 q^{5} -10.4057 q^{6} -7.00000 q^{7} +8.00000 q^{8} +0.0694513 q^{9} +35.1211 q^{10} -35.5540 q^{11} -20.8113 q^{12} -14.0000 q^{14} -91.3647 q^{15} +16.0000 q^{16} -19.4372 q^{17} +0.138903 q^{18} +72.6851 q^{19} +70.2423 q^{20} +36.4198 q^{21} -71.1081 q^{22} -55.3616 q^{23} -41.6226 q^{24} +183.374 q^{25} +140.115 q^{27} -28.0000 q^{28} -125.036 q^{29} -182.729 q^{30} +71.0166 q^{31} +32.0000 q^{32} +184.982 q^{33} -38.8743 q^{34} -122.924 q^{35} +0.277805 q^{36} +352.358 q^{37} +145.370 q^{38} +140.485 q^{40} -240.523 q^{41} +72.8396 q^{42} -244.932 q^{43} -142.216 q^{44} +1.21960 q^{45} -110.723 q^{46} -237.059 q^{47} -83.2453 q^{48} +49.0000 q^{49} +366.747 q^{50} +101.128 q^{51} -152.742 q^{53} +280.230 q^{54} -624.349 q^{55} -56.0000 q^{56} -378.168 q^{57} -250.071 q^{58} +24.5960 q^{59} -365.459 q^{60} +714.671 q^{61} +142.033 q^{62} -0.486159 q^{63} +64.0000 q^{64} +369.963 q^{66} -960.665 q^{67} -77.7486 q^{68} +288.037 q^{69} -245.848 q^{70} -458.376 q^{71} +0.555610 q^{72} -100.872 q^{73} +704.716 q^{74} -954.062 q^{75} +290.740 q^{76} +248.878 q^{77} -1145.74 q^{79} +280.969 q^{80} -730.870 q^{81} -481.047 q^{82} -861.573 q^{83} +145.679 q^{84} -341.328 q^{85} -489.863 q^{86} +650.539 q^{87} -284.432 q^{88} +1057.18 q^{89} +2.43921 q^{90} -221.446 q^{92} -369.487 q^{93} -474.119 q^{94} +1276.39 q^{95} -166.491 q^{96} -903.577 q^{97} +98.0000 q^{98} -2.46927 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} - 7 q^{3} + 16 q^{4} - q^{5} - 14 q^{6} - 28 q^{7} + 32 q^{8} - 29 q^{9} - 2 q^{10} - 15 q^{11} - 28 q^{12} - 56 q^{14} + 67 q^{15} + 64 q^{16} - 24 q^{17} - 58 q^{18} + 21 q^{19} - 4 q^{20}+ \cdots - 129 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −5.20283 −1.00129 −0.500643 0.865654i \(-0.666903\pi\)
−0.500643 + 0.865654i \(0.666903\pi\)
\(4\) 4.00000 0.500000
\(5\) 17.5606 1.57067 0.785333 0.619074i \(-0.212492\pi\)
0.785333 + 0.619074i \(0.212492\pi\)
\(6\) −10.4057 −0.708016
\(7\) −7.00000 −0.377964
\(8\) 8.00000 0.353553
\(9\) 0.0694513 0.00257227
\(10\) 35.1211 1.11063
\(11\) −35.5540 −0.974540 −0.487270 0.873251i \(-0.662007\pi\)
−0.487270 + 0.873251i \(0.662007\pi\)
\(12\) −20.8113 −0.500643
\(13\) 0 0
\(14\) −14.0000 −0.267261
\(15\) −91.3647 −1.57268
\(16\) 16.0000 0.250000
\(17\) −19.4372 −0.277306 −0.138653 0.990341i \(-0.544277\pi\)
−0.138653 + 0.990341i \(0.544277\pi\)
\(18\) 0.138903 0.00181887
\(19\) 72.6851 0.877637 0.438818 0.898576i \(-0.355397\pi\)
0.438818 + 0.898576i \(0.355397\pi\)
\(20\) 70.2423 0.785333
\(21\) 36.4198 0.378450
\(22\) −71.1081 −0.689104
\(23\) −55.3616 −0.501900 −0.250950 0.968000i \(-0.580743\pi\)
−0.250950 + 0.968000i \(0.580743\pi\)
\(24\) −41.6226 −0.354008
\(25\) 183.374 1.46699
\(26\) 0 0
\(27\) 140.115 0.998710
\(28\) −28.0000 −0.188982
\(29\) −125.036 −0.800639 −0.400319 0.916376i \(-0.631101\pi\)
−0.400319 + 0.916376i \(0.631101\pi\)
\(30\) −182.729 −1.11206
\(31\) 71.0166 0.411450 0.205725 0.978610i \(-0.434045\pi\)
0.205725 + 0.978610i \(0.434045\pi\)
\(32\) 32.0000 0.176777
\(33\) 184.982 0.975793
\(34\) −38.8743 −0.196085
\(35\) −122.924 −0.593656
\(36\) 0.277805 0.00128614
\(37\) 352.358 1.56560 0.782801 0.622272i \(-0.213790\pi\)
0.782801 + 0.622272i \(0.213790\pi\)
\(38\) 145.370 0.620583
\(39\) 0 0
\(40\) 140.485 0.555314
\(41\) −240.523 −0.916181 −0.458091 0.888906i \(-0.651466\pi\)
−0.458091 + 0.888906i \(0.651466\pi\)
\(42\) 72.8396 0.267605
\(43\) −244.932 −0.868645 −0.434322 0.900757i \(-0.643012\pi\)
−0.434322 + 0.900757i \(0.643012\pi\)
\(44\) −142.216 −0.487270
\(45\) 1.21960 0.00404018
\(46\) −110.723 −0.354897
\(47\) −237.059 −0.735716 −0.367858 0.929882i \(-0.619909\pi\)
−0.367858 + 0.929882i \(0.619909\pi\)
\(48\) −83.2453 −0.250321
\(49\) 49.0000 0.142857
\(50\) 366.747 1.03732
\(51\) 101.128 0.277662
\(52\) 0 0
\(53\) −152.742 −0.395863 −0.197932 0.980216i \(-0.563422\pi\)
−0.197932 + 0.980216i \(0.563422\pi\)
\(54\) 280.230 0.706194
\(55\) −624.349 −1.53068
\(56\) −56.0000 −0.133631
\(57\) −378.168 −0.878765
\(58\) −250.071 −0.566137
\(59\) 24.5960 0.0542733 0.0271367 0.999632i \(-0.491361\pi\)
0.0271367 + 0.999632i \(0.491361\pi\)
\(60\) −365.459 −0.786342
\(61\) 714.671 1.50007 0.750035 0.661398i \(-0.230037\pi\)
0.750035 + 0.661398i \(0.230037\pi\)
\(62\) 142.033 0.290939
\(63\) −0.486159 −0.000972227 0
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 369.963 0.689990
\(67\) −960.665 −1.75170 −0.875850 0.482583i \(-0.839699\pi\)
−0.875850 + 0.482583i \(0.839699\pi\)
\(68\) −77.7486 −0.138653
\(69\) 288.037 0.502545
\(70\) −245.848 −0.419778
\(71\) −458.376 −0.766185 −0.383093 0.923710i \(-0.625141\pi\)
−0.383093 + 0.923710i \(0.625141\pi\)
\(72\) 0.555610 0.000909435 0
\(73\) −100.872 −0.161729 −0.0808645 0.996725i \(-0.525768\pi\)
−0.0808645 + 0.996725i \(0.525768\pi\)
\(74\) 704.716 1.10705
\(75\) −954.062 −1.46888
\(76\) 290.740 0.438818
\(77\) 248.878 0.368342
\(78\) 0 0
