Properties

Label 182.4.g.a.113.3
Level $182$
Weight $4$
Character 182.113
Analytic conductor $10.738$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [182,4,Mod(29,182)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("182.29"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(182, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 182.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7383476210\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 34x^{6} + 57x^{5} + 915x^{4} + 720x^{3} + 5490x^{2} - 1944x + 26244 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 113.3
Root \(-1.60142 + 2.77373i\) of defining polynomial
Character \(\chi\) \(=\) 182.113
Dual form 182.4.g.a.29.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(2.60142 - 4.50578i) q^{3} +(-2.00000 - 3.46410i) q^{4} +17.5606 q^{5} +(5.20283 + 9.01157i) q^{6} +(3.50000 + 6.06218i) q^{7} +8.00000 q^{8} +(-0.0347256 - 0.0601466i) q^{9} +(-17.5606 + 30.4158i) q^{10} +(17.7770 - 30.7907i) q^{11} -20.8113 q^{12} +(-13.4505 + 44.9008i) q^{13} -14.0000 q^{14} +(45.6823 - 79.1241i) q^{15} +(-8.00000 + 13.8564i) q^{16} +(9.71858 + 16.8331i) q^{17} +0.138903 q^{18} +(-36.3425 - 62.9471i) q^{19} +(-35.1211 - 60.8316i) q^{20} +36.4198 q^{21} +(35.5540 + 61.5814i) q^{22} +(27.6808 - 47.9445i) q^{23} +(20.8113 - 36.0463i) q^{24} +183.374 q^{25} +(-64.3200 - 68.1978i) q^{26} +140.115 q^{27} +(14.0000 - 24.2487i) q^{28} +(62.5178 - 108.284i) q^{29} +(91.3647 + 158.248i) q^{30} +71.0166 q^{31} +(-16.0000 - 27.7128i) q^{32} +(-92.4908 - 160.199i) q^{33} -38.8743 q^{34} +(61.4620 + 106.455i) q^{35} +(-0.138903 + 0.240586i) q^{36} +(-176.179 + 305.151i) q^{37} +145.370 q^{38} +(167.323 + 177.411i) q^{39} +140.485 q^{40} +(120.262 - 208.299i) q^{41} +(-36.4198 + 63.0810i) q^{42} +(122.466 + 212.117i) q^{43} -142.216 q^{44} +(-0.609802 - 1.05621i) q^{45} +(55.3616 + 95.8891i) q^{46} -237.059 q^{47} +(41.6226 + 72.0925i) q^{48} +(-24.5000 + 42.4352i) q^{49} +(-183.374 + 317.613i) q^{50} +101.128 q^{51} +(182.442 - 43.2078i) q^{52} -152.742 q^{53} +(-140.115 + 242.686i) q^{54} +(312.175 - 540.702i) q^{55} +(28.0000 + 48.4974i) q^{56} -378.168 q^{57} +(125.036 + 216.568i) q^{58} +(-12.2980 - 21.3008i) q^{59} -365.459 q^{60} +(-357.336 - 618.923i) q^{61} +(-71.0166 + 123.004i) q^{62} +(0.243080 - 0.421026i) q^{63} +64.0000 q^{64} +(-236.198 + 788.484i) q^{65} +369.963 q^{66} +(480.333 - 831.960i) q^{67} +(38.8743 - 67.3323i) q^{68} +(-144.018 - 249.447i) q^{69} -245.848 q^{70} +(229.188 + 396.965i) q^{71} +(-0.277805 - 0.481173i) q^{72} -100.872 q^{73} +(-352.358 - 610.302i) q^{74} +(477.031 - 826.242i) q^{75} +(-145.370 + 251.788i) q^{76} +248.878 q^{77} +(-474.607 + 112.401i) q^{78} -1145.74 q^{79} +(-140.485 + 243.326i) q^{80} +(365.435 - 632.952i) q^{81} +(240.523 + 416.599i) q^{82} -861.573 q^{83} +(-72.8396 - 126.162i) q^{84} +(170.664 + 295.598i) q^{85} -489.863 q^{86} +(-325.270 - 563.383i) q^{87} +(142.216 - 246.326i) q^{88} +(-528.592 + 915.549i) q^{89} +2.43921 q^{90} +(-319.274 + 75.6136i) q^{91} -221.446 q^{92} +(184.744 - 319.985i) q^{93} +(237.059 - 410.599i) q^{94} +(-638.196 - 1105.39i) q^{95} -166.491 q^{96} +(451.789 + 782.521i) q^{97} +(-49.0000 - 84.8705i) q^{98} -2.46927 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 7 q^{3} - 16 q^{4} - 2 q^{5} + 14 q^{6} + 28 q^{7} + 64 q^{8} + 29 q^{9} + 2 q^{10} + 15 q^{11} - 56 q^{12} + 64 q^{13} - 112 q^{14} - 67 q^{15} - 64 q^{16} + 24 q^{17} - 116 q^{18} - 21 q^{19}+ \cdots - 258 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/182\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(157\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.353553 + 0.612372i
\(3\) 2.60142 4.50578i 0.500643 0.867139i −0.499357 0.866396i \(-0.666430\pi\)
1.00000 0.000742233i \(-0.000236260\pi\)
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 17.5606 1.57067 0.785333 0.619074i \(-0.212492\pi\)
0.785333 + 0.619074i \(0.212492\pi\)
\(6\) 5.20283 + 9.01157i 0.354008 + 0.613160i
\(7\) 3.50000 + 6.06218i 0.188982 + 0.327327i
\(8\) 8.00000 0.353553
\(9\) −0.0347256 0.0601466i −0.00128614 0.00222765i
\(10\) −17.5606 + 30.4158i −0.555314 + 0.961832i
\(11\) 17.7770 30.7907i 0.487270 0.843977i −0.512623 0.858614i \(-0.671326\pi\)
0.999893 + 0.0146372i \(0.00465934\pi\)
\(12\) −20.8113 −0.500643
\(13\) −13.4505 + 44.9008i −0.286961 + 0.957942i
\(14\) −14.0000 −0.267261
\(15\) 45.6823 79.1241i 0.786342 1.36198i
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) 9.71858 + 16.8331i 0.138653 + 0.240154i 0.926987 0.375093i \(-0.122389\pi\)
−0.788334 + 0.615248i \(0.789056\pi\)
\(18\) 0.138903 0.00181887
\(19\) −36.3425 62.9471i −0.438818 0.760056i 0.558780 0.829316i \(-0.311270\pi\)
−0.997599 + 0.0692600i \(0.977936\pi\)
\(20\) −35.1211 60.8316i −0.392666 0.680118i
\(21\) 36.4198 0.378450
\(22\) 35.5540 + 61.5814i 0.344552 + 0.596782i
\(23\) 27.6808 47.9445i 0.250950 0.434658i −0.712838 0.701329i \(-0.752590\pi\)
0.963788 + 0.266671i \(0.0859238\pi\)
\(24\) 20.8113 36.0463i 0.177004 0.306580i
\(25\) 183.374 1.46699
\(26\) −64.3200 68.1978i −0.485161 0.514411i
\(27\) 140.115 0.998710
\(28\) 14.0000 24.2487i 0.0944911 0.163663i
\(29\) 62.5178 108.284i 0.400319 0.693374i −0.593445 0.804875i \(-0.702232\pi\)
0.993764 + 0.111501i \(0.0355658\pi\)
\(30\) 91.3647 + 158.248i 0.556028 + 0.963068i
\(31\) 71.0166 0.411450 0.205725 0.978610i \(-0.434045\pi\)
0.205725 + 0.978610i \(0.434045\pi\)
\(32\) −16.0000 27.7128i −0.0883883 0.153093i
\(33\) −92.4908 160.199i −0.487897 0.845062i
\(34\) −38.8743 −0.196085
\(35\) 61.4620 + 106.455i 0.296828 + 0.514121i
\(36\) −0.138903 + 0.240586i −0.000643068 + 0.00111383i
\(37\) −176.179 + 305.151i −0.782801 + 1.35585i 0.147503 + 0.989062i \(0.452876\pi\)
−0.930304 + 0.366790i \(0.880457\pi\)
\(38\) 145.370 0.620583
\(39\) 167.323 + 177.411i 0.687004 + 0.728422i
\(40\) 140.485 0.555314
\(41\) 120.262 208.299i 0.458091 0.793436i −0.540769 0.841171i \(-0.681867\pi\)
0.998860 + 0.0477347i \(0.0152002\pi\)
\(42\) −36.4198 + 63.0810i −0.133802 + 0.231753i
\(43\) 122.466 + 212.117i 0.434322 + 0.752269i 0.997240 0.0742444i \(-0.0236545\pi\)
−0.562918 + 0.826513i \(0.690321\pi\)
\(44\) −142.216 −0.487270
\(45\) −0.609802 1.05621i −0.00202009 0.00349889i
\(46\) 55.3616 + 95.8891i 0.177448 + 0.307349i
\(47\) −237.059 −0.735716 −0.367858 0.929882i \(-0.619909\pi\)