\(79\) −1145.74 −1.63172 −0.815862 0.578246i \(-0.803737\pi\)
−0.815862 + 0.578246i \(0.803737\pi\)
\(80\) 280.969 0.392666
\(81\) −730.870 −1.00257
\(82\) −481.047 −0.647838
\(83\) −861.573 −1.13940 −0.569698 0.821854i \(-0.692940\pi\)
−0.569698 + 0.821854i \(0.692940\pi\)
\(84\) 145.679 0.189225
\(85\) −341.328 −0.435555
\(86\) −489.863 −0.614225
\(87\) 650.539 0.801668
\(88\) −284.432 −0.344552
\(89\) 1057.18 1.25912 0.629558 0.776953i \(-0.283236\pi\)
0.629558 + 0.776953i \(0.283236\pi\)
\(90\) 2.43921 0.00285684
\(91\) 0 0
\(92\) −221.446 −0.250950
\(93\) −369.487 −0.411979
\(94\) −474.119 −0.520230
\(95\) 1276.39 1.37847
\(96\) −166.491 −0.177004
\(97\) −903.577 −0.945818 −0.472909 0.881111i \(-0.656796\pi\)
−0.472909 + 0.881111i \(0.656796\pi\)
\(98\) 98.0000 0.101015
\(99\) −2.46927 −0.00250678
\(100\) 733.495 0.733495
\(101\) 928.839 0.915079 0.457539 0.889189i \(-0.348731\pi\)
0.457539 + 0.889189i \(0.348731\pi\)
\(102\) 202.256 0.196337
\(103\) −386.662 −0.369893 −0.184946 0.982749i \(-0.559211\pi\)
−0.184946 + 0.982749i \(0.559211\pi\)
\(104\) 0 0
\(105\) 639.553 0.594419
\(106\) −305.484 −0.279917
\(107\) 1017.09 0.918930 0.459465 0.888196i \(-0.348041\pi\)
0.459465 + 0.888196i \(0.348041\pi\)
\(108\) 560.460 0.499355
\(109\) −1889.22 −1.66013 −0.830066 0.557665i \(-0.811697\pi\)
−0.830066 + 0.557665i \(0.811697\pi\)
\(110\) −1248.70 −1.08235
\(111\) −1833.26 −1.56761
\(112\) −112.000 −0.0944911
\(113\) 57.6390 0.0479842 0.0239921 0.999712i \(-0.492362\pi\)
0.0239921 + 0.999712i \(0.492362\pi\)
\(114\) −756.336 −0.621381
\(115\) −972.181 −0.788316
\(116\) −500.142 −0.400319
\(117\) 0 0
\(118\) 49.1920 0.0383771
\(119\) 136.060 0.104812
\(120\) −730.918 −0.556028
\(121\) −66.9105 −0.0502709
\(122\) 1429.34 1.06071
\(123\) 1251.40 0.917359
\(124\) 284.066 0.205725
\(125\) 1025.08 0.733485
\(126\) −0.972318 −0.000687468 0
\(127\) 956.570 0.668361 0.334181 0.942509i \(-0.391540\pi\)
0.334181 + 0.942509i \(0.391540\pi\)
\(128\) 128.000 0.0883883
\(129\) 1274.34 0.869761
\(130\) 0 0
\(131\) 2119.14 1.41336 0.706678 0.707535i \(-0.250193\pi\)
0.706678 + 0.707535i \(0.250193\pi\)
\(132\) 739.927 0.487897
\(133\) −508.796 −0.331716
\(134\) −1921.33 −1.23864
\(135\) 2460.50 1.56864
\(136\) −155.497 −0.0980425
\(137\) −2457.73 −1.53269 −0.766344 0.642431i \(-0.777926\pi\)
−0.766344 + 0.642431i \(0.777926\pi\)
\(138\) 576.074 0.355353
\(139\) −2209.74 −1.34840 −0.674200 0.738549i \(-0.735511\pi\)
−0.674200 + 0.738549i \(0.735511\pi\)
\(140\) −491.696 −0.296828
\(141\) 1233.38 0.736662
\(142\) −916.751 −0.541775
\(143\) 0 0
\(144\) 1.11122 0.000643068 0
\(145\) −2195.70 −1.25754
\(146\) −201.745 −0.114360
\(147\) −254.939 −0.143041
\(148\) 1409.43 0.782801
\(149\) −708.063 −0.389307 −0.194654 0.980872i \(-0.562358\pi\)
−0.194654 + 0.980872i \(0.562358\pi\)
\(150\) −1908.12 −1.03865
\(151\) −1080.25 −0.582181 −0.291091 0.956695i \(-0.594018\pi\)
−0.291091 + 0.956695i \(0.594018\pi\)
\(152\) 581.481 0.310291
\(153\) −1.34994 −0.000713306 0
\(154\) 497.757 0.260457
\(155\) 1247.09 0.646250
\(156\) 0 0
\(157\) −1253.02 −0.636954 −0.318477 0.947931i \(-0.603171\pi\)
−0.318477 + 0.947931i \(0.603171\pi\)
\(158\) −2291.49 −1.15380
\(159\) 794.691 0.396372
\(160\) 561.938 0.277657
\(161\) 387.531 0.189700
\(162\) −1461.74 −0.708921
\(163\) 3441.78 1.65387 0.826936 0.562296i \(-0.190082\pi\)
0.826936 + 0.562296i \(0.190082\pi\)
\(164\) −962.093 −0.458091
\(165\) 3248.38 1.53264
\(166\) −1723.15 −0.805675
\(167\) 2348.77 1.08834 0.544171 0.838974i \(-0.316844\pi\)
0.544171 + 0.838974i \(0.316844\pi\)
\(168\) 291.359 0.133802
\(169\) 0 0
\(170\) −682.655 −0.307984
\(171\) 5.04807 0.00225752
\(172\) −979.727 −0.434322
\(173\) 4349.62 1.91154 0.955768 0.294122i \(-0.0950272\pi\)
0.955768 + 0.294122i \(0.0950272\pi\)
\(174\) 1301.08 0.566865
\(175\) −1283.62 −0.554470
\(176\) −568.865 −0.243635
\(177\) −127.969 −0.0543431
\(178\) 2114.37 0.890330
\(179\) −3486.82 −1.45596 −0.727981 0.685597i \(-0.759541\pi\)
−0.727981 + 0.685597i \(0.759541\pi\)
\(180\) 4.87842 0.00202009
\(181\) 238.968 0.0981344 0.0490672 0.998795i \(-0.484375\pi\)
0.0490672 + 0.998795i \(0.484375\pi\)
\(182\) 0 0
\(183\) −3718.31 −1.50200
\(184\) −442.893 −0.177448
\(185\) 6187.61 2.45904
\(186\) −738.974 −0.291313
\(187\) 691.069 0.270246
\(188\) −948.238 −0.367858
\(189\) −980.806 −0.377477
\(190\) 2552.78 0.974728
\(191\) −2955.27 −1.11956 −0.559779 0.828642i \(-0.689114\pi\)
−0.559779 + 0.828642i \(0.689114\pi\)
\(192\) −332.981 −0.125161
\(193\) 2721.69 1.01509 0.507543 0.861627i \(-0.330554\pi\)
0.507543 + 0.861627i \(0.330554\pi\)
\(194\) −1807.15 −0.668795
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) −595.085 −0.215218 −0.107609 0.994193i \(-0.534320\pi\)
−0.107609 + 0.994193i \(0.534320\pi\)
\(198\) −4.93855 −0.00177256
\(199\) −167.295 −0.0595943 −0.0297971 0.999556i \(-0.509486\pi\)
−0.0297971 + 0.999556i \(0.509486\pi\)
\(200\) 1466.99 0.518659
\(201\) 4998.18 1.75395
\(202\) 1857.68 0.647058
\(203\) 875.249 0.302613
\(204\) 404.513 0.138831
\(205\) −4223.73 −1.43901
\(206\) −773.324 −0.261554
\(207\) −3.84493 −0.00129102
\(208\) 0 0
\(209\) −2584.25 −0.855293
\(210\) 1279.11 0.420318
\(211\) −2201.74 −0.718361 −0.359181 0.933268i \(-0.616944\pi\)
−0.359181 + 0.933268i \(0.616944\pi\)
\(212\) −610.968 −0.197932
\(213\) 2384.85 0.767170
\(214\) 2034.17 0.649781
\(215\) −4301.14 −1.36435
\(216\) 1120.92 0.353097
\(217\) −497.116 −0.155513
\(218\) −3778.44 −1.17389
\(219\) 524.822 0.161937
\(220\) −2497.40 −0.765338
\(221\) 0 0
\(222\) −3666.52 −1.10847
\(223\) −5914.92 −1.77620 −0.888099 0.459651i \(-0.847974\pi\)
−0.888099 + 0.459651i \(0.847974\pi\)
\(224\) −224.000 −0.0668153
\(225\) 12.7355 0.00377349
\(226\) 115.278 0.0339300
\(227\) −5571.04 −1.62891 −0.814456 0.580225i \(-0.802965\pi\)
−0.814456 + 0.580225i \(0.802965\pi\)
\(228\) −1512.67 −0.439382
\(229\) −3027.24 −0.873562 −0.436781 0.899568i \(-0.643882\pi\)
−0.436781 + 0.899568i \(0.643882\pi\)
\(230\) −1944.36 −0.557424
\(231\) −1294.87 −0.368815
\(232\) −1000.28 −0.283069
\(233\) −3763.80 −1.05826 −0.529131 0.848540i \(-0.677482\pi\)
−0.529131 + 0.848540i \(0.677482\pi\)
\(234\) 0 0
\(235\) −4162.90 −1.15556
\(236\) 98.3840 0.0271367
\(237\) 5961.11 1.63382
\(238\) 272.120 0.0741132
\(239\) 836.766 0.226468 0.113234 0.993568i \(-0.463879\pi\)
0.113234 + 0.993568i \(0.463879\pi\)
\(240\) −1461.84 −0.393171
\(241\) −4974.34 −1.32957 −0.664784 0.747036i \(-0.731476\pi\)
−0.664784 + 0.747036i \(0.731476\pi\)
\(242\) −133.821 −0.0355469
\(243\) 19.4874 0.00514453
\(244\) 2858.68 0.750035
\(245\) 860.468 0.224381
\(246\) 2502.80 0.648671
\(247\) 0 0
\(248\) 568.133 0.145470
\(249\) 4482.62 1.14086
\(250\) 2050.15 0.518652
\(251\) 2140.33 0.538232 0.269116 0.963108i \(-0.413268\pi\)
0.269116 + 0.963108i \(0.413268\pi\)
\(252\) −1.94464 −0.000486113 0
\(253\) 1968.33 0.489121
\(254\) 1913.14 0.472603
\(255\) 1775.87 0.436115
\(256\) 256.000 0.0625000
\(257\) −5068.22 −1.23014 −0.615071 0.788471i \(-0.710873\pi\)
−0.615071 + 0.788471i \(0.710873\pi\)
\(258\) 2548.68 0.615014
\(259\) −2466.51 −0.591742
\(260\) 0 0
\(261\) −8.68388 −0.00205946
\(262\) 4238.27 0.999394
\(263\) 3299.09 0.773501 0.386751 0.922184i \(-0.373597\pi\)
0.386751 + 0.922184i \(0.373597\pi\)
\(264\) 1479.85 0.344995
\(265\) −2682.24 −0.621768
\(266\) −1017.59 −0.234558
\(267\) −5500.35 −1.26073
\(268\) −3842.66 −0.875850
\(269\) 4751.92 1.07706 0.538531 0.842606i \(-0.318980\pi\)
0.538531 + 0.842606i \(0.318980\pi\)
\(270\) 4921.00 1.10920
\(271\) −1373.64 −0.307906 −0.153953 0.988078i \(-0.549200\pi\)
−0.153953 + 0.988078i \(0.549200\pi\)
\(272\) −310.994 −0.0693265
\(273\) 0 0
\(274\) −4915.46 −1.08377
\(275\) −6519.68 −1.42964
\(276\) 1152.15 0.251272
\(277\) 3579.60 0.776452 0.388226 0.921564i \(-0.373088\pi\)
0.388226 + 0.921564i \(0.373088\pi\)
\(278\) −4419.47 −0.953462
\(279\) 4.93219 0.00105836
\(280\) −983.392 −0.209889
\(281\) −7576.39 −1.60843 −0.804216 0.594337i \(-0.797415\pi\)
−0.804216 + 0.594337i \(0.797415\pi\)
\(282\) 2466.76 0.520899
\(283\) −6258.61 −1.31461 −0.657307 0.753623i \(-0.728304\pi\)
−0.657307 + 0.753623i \(0.728304\pi\)
\(284\) −1833.50 −0.383093
\(285\) −6640.85 −1.38025
\(286\) 0 0
\(287\) 1683.66 0.346284
\(288\) 2.22244 0.000454717 0
\(289\) −4535.20 −0.923101
\(290\) −4391.39 −0.889212
\(291\) 4701.16 0.947034
\(292\) −403.489 −0.0808645
\(293\) −1933.08 −0.385433 −0.192717 0.981254i \(-0.561730\pi\)
−0.192717 + 0.981254i \(0.561730\pi\)
\(294\) −509.877 −0.101145
\(295\) 431.920 0.0852453
\(296\) 2818.86 0.553524
\(297\) −4981.66 −0.973283
\(298\) −1416.13 −0.275282
\(299\) 0 0
\(300\) −3816.25 −0.734438
\(301\) 1714.52 0.328317
\(302\) −2160.50 −0.411664
\(303\) −4832.59 −0.916255
\(304\) 1162.96 0.219409
\(305\) 12550.0 2.35611
\(306\) −2.69987 −0.000504384 0
\(307\) 4886.39 0.908408 0.454204 0.890898i \(-0.349924\pi\)
0.454204 + 0.890898i \(0.349924\pi\)
\(308\) 995.513 0.184171
\(309\) 2011.74 0.370368
\(310\) 2494.18 0.456968
\(311\) −8145.44 −1.48516 −0.742581 0.669756i \(-0.766399\pi\)
−0.742581 + 0.669756i \(0.766399\pi\)
\(312\) 0 0
\(313\) 10759.6 1.94304 0.971518 0.236966i \(-0.0761531\pi\)
0.971518 + 0.236966i \(0.0761531\pi\)
\(314\) −2506.04 −0.450395
\(315\) −8.53723 −0.00152704
\(316\) −4582.97 −0.815862
\(317\) 5799.15 1.02748 0.513742 0.857945i \(-0.328259\pi\)
0.513742 + 0.857945i \(0.328259\pi\)
\(318\) 1589.38 0.280277
\(319\) 4445.52 0.780255
\(320\) 1123.88 0.196333
\(321\) −5291.73 −0.920111
\(322\) 775.062 0.134138
\(323\) −1412.79 −0.243374
\(324\) −2923.48 −0.501283
\(325\) 0 0
\(326\) 6883.56 1.16946
\(327\) 9829.29 1.66227
\(328\) −1924.19 −0.323919
\(329\) 1659.42 0.278075
\(330\) 6496.77 1.08374
\(331\) 6499.20 1.07924 0.539620 0.841909i \(-0.318568\pi\)
0.539620 + 0.841909i \(0.318568\pi\)
\(332\) −3446.29 −0.569698
\(333\) 24.4717 0.00402715
\(334\) 4697.53 0.769574