−0.367858 + 0.929882i \(0.619909\pi\)
\(48\) 41.6226 + 72.0925i 0.125161 + 0.216785i
\(49\) −24.5000 + 42.4352i −0.0714286 + 0.123718i
\(50\) −183.374 + 317.613i −0.518659 + 0.898344i
\(51\) 101.128 0.277662
\(52\) 182.442 43.2078i 0.486541 0.115228i
\(53\) −152.742 −0.395863 −0.197932 0.980216i \(-0.563422\pi\)
−0.197932 + 0.980216i \(0.563422\pi\)
\(54\) −140.115 + 242.686i −0.353097 + 0.611582i
\(55\) 312.175 540.702i 0.765338 1.32561i
\(56\) 28.0000 + 48.4974i 0.0668153 + 0.115728i
\(57\) −378.168 −0.878765
\(58\) 125.036 + 216.568i 0.283069 + 0.490289i
\(59\) −12.2980 21.3008i −0.0271367 0.0470021i 0.852138 0.523317i \(-0.175306\pi\)
−0.879275 + 0.476315i \(0.841972\pi\)
\(60\) −365.459 −0.786342
\(61\) −357.336 618.923i −0.750035 1.29910i −0.947805 0.318850i \(-0.896703\pi\)
0.197770 0.980248i \(-0.436630\pi\)
\(62\) −71.0166 + 123.004i −0.145470 + 0.251961i
\(63\) 0.243080 0.421026i 0.000486113 0.000841973i
\(64\) 64.0000 0.125000
\(65\) −236.198 + 788.484i −0.450720 + 1.50461i
\(66\) 369.963 0.689990
\(67\) 480.333 831.960i 0.875850 1.51702i 0.0199959 0.999800i \(-0.493635\pi\)
0.855854 0.517217i \(-0.173032\pi\)
\(68\) 38.8743 67.3323i 0.0693265 0.120077i
\(69\) −144.018 249.447i −0.251272 0.435216i
\(70\) −245.848 −0.419778
\(71\) 229.188 + 396.965i 0.383093 + 0.663536i 0.991503 0.130087i \(-0.0415256\pi\)
−0.608410 + 0.793623i \(0.708192\pi\)
\(72\) −0.277805 0.481173i −0.000454717 0.000787594i
\(73\) −100.872 −0.161729 −0.0808645 0.996725i \(-0.525768\pi\)
−0.0808645 + 0.996725i \(0.525768\pi\)
\(74\) −352.358 610.302i −0.553524 0.958732i
\(75\) 477.031 826.242i 0.734438 1.27208i
\(76\) −145.370 + 251.788i −0.219409 + 0.380028i
\(77\) 248.878 0.368342
\(78\) −474.607 + 112.401i −0.688958 + 0.163166i
\(79\) −1145.74 −1.63172 −0.815862 0.578246i \(-0.803737\pi\)
−0.815862 + 0.578246i \(0.803737\pi\)
\(80\) −140.485 + 243.326i −0.196333 + 0.340059i
\(81\) 365.435 632.952i 0.501283 0.868247i
\(82\) 240.523 + 416.599i 0.323919 + 0.561044i
\(83\) −861.573 −1.13940 −0.569698 0.821854i \(-0.692940\pi\)
−0.569698 + 0.821854i \(0.692940\pi\)
\(84\) −72.8396 126.162i −0.0946126 0.163874i
\(85\) 170.664 + 295.598i 0.217778 + 0.377202i
\(86\) −489.863 −0.614225
\(87\) −325.270 563.383i −0.400834 0.694265i
\(88\) 142.216 246.326i 0.172276 0.298391i
\(89\) −528.592 + 915.549i −0.629558 + 1.09043i 0.358082 + 0.933690i \(0.383431\pi\)
−0.987640 + 0.156737i \(0.949903\pi\)
\(90\) 2.43921 0.00285684
\(91\) −319.274 + 75.6136i −0.367791 + 0.0871040i
\(92\) −221.446 −0.250950
\(93\) 184.744 319.985i 0.205989 0.356784i
\(94\) 237.059 410.599i 0.260115 0.450533i
\(95\) −638.196 1105.39i −0.689237 1.19379i
\(96\) −166.491 −0.177004
\(97\) 451.789 + 782.521i 0.472909 + 0.819103i 0.999519 0.0310042i \(-0.00987052\pi\)
−0.526610 + 0.850107i \(0.676537\pi\)
\(98\) −49.0000 84.8705i −0.0505076 0.0874818i
\(99\) −2.46927 −0.00250678
\(100\) −366.747 635.225i −0.366747 0.635225i
\(101\) −464.420 + 804.398i −0.457539 + 0.792481i −0.998830 0.0483540i \(-0.984602\pi\)
0.541291 + 0.840835i \(0.317936\pi\)
\(102\) −101.128 + 175.159i −0.0981685 + 0.170033i
\(103\) −386.662 −0.369893 −0.184946 0.982749i \(-0.559211\pi\)