\(335\) −16869.8 −2.75134
\(336\) 582.717 0.0946126
\(337\) −3846.02 −0.621680 −0.310840 0.950462i \(-0.600610\pi\)
−0.310840 + 0.950462i \(0.600610\pi\)
\(338\) 0 0
\(339\) −299.886 −0.0480459
\(340\) −1365.31 −0.217778
\(341\) −2524.93 −0.400975
\(342\) 10.0961 0.00159631
\(343\) −343.000 −0.0539949
\(344\) −1959.45 −0.307112
\(345\) 5058.09 0.789329
\(346\) 8699.25 1.35166
\(347\) 6447.65 0.997487 0.498744 0.866750i \(-0.333795\pi\)
0.498744 + 0.866750i \(0.333795\pi\)
\(348\) 2602.16 0.400834
\(349\) −2636.70 −0.404411 −0.202205 0.979343i \(-0.564811\pi\)
−0.202205 + 0.979343i \(0.564811\pi\)
\(350\) −2567.23 −0.392069
\(351\) 0 0
\(352\) −1137.73 −0.172276
\(353\) 4096.10 0.617602 0.308801 0.951127i \(-0.400072\pi\)
0.308801 + 0.951127i \(0.400072\pi\)
\(354\) −255.938 −0.0384264
\(355\) −8049.34 −1.20342
\(356\) 4228.74 0.629558
\(357\) −707.898 −0.104947
\(358\) −6973.65 −1.02952
\(359\) −4036.48 −0.593418 −0.296709 0.954968i \(-0.595889\pi\)
−0.296709 + 0.954968i \(0.595889\pi\)
\(360\) 9.75684 0.00142842
\(361\) −1575.88 −0.229754
\(362\) 477.935 0.0693915
\(363\) 348.124 0.0503355
\(364\) 0 0
\(365\) −1771.38 −0.254022
\(366\) −7436.63 −1.06207
\(367\) −13364.6 −1.90089 −0.950446 0.310889i \(-0.899373\pi\)
−0.950446 + 0.310889i \(0.899373\pi\)
\(368\) −885.785 −0.125475
\(369\) −16.7047 −0.00235667
\(370\) 12375.2 1.73880
\(371\) 1069.19 0.149622
\(372\) −1477.95 −0.205989
\(373\) −6873.84 −0.954193 −0.477097 0.878851i \(-0.658311\pi\)
−0.477097 + 0.878851i \(0.658311\pi\)
\(374\) 1382.14 0.191093
\(375\) −5333.30 −0.734427
\(376\) −1896.48 −0.260115
\(377\) 0 0
\(378\) −1961.61 −0.266916
\(379\) 9844.51 1.33424 0.667122 0.744949i \(-0.267526\pi\)
0.667122 + 0.744949i \(0.267526\pi\)
\(380\) 5105.57 0.689237
\(381\) −4976.87 −0.669220
\(382\) −5910.53 −0.791647
\(383\) −9164.87 −1.22272 −0.611361 0.791352i \(-0.709378\pi\)
−0.611361 + 0.791352i \(0.709378\pi\)
\(384\) −665.962 −0.0885020
\(385\) 4370.44 0.578542
\(386\) 5443.38 0.717774
\(387\) −17.0108 −0.00223439
\(388\) −3614.31 −0.472909
\(389\) 5545.20 0.722758 0.361379 0.932419i \(-0.382306\pi\)
0.361379 + 0.932419i \(0.382306\pi\)
\(390\) 0 0
\(391\) 1076.07 0.139180
\(392\) 392.000 0.0505076
\(393\) −11025.5 −1.41517
\(394\) −1190.17 −0.152182
\(395\) −20119.9 −2.56289
\(396\) −9.87710 −0.00125339
\(397\) −12183.0 −1.54018 −0.770088 0.637938i \(-0.779788\pi\)
−0.770088 + 0.637938i \(0.779788\pi\)
\(398\) −334.591 −0.0421395
\(399\) 2647.18 0.332142
\(400\) 2933.98 0.366747
\(401\) 11242.3 1.40004 0.700018 0.714126i \(-0.253175\pi\)
0.700018 + 0.714126i \(0.253175\pi\)
\(402\) 9996.36 1.24023
\(403\) 0 0
\(404\) 3715.36 0.457539
\(405\) −12834.5 −1.57470
\(406\) 1750.50 0.213980
\(407\) −12527.7 −1.52574
\(408\) 809.026 0.0981685
\(409\) 12124.4 1.46580 0.732902 0.680334i \(-0.238165\pi\)
0.732902 + 0.680334i \(0.238165\pi\)
\(410\) −8447.45 −1.01754
\(411\) 12787.2 1.53466
\(412\) −1546.65 −0.184946
\(413\) −172.172 −0.0205134
\(414\) −7.68987 −0.000912890 0
\(415\) −15129.7 −1.78961
\(416\) 0 0
\(417\) 11496.9 1.35013
\(418\) −5168.50 −0.604783
\(419\) −7332.86 −0.854973 −0.427487 0.904022i \(-0.640601\pi\)
−0.427487 + 0.904022i \(0.640601\pi\)
\(420\) 2558.21 0.297209
\(421\) 8750.98 1.01306 0.506528 0.862223i \(-0.330929\pi\)
0.506528 + 0.862223i \(0.330929\pi\)
\(422\) −4403.48 −0.507958
\(423\) −16.4641 −0.00189246
\(424\) −1221.94 −0.139959
\(425\) −3564.26 −0.406805
\(426\) 4769.70 0.542471
\(427\) −5002.70 −0.566973
\(428\) 4068.35 0.459465
\(429\) 0 0
\(430\) −8602.28 −0.964742
\(431\) −2444.15 −0.273157 −0.136578 0.990629i \(-0.543611\pi\)
−0.136578 + 0.990629i \(0.543611\pi\)
\(432\) 2241.84 0.249677
\(433\) −10018.1 −1.11186 −0.555932 0.831228i \(-0.687638\pi\)
−0.555932 + 0.831228i \(0.687638\pi\)
\(434\) −994.232 −0.109965
\(435\) 11423.8 1.25915
\(436\) −7556.88 −0.830066
\(437\) −4023.96 −0.440485
\(438\) 1049.64 0.114507
\(439\) −1642.32 −0.178550 −0.0892750 0.996007i \(-0.528455\pi\)
−0.0892750 + 0.996007i \(0.528455\pi\)
\(440\) −4994.79 −0.541176
\(441\) 3.40311 0.000367467 0
\(442\) 0 0
\(443\) −2864.36 −0.307201 −0.153600 0.988133i \(-0.549087\pi\)
−0.153600 + 0.988133i \(0.549087\pi\)
\(444\) −7333.03 −0.783807
\(445\) 18564.8 1.97765
\(446\) −11829.8 −1.25596
\(447\) 3683.93 0.389807
\(448\) −448.000 −0.0472456
\(449\) 14230.7 1.49574 0.747870 0.663846i \(-0.231077\pi\)
0.747870 + 0.663846i \(0.231077\pi\)
\(450\) 25.4711 0.00266826
\(451\) 8551.57 0.892856
\(452\) 230.556 0.0239921
\(453\) 5620.35 0.582930
\(454\) −11142.1 −1.15181
\(455\) 0 0
\(456\) −3025.35 −0.310690
\(457\) −17058.6 −1.74610 −0.873052 0.487627i \(-0.837863\pi\)
−0.873052 + 0.487627i \(0.837863\pi\)
\(458\) −6054.48 −0.617702
\(459\) −2723.44 −0.276948
\(460\) −3888.72 −0.394158
\(461\) −11124.1 −1.12386 −0.561930 0.827185i \(-0.689941\pi\)
−0.561930 + 0.827185i \(0.689941\pi\)
\(462\) −2589.74 −0.260792
\(463\) −4793.11 −0.481112 −0.240556 0.970635i \(-0.577330\pi\)
−0.240556 + 0.970635i \(0.577330\pi\)
\(464\) −2000.57 −0.200160
\(465\) −6488.41 −0.647081
\(466\) −7527.61 −0.748304
\(467\) 1176.28 0.116557 0.0582783 0.998300i \(-0.481439\pi\)
0.0582783 + 0.998300i \(0.481439\pi\)
\(468\) 0 0
\(469\) 6724.66 0.662081
\(470\) −8325.80 −0.817107
\(471\) 6519.25 0.637773
\(472\) 196.768 0.0191885
\(473\) 8708.31 0.846530
\(474\) 11922.2 1.15529
\(475\) 13328.5 1.28748
\(476\) 544.240 0.0524059
\(477\) −10.6081 −0.00101827
\(478\) 1673.53 0.160137
\(479\) 6794.88 0.648154 0.324077 0.946031i \(-0.394946\pi\)
0.324077 + 0.946031i \(0.394946\pi\)
\(480\) −2923.67 −0.278014
\(481\) 0 0
\(482\) −9948.69 −0.940146
\(483\) −2016.26 −0.189944
\(484\) −267.642 −0.0251354
\(485\) −15867.3 −1.48556
\(486\) 38.9749 0.00363773
\(487\) −15075.0 −1.40270 −0.701348 0.712819i \(-0.747418\pi\)
−0.701348 + 0.712819i \(0.747418\pi\)
\(488\) 5717.37 0.530355
\(489\) −17907.0 −1.65600
\(490\) 1720.94 0.158661
\(491\) −700.777 −0.0644107 −0.0322053 0.999481i \(-0.510253\pi\)
−0.0322053 + 0.999481i \(0.510253\pi\)
\(492\) 5005.61 0.458679
\(493\) 2430.34 0.222022
\(494\) 0 0
\(495\) −43.3619 −0.00393731
\(496\) 1136.27 0.102863
\(497\) 3208.63 0.289591
\(498\) 8965.24 0.806711
\(499\) −1528.64 −0.137137 −0.0685683 0.997646i \(-0.521843\pi\)
−0.0685683 + 0.997646i \(0.521843\pi\)
\(500\) 4100.30 0.366742
\(501\) −12220.2 −1.08974
\(502\) 4280.66 0.380588
\(503\) −4013.82 −0.355800 −0.177900 0.984049i \(-0.556930\pi\)
−0.177900 + 0.984049i \(0.556930\pi\)
\(504\) −3.88927 −0.000343734 0
\(505\) 16310.9 1.43728
\(506\) 3936.66 0.345861
\(507\) 0 0
\(508\) 3826.28 0.334181
\(509\) −894.419 −0.0778869 −0.0389434 0.999241i \(-0.512399\pi\)
−0.0389434 + 0.999241i \(0.512399\pi\)
\(510\) 3551.74 0.308380
\(511\) 706.106 0.0611278
\(512\) 512.000 0.0441942
\(513\) 10184.3 0.876504
\(514\) −10136.4 −0.869842
\(515\) −6790.01 −0.580978
\(516\) 5097.35 0.434881
\(517\) 8428.42 0.716986
\(518\) −4933.01 −0.418425
\(519\) −22630.4 −1.91399
\(520\) 0 0
\(521\) −586.692 −0.0493349 −0.0246674 0.999696i \(-0.507853\pi\)
−0.0246674 + 0.999696i \(0.507853\pi\)
\(522\) −17.3678 −0.00145626
\(523\) −13018.5 −1.08845 −0.544224 0.838940i \(-0.683176\pi\)
−0.544224 + 0.838940i \(0.683176\pi\)
\(524\) 8476.54 0.706678
\(525\) 6678.44 0.555183
\(526\) 6598.19 0.546948
\(527\) −1380.36 −0.114098
\(528\) 2959.71 0.243948
\(529\) −9102.09 −0.748097
\(530\) −5364.48 −0.439657
\(531\) 1.70822 0.000139606 0
\(532\) −2035.18 −0.165858
\(533\) 0 0
\(534\) −11000.7 −0.891474
\(535\) 17860.6 1.44333
\(536\) −7685.32 −0.619320
\(537\) 18141.3 1.45783
\(538\) 9503.83 0.761597
\(539\) −1742.15 −0.139220
\(540\) 9842.01 0.784319
\(541\) −4069.61 −0.323413 −0.161706 0.986839i \(-0.551700\pi\)
−0.161706 + 0.986839i \(0.551700\pi\)
\(542\) −2747.27 −0.217722
\(543\) −1243.31 −0.0982605
\(544\) −621.989 −0.0490212
\(545\) −33175.8 −2.60751
\(546\) 0 0
\(547\) −13272.7 −1.03748 −0.518740 0.854932i \(-0.673599\pi\)
−0.518740 + 0.854932i \(0.673599\pi\)
\(548\) −9830.93 −0.766344
\(549\) 49.6348 0.00385859
\(550\) −13039.4 −1.01091
\(551\) −9088.22 −0.702670
\(552\) 2304.30 0.177676
\(553\) 8020.20 0.616734
\(554\) 7159.19 0.549034
\(555\) −32193.1 −2.46220
\(556\) −8838.95 −0.674200
\(557\) 12239.3 0.931053 0.465527 0.885034i \(-0.345865\pi\)
0.465527 + 0.885034i \(0.345865\pi\)
\(558\) 9.86438 0.000748374 0
\(559\) 0 0
\(560\) −1966.78 −0.148414
\(561\) −3595.52 −0.270593
\(562\) −15152.8 −1.13733
\(563\) 19627.0 1.46923 0.734616 0.678483i \(-0.237362\pi\)
0.734616 + 0.678483i \(0.237362\pi\)
\(564\) 4933.52 0.368331
\(565\) 1012.17 0.0753672
\(566\) −12517.2 −0.929572
\(567\) 5116.09 0.378934
\(568\) −3667.00 −0.270887
\(569\) 16866.9 1.24270 0.621349 0.783534i \(-0.286585\pi\)
0.621349 + 0.783534i \(0.286585\pi\)
\(570\) −13281.7 −0.975981
\(571\) 3470.38 0.254345 0.127173 0.991881i \(-0.459410\pi\)
0.127173 + 0.991881i \(0.459410\pi\)
\(572\) 0 0
\(573\) 15375.7 1.12100
\(574\) 3367.33 0.244860
\(575\) −10151.9 −0.736281
\(576\) 4.44488 0.000321534 0
\(577\) 7642.02 0.551372 0.275686 0.961248i \(-0.411095\pi\)
0.275686 + 0.961248i \(0.411095\pi\)
\(578\) −9070.39 −0.652731
\(579\) −14160.5 −1.01639
\(580\) −8782.79 −0.628768
\(581\) 6031.01 0.430652
\(582\) 9402.32 0.669654
\(583\) 5430.60 0.385785
\(584\) −806.979 −0.0571798
\(585\) 0 0
\(586\) −3866.17 −0.272543
\(587\) −4255.99 −0.299256 −0.149628 0.988742i \(-0.547808\pi\)
−0.149628 + 0.988742i \(0.547808\pi\)
\(588\) −1019.75 −0.0715204
\(589\) 5161.84 0.361104
\(590\) 863.840 0.0602775
\(591\) 3096.13 0.215495
\(592\) 5637.73 0.391401
\(593\) 25016.9 1.73242 0.866208 0.499684i \(-0.166551\pi\)
0.866208 + 0.499684i \(0.166551\pi\)
\(594\) −9963.31 −0.688215
\(595\) 2389.29 0.164624
\(596\) −2832.25 −0.194654
\(597\) 870.410 0.0596709
\(598\) 0 0
\(599\) 7004.91 0.477818 0.238909 0.971042i \(-0.423210\pi\)
0.238909 + 0.971042i \(0.423210\pi\)
\(600\) −7632.50 −0.519326
\(601\) −17899.3 −1.21485 −0.607427 0.794376i \(-0.707798\pi\)
−0.607427 + 0.794376i \(0.707798\pi\)
\(602\) 3429.04 0.232155
\(603\) −66.7194 −0.00450585
\(604\) −4321.00 −0.291091
\(605\) −1174.99 −0.0789587
\(606\) −9665.19 −0.647890
\(607\) 315.379 0.0210887 0.0105444 0.999944i \(-0.496644\pi\)
0.0105444 + 0.999944i \(0.496644\pi\)
\(608\) 2325.92 0.155146
\(609\) −4553.77 −0.303002
\(610\) 25100.1 1.66602
\(611\) 0 0
\(612\) −5.39974 −0.000356653 0
\(613\) 28048.6 1.84808 0.924041 0.382294i \(-0.124866\pi\)
0.924041 + 0.382294i \(0.124866\pi\)
\(614\) 9772.79 0.642341
\(615\) 21975.3 1.44086
\(616\) 1991.03 0.130228
\(617\) 26956.3 1.75886 0.879432 0.476025i \(-0.157923\pi\)
0.879432 + 0.476025i \(0.157923\pi\)
\(618\) 4023.48 0.261890
\(619\) 9116.91 0.591986 0.295993 0.955190i \(-0.404349\pi\)
0.295993 + 0.955190i \(0.404349\pi\)
\(620\) 4988.37 0.323125
\(621\) −7756.99 −0.501252
\(622\) −16290.9 −1.05017
\(623\) −7400.29 −0.475901
\(624\) 0 0
\(625\) −4920.80 −0.314931
\(626\) 21519.3 1.37393
\(627\) 13445.4 0.856392
\(628\) −5012.08 −0.318477
\(629\) −6848.84 −0.434151
\(630\) −17.0745 −0.00107978
\(631\) 18502.8 1.16733 0.583664 0.811995i \(-0.301619\pi\)
0.583664 + 0.811995i \(0.301619\pi\)
\(632\) −9165.95 −0.576902
\(633\) 11455.3 0.719284
\(634\) 11598.3 0.726541
\(635\) 16797.9 1.04977
\(636\) 3178.77 0.198186
\(637\) 0 0
\(638\) 8891.04 0.551724
\(639\) −31.8348 −0.00197084
\(640\) 2247.75 0.138829
\(641\) 12083.0 0.744539 0.372269 0.928125i \(-0.378580\pi\)
0.372269 + 0.928125i \(0.378580\pi\)
\(642\) −10583.5 −0.650617
\(643\) −9565.30 −0.586654 −0.293327 0.956012i \(-0.594762\pi\)
−0.293327 + 0.956012i \(0.594762\pi\)
\(644\) 1550.12 0.0948501
\(645\) 22378.1 1.36610
\(646\) −2825.58 −0.172091
\(647\) −32164.0 −1.95440 −0.977199 0.212325i \(-0.931896\pi\)
−0.977199 + 0.212325i \(0.931896\pi\)
\(648\) −5846.96 −0.354460
\(649\) −874.487 −0.0528916
\(650\) 0 0
\(651\) 2586.41 0.155713
\(652\) 13767.1 0.826936
\(653\) 4503.88 0.269909 0.134954 0.990852i \(-0.456911\pi\)
0.134954 + 0.990852i \(0.456911\pi\)
\(654\) 19658.6 1.17540
\(655\) 37213.2 2.21991
\(656\) −3848.37 −0.229045
\(657\) −7.00571 −0.000416011 0
\(658\) 3318.83 0.196629
\(659\) 15596.3 0.921921 0.460960 0.887421i \(-0.347505\pi\)
0.460960 + 0.887421i \(0.347505\pi\)
\(660\) 12993.5 0.766322
\(661\) 12427.9 0.731299 0.365649 0.930753i \(-0.380847\pi\)
0.365649 + 0.930753i \(0.380847\pi\)
\(662\) 12998.4 0.763137
\(663\) 0 0
\(664\) −6892.59 −0.402838
\(665\) −8934.74 −0.521014
\(666\) 48.9434 0.00284763
\(667\) 6922.17 0.401840
\(668\) 9395.07 0.544171
\(669\) 30774.3 1.77848
\(670\) −33739.7 −1.94549
\(671\) −25409.4 −1.46188
\(672\) 1165.43 0.0669012
\(673\) 13124.9 0.751752 0.375876 0.926670i \(-0.377342\pi\)
0.375876 + 0.926670i \(0.377342\pi\)
\(674\) −7692.05 −0.439594
\(675\) 25693.4 1.46510
\(676\) 0 0
\(677\) 15546.9 0.882595 0.441297 0.897361i \(-0.354518\pi\)
0.441297 + 0.897361i \(0.354518\pi\)
\(678\) −599.772 −0.0339736
\(679\) 6325.04 0.357486
\(680\) −2730.62 −0.153992
\(681\) 28985.2 1.63101
\(682\) −5049.85 −0.283532
\(683\) −24550.1 −1.37538 −0.687688 0.726006i \(-0.741374\pi\)
−0.687688 + 0.726006i \(0.741374\pi\)
\(684\) 20.1923 0.00112876
\(685\) −43159.2 −2.40734
\(686\) −686.000 −0.0381802
\(687\) 15750.2 0.874685
\(688\) −3918.91 −0.217161
\(689\) 0 0
\(690\) 10116.2 0.558140
\(691\) −10327.2 −0.568548 −0.284274 0.958743i \(-0.591752\pi\)
−0.284274 + 0.958743i \(0.591752\pi\)
\(692\) 17398.5 0.955768
\(693\) 17.2849 0.000947474 0
\(694\) 12895.3 0.705330
\(695\) −38804.3 −2.11788
\(696\) 5204.31 0.283432
\(697\) 4675.09 0.254063
\(698\) −5273.40 −0.285962
\(699\) 19582.4 1.05962
\(700\) −5134.46 −0.277235
\(701\) 19970.4 1.07599 0.537996 0.842947i \(-0.319181\pi\)
0.537996 + 0.842947i \(0.319181\pi\)
\(702\) 0 0
\(703\) 25611.2 1.37403
\(704\) −2275.46 −0.121818
\(705\) 21658.9 1.15705
\(706\) 8192.20 0.436710
\(707\) −6501.87 −0.345867
\(708\) −511.875 −0.0271716
\(709\) 14075.4 0.745574 0.372787 0.927917i \(-0.378402\pi\)
0.372787 + 0.927917i \(0.378402\pi\)
\(710\) −16098.7 −0.850947
\(711\) −79.5734 −0.00419724
\(712\) 8457.48 0.445165
\(713\) −3931.59 −0.206507
\(714\) −1415.80 −0.0742084
\(715\) 0 0
\(716\) −13947.3 −0.727981
\(717\) −4353.55 −0.226759
\(718\) −8072.95 −0.419610
\(719\) 26600.4 1.37973 0.689867 0.723937i \(-0.257669\pi\)
0.689867 + 0.723937i \(0.257669\pi\)
\(720\) 19.5137 0.00101004
\(721\) 2706.64 0.139806
\(722\) −3151.76 −0.162460
\(723\) 25880.7 1.33128
\(724\) 955.870 0.0490672
\(725\) −22928.2 −1.17453
\(726\) 696.248 0.0355926
\(727\) 25153.0 1.28318 0.641591 0.767047i \(-0.278275\pi\)
0.641591 + 0.767047i \(0.278275\pi\)
\(728\) 0 0
\(729\) 19632.1 0.997415
\(730\) −3542.75 −0.179621
\(731\) 4760.78 0.240881
\(732\) −14873.3 −0.750999
\(733\) 18255.3 0.919886 0.459943 0.887948i \(-0.347870\pi\)
0.459943 + 0.887948i \(0.347870\pi\)
\(734\) −26729.2 −1.34413
\(735\) −4476.87 −0.224669
\(736\) −1771.57 −0.0887241
\(737\) 34155.5 1.70710
\(738\) −33.4093 −0.00166641
\(739\) 21855.0 1.08789 0.543943 0.839122i \(-0.316931\pi\)
0.543943 + 0.839122i \(0.316931\pi\)
\(740\) 24750.4 1.22952
\(741\) 0 0
\(742\) 2138.39 0.105799
\(743\) 12216.6 0.603207 0.301604 0.953433i \(-0.402478\pi\)
0.301604 + 0.953433i \(0.402478\pi\)
\(744\) −2955.90 −0.145657
\(745\) −12434.0 −0.611471
\(746\) −13747.7 −0.674716
\(747\) −59.8374 −0.00293084
\(748\) 2764.28 0.135123
\(749\) −7119.61 −0.347323
\(750\) −10666.6 −0.519319
\(751\) −17533.1 −0.851918 −0.425959 0.904742i \(-0.640063\pi\)
−0.425959 + 0.904742i \(0.640063\pi\)
\(752\) −3792.95 −0.183929
\(753\) −11135.8 −0.538924
\(754\) 0 0
\(755\) −18969.8 −0.914412
\(756\) −3923.22 −0.188738
\(757\) −33216.3 −1.59481 −0.797403 0.603447i \(-0.793794\pi\)
−0.797403 + 0.603447i \(0.793794\pi\)
\(758\) 19689.0 0.943453
\(759\) −10240.9 −0.489750
\(760\) 10211.1 0.487364
\(761\) −12598.4 −0.600121 −0.300061 0.953920i \(-0.597007\pi\)
−0.300061 + 0.953920i \(0.597007\pi\)
\(762\) −9953.75 −0.473210
\(763\) 13224.5 0.627471
\(764\) −11821.1 −0.559779
\(765\) −23.7056 −0.00112037
\(766\) −18329.7 −0.864596
\(767\) 0 0
\(768\) −1331.92 −0.0625803
\(769\) 8651.03 0.405675 0.202838 0.979212i \(-0.434984\pi\)
0.202838 + 0.979212i \(0.434984\pi\)
\(770\) 8740.89 0.409091
\(771\) 26369.1 1.23172
\(772\) 10886.8 0.507543
\(773\) −16967.8 −0.789506 −0.394753 0.918787i \(-0.629170\pi\)
−0.394753 + 0.918787i \(0.629170\pi\)
\(774\) −34.0216 −0.00157995
\(775\) 13022.6 0.603593
\(776\) −7228.62 −0.334397
\(777\) 12832.8 0.592503
\(778\) 11090.4 0.511067
\(779\) −17482.5 −0.804074
\(780\) 0 0
\(781\) 16297.1 0.746679
\(782\) 2152.14 0.0984150
\(783\) −17519.4 −0.799606
\(784\) 784.000 0.0357143
\(785\) −22003.7 −1.00044
\(786\) −22051.0 −1.00068
\(787\) 28155.5 1.27527 0.637633 0.770340i \(-0.279914\pi\)
0.637633 + 0.770340i \(0.279914\pi\)
\(788\) −2380.34 −0.107609
\(789\) −17164.6 −0.774495
\(790\) −40239.8 −1.81224
\(791\) −403.473 −0.0181363
\(792\) −19.7542 −0.000886281 0
\(793\) 0 0
\(794\) −24366.1 −1.08907
\(795\) 13955.2 0.622568
\(796\) −669.182 −0.0297971
\(797\) −15628.0 −0.694568 −0.347284 0.937760i \(-0.612896\pi\)
−0.347284 + 0.937760i \(0.612896\pi\)
\(798\) 5294.35 0.234860
\(799\) 4607.76 0.204019
\(800\) 5867.96 0.259330
\(801\) 73.4228 0.00323879
\(802\) 22484.6 0.989974
\(803\) 3586.42 0.157611
\(804\) 19992.7 0.876976
\(805\) 6805.27 0.297956
\(806\) 0 0
\(807\) −24723.4 −1.07845
\(808\) 7430.71 0.323529
\(809\) 6228.55 0.270685 0.135343 0.990799i \(-0.456787\pi\)
0.135343 + 0.990799i \(0.456787\pi\)
\(810\) −25669.0 −1.11348
\(811\) −20273.2 −0.877790 −0.438895 0.898538i \(-0.644630\pi\)
−0.438895 + 0.898538i \(0.644630\pi\)
\(812\) 3501.00 0.151307
\(813\) 7146.80 0.308301
\(814\) −25055.5 −1.07886
\(815\) 60439.6 2.59768
\(816\) 1618.05 0.0694156
\(817\) −17802.9 −0.762355
\(818\) 24248.8 1.03648
\(819\) 0 0
\(820\) −16894.9 −0.719507
\(821\) −21540.3 −0.915666 −0.457833 0.889038i \(-0.651374\pi\)
−0.457833 + 0.889038i \(0.651374\pi\)
\(822\) 25574.3 1.08517
\(823\) 5784.95 0.245019 0.122510 0.992467i \(-0.460906\pi\)
0.122510 + 0.992467i \(0.460906\pi\)
\(824\) −3093.30 −0.130777
\(825\) 33920.8 1.43148
\(826\) −344.344 −0.0145052
\(827\) −5065.76 −0.213003 −0.106502 0.994313i \(-0.533965\pi\)
−0.106502 + 0.994313i \(0.533965\pi\)
\(828\) −15.3797 −0.000645511 0
\(829\) 26111.1 1.09394 0.546971 0.837152i \(-0.315781\pi\)
0.546971 + 0.837152i \(0.315781\pi\)
\(830\) −30259.4 −1.26545
\(831\) −18624.0 −0.777450
\(832\) 0 0
\(833\) −952.421 −0.0396151
\(834\) 22993.8 0.954688
\(835\) 41245.7 1.70942
\(836\) −10337.0 −0.427646
\(837\) 9950.49 0.410919
\(838\) −14665.7 −0.604557
\(839\) 36836.2 1.51576 0.757882 0.652392i \(-0.226234\pi\)
0.757882 + 0.652392i \(0.226234\pi\)
\(840\) 5116.42 0.210159
\(841\) −8755.10 −0.358977
\(842\) 17502.0 0.716339
\(843\) 39418.7 1.61050
\(844\) −8806.97 −0.359181
\(845\) 0 0
\(846\) −32.9282 −0.00133817
\(847\) 468.374 0.0190006
\(848\) −2443.87 −0.0989658
\(849\) 32562.5 1.31630
\(850\) −7128.53 −0.287655
\(851\) −19507.1 −0.785775
\(852\) 9539.40 0.383585
\(853\) 37518.2 1.50598 0.752989 0.658033i \(-0.228611\pi\)
0.752989 + 0.658033i \(0.228611\pi\)
\(854\) −10005.4 −0.400911
\(855\) 88.6470 0.00354581
\(856\) 8136.69 0.324891
\(857\) 28899.8 1.15192 0.575962 0.817477i \(-0.304628\pi\)
0.575962 + 0.817477i \(0.304628\pi\)
\(858\) 0 0
\(859\) −23027.2 −0.914643 −0.457322 0.889301i \(-0.651191\pi\)
−0.457322 + 0.889301i \(0.651191\pi\)
\(860\) −17204.6 −0.682175
\(861\) −8759.81 −0.346729
\(862\) −4888.30 −0.193151
\(863\) −13042.4 −0.514450 −0.257225 0.966352i \(-0.582808\pi\)
−0.257225 + 0.966352i \(0.582808\pi\)
\(864\) 4483.68 0.176549
\(865\) 76381.9 3.00238
\(866\) −20036.1 −0.786206
\(867\) 23595.9 0.924288
\(868\) −1988.46 −0.0777567
\(869\) 40735.8 1.59018
\(870\) 22847.7 0.890355
\(871\) 0 0
\(872\) −15113.8 −0.586945
\(873\) −62.7546 −0.00243290
\(874\) −8047.92 −0.311470
\(875\) −7175.53 −0.277231
\(876\) 2099.29 0.0809684
\(877\) −6860.30 −0.264146 −0.132073 0.991240i \(-0.542163\pi\)
−0.132073 + 0.991240i \(0.542163\pi\)
\(878\) −3284.63 −0.126254
\(879\) 10057.5 0.385929
\(880\) −9989.59 −0.382669
\(881\) −5787.24 −0.221313 −0.110657 0.993859i \(-0.535295\pi\)
−0.110657 + 0.993859i \(0.535295\pi\)
\(882\) 6.80623 0.000259839 0
\(883\) 35206.6 1.34178 0.670892 0.741555i \(-0.265911\pi\)
0.670892 + 0.741555i \(0.265911\pi\)
\(884\) 0 0
\(885\) −2247.21 −0.0853548
\(886\) −5728.72 −0.217224
\(887\) 3252.02 0.123103 0.0615513 0.998104i \(-0.480395\pi\)
0.0615513 + 0.998104i \(0.480395\pi\)
\(888\) −14666.1 −0.554235
\(889\) −6695.99 −0.252617
\(890\) 37129.5 1.39841
\(891\) 25985.4 0.977041
\(892\) −23659.7 −0.888099
\(893\) −17230.7 −0.645692
\(894\) 7367.86 0.275635
\(895\) −61230.6 −2.28683
\(896\) −896.000 −0.0334077
\(897\) 0 0
\(898\) 28461.3 1.05765
\(899\) −8879.60 −0.329423
\(900\) 50.9422 0.00188675
\(901\) 2968.87 0.109775
\(902\) 17103.1 0.631344
\(903\) −8920.37 −0.328739
\(904\) 461.112 0.0169650
\(905\) 4196.41 0.154136
\(906\) 11240.7 0.412194
\(907\) 51382.9 1.88108 0.940541 0.339679i \(-0.110318\pi\)
0.940541 + 0.339679i \(0.110318\pi\)
\(908\) −22284.2 −0.814456
\(909\) 64.5091 0.00235383
\(910\) 0 0
\(911\) 2406.21 0.0875096 0.0437548 0.999042i \(-0.486068\pi\)
0.0437548 + 0.999042i \(0.486068\pi\)
\(912\) −6050.69 −0.219691
\(913\) 30632.4 1.11039
\(914\) −34117.3 −1.23468
\(915\) −65295.7 −2.35914
\(916\) −12109.0 −0.436781
\(917\) −14833.9 −0.534199
\(918\) −5446.88 −0.195832
\(919\) −3168.94 −0.113747 −0.0568736 0.998381i \(-0.518113\pi\)
−0.0568736 + 0.998381i \(0.518113\pi\)
\(920\) −7777.45 −0.278712
\(921\) −25423.1 −0.909576
\(922\) −22248.1 −0.794688
\(923\) 0 0
\(924\) −5179.49 −0.184408
\(925\) 64613.2 2.29672
\(926\) −9586.23 −0.340198
\(927\) −26.8542 −0.000951464 0
\(928\) −4001.14 −0.141534
\(929\) −27980.8 −0.988180 −0.494090 0.869411i \(-0.664499\pi\)
−0.494090 + 0.869411i \(0.664499\pi\)
\(930\) −12976.8 −0.457555
\(931\) 3561.57 0.125377
\(932\) −15055.2 −0.529131
\(933\) 42379.3 1.48707
\(934\) 2352.57 0.0824179
\(935\) 12135.6 0.424466
\(936\) 0 0
\(937\) 39522.4 1.37795 0.688975 0.724785i \(-0.258061\pi\)
0.688975 + 0.724785i \(0.258061\pi\)
\(938\) 13449.3 0.468162
\(939\) −55980.5 −1.94553
\(940\) −16651.6 −0.577782
\(941\) 4246.22 0.147102 0.0735509 0.997291i \(-0.476567\pi\)
0.0735509 + 0.997291i \(0.476567\pi\)
\(942\) 13038.5 0.450974
\(943\) 13315.8 0.459831
\(944\) 393.536 0.0135683
\(945\) −17223.5 −0.592890
\(946\) 17416.6 0.598587
\(947\) −24063.5 −0.825722 −0.412861 0.910794i \(-0.635471\pi\)
−0.412861 + 0.910794i \(0.635471\pi\)
\(948\) 23844.4 0.816911
\(949\) 0 0
\(950\) 26657.1 0.910389
\(951\) −30172.0 −1.02881
\(952\) 1088.48 0.0370566
\(953\) −47821.8 −1.62550 −0.812750 0.582613i \(-0.802030\pi\)
−0.812750 + 0.582613i \(0.802030\pi\)
\(954\) −21.2163 −0.000720023 0
\(955\) −51896.2 −1.75845
\(956\) 3347.06 0.113234
\(957\) −23129.3 −0.781258
\(958\) 13589.8 0.458314
\(959\) 17204.1 0.579302
\(960\) −5847.34 −0.196586
\(961\) −24747.6 −0.830709
\(962\) 0 0
\(963\) 70.6380 0.00236374
\(964\) −19897.4 −0.664784
\(965\) 47794.4 1.59436
\(966\) −4032.52 −0.134311
\(967\) −45369.7 −1.50878 −0.754391 0.656425i \(-0.772068\pi\)
−0.754391 + 0.656425i \(0.772068\pi\)
\(968\) −535.284 −0.0177734
\(969\) 7350.51 0.243687
\(970\) −31734.7 −1.05045
\(971\) −12542.2 −0.414520 −0.207260 0.978286i \(-0.566455\pi\)
−0.207260 + 0.978286i \(0.566455\pi\)
\(972\) 77.9498 0.00257226
\(973\) 15468.2 0.509647
\(974\) −30150.0 −0.991855
\(975\) 0 0
\(976\) 11434.7 0.375018
\(977\) 18512.7 0.606218 0.303109 0.952956i \(-0.401975\pi\)
0.303109 + 0.952956i \(0.401975\pi\)
\(978\) −35814.0 −1.17097
\(979\) −37587.2 −1.22706
\(980\) 3441.87 0.112190
\(981\) −131.209 −0.00427031
\(982\) −1401.55 −0.0455452
\(983\) −28145.6 −0.913231 −0.456615 0.889664i \(-0.650938\pi\)
−0.456615 + 0.889664i \(0.650938\pi\)
\(984\) 10011.2 0.324335
\(985\) −10450.0 −0.338036
\(986\) 4860.67 0.156993
\(987\) −8633.66 −0.278432
\(988\) 0 0
\(989\) 13559.8 0.435972
\(990\) −86.7237 −0.00278410
\(991\) −24434.7 −0.783243 −0.391621 0.920126i \(-0.628086\pi\)
−0.391621 + 0.920126i \(0.628086\pi\)
\(992\) 2272.53 0.0727348
\(993\) −33814.2 −1.08063
\(994\) 6417.26 0.204772
\(995\) −2937.80 −0.0936027
\(996\) 17930.5 0.570431
\(997\) 6620.14 0.210293 0.105146 0.994457i \(-0.466469\pi\)
0.105146 + 0.994457i \(0.466469\pi\)
\(998\) −3057.27 −0.0969703
\(999\) 49370.7 1.56358
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2366.4.a.r.1.2 4
13.3 even 3 182.4.g.a.113.3 yes 8
13.9 even 3 182.4.g.a.29.3 8
13.12 even 2 2366.4.a.q.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.4.g.a.29.3 8 13.9 even 3
182.4.g.a.113.3 yes 8 13.3 even 3
2366.4.a.q.1.2 4 13.12 even 2
2366.4.a.r.1.2 4 1.1 even 1 trivial