−0.184946 + 0.982749i \(0.559211\pi\)
\(104\) −107.604 + 359.207i −0.101456 + 0.338684i
\(105\) 639.553 0.594419
\(106\) 152.742 264.557i 0.139959 0.242416i
\(107\) −508.543 + 880.823i −0.459465 + 0.795816i −0.998933 0.0461897i \(-0.985292\pi\)
0.539468 + 0.842006i \(0.318625\pi\)
\(108\) −280.230 485.373i −0.249677 0.432454i
\(109\) −1889.22 −1.66013 −0.830066 0.557665i \(-0.811697\pi\)
−0.830066 + 0.557665i \(0.811697\pi\)
\(110\) 624.349 + 1081.40i 0.541176 + 0.937344i
\(111\) 916.629 + 1587.65i 0.783807 + 1.35759i
\(112\) −112.000 −0.0944911
\(113\) −28.8195 49.9168i −0.0239921 0.0415556i 0.853780 0.520634i \(-0.174304\pi\)
−0.877772 + 0.479078i \(0.840971\pi\)
\(114\) 378.168 655.006i 0.310690 0.538131i
\(115\) 486.091 841.934i 0.394158 0.682702i
\(116\) −500.142 −0.400319
\(117\) 3.16771 0.750209i 0.00250303 0.000592794i
\(118\) 49.1920 0.0383771
\(119\) −68.0300 + 117.831i −0.0524059 + 0.0907697i
\(120\) 365.459 632.993i 0.278014 0.481534i
\(121\) 33.4553 + 57.9462i 0.0251354 + 0.0435358i
\(122\) 1429.34 1.06071
\(123\) −625.701 1083.75i −0.458679 0.794456i
\(124\) −142.033 246.009i −0.102863 0.178163i
\(125\) 1025.08 0.733485
\(126\) 0.486159 + 0.842052i 0.000343734 + 0.000595365i
\(127\) −478.285 + 828.414i −0.334181 + 0.578818i −0.983327 0.181846i \(-0.941793\pi\)
0.649146 + 0.760663i \(0.275126\pi\)
\(128\) −64.0000 + 110.851i −0.0441942 + 0.0765466i
\(129\) 1274.34 0.869761
\(130\) −1129.50 1197.59i −0.762026 0.807967i
\(131\) 2119.14 1.41336 0.706678 0.707535i \(-0.250193\pi\)
0.706678 + 0.707535i \(0.250193\pi\)
\(132\) −369.963 + 640.795i −0.243948 + 0.422531i
\(133\) 254.398 440.630i 0.165858 0.287274i
\(134\) 960.665 + 1663.92i 0.619320 + 1.07269i
\(135\) 2460.50 1.56864
\(136\) 77.7486 + 134.665i 0.0490212 + 0.0849073i
\(137\) 1228.87 + 2128.46i 0.766344 + 1.32735i 0.939533 + 0.342458i \(0.111259\pi\)
−0.173189 + 0.984889i \(0.555407\pi\)
\(138\) 576.074 0.355353
\(139\) 1104.87 + 1913.69i 0.674200 + 1.16775i 0.976702 + 0.214599i \(0.0688446\pi\)
−0.302503 + 0.953149i \(0.597822\pi\)
\(140\) 245.848 425.821i 0.148414 0.257060i
\(141\) −616.690 + 1068.14i −0.368331 + 0.637968i
\(142\) −916.751 −0.541775
\(143\) 1143.42 + 1212.35i 0.668653 + 0.708965i
\(144\) 1.11122 0.000643068
\(145\) 1097.85 1901.53i 0.628768 1.08906i
\(146\) 100.872 174.716i 0.0571798 0.0990384i
\(147\) 127.469 + 220.783i 0.0715204 + 0.123877i
\(148\) 1409.43 0.782801
\(149\) 354.031 + 613.200i 0.194654 + 0.337150i 0.946787 0.321861i \(-0.104308\pi\)
−0.752133 + 0.659011i \(0.770975\pi\)
\(150\) 954.062 + 1652.48i 0.519326 + 0.899499i
\(151\) −1080.25 −0.582181 −0.291091 0.956695i \(-0.594018\pi\)
−0.291091 + 0.956695i \(0.594018\pi\)
\(152\) −290.740 503.577i −0.155146 0.268720i
\(153\) 0.674968 1.16908i 0.000356653 0.000617741i
\(154\) −248.878 + 431.070i −0.130228 + 0.225562i
\(155\) 1247.09 0.646250
\(156\) 279.922 934.446i 0.143665 0.479587i
\(157\) −1253.02 −0.636954 −0.318477 0.947931i \(-0.603171\pi\)
−0.318477 + 0.947931i \(0.603171\pi\)
\(158\) 1145.74 1984.49i 0.576902 0.999223i
\(159\) −397.346 + 688.223i −0.198186 + 0.343268i
\(160\) −280.969 486.653i −0.138829 0.240458i
\(161\) 387.531 0.189700
\(162\) 730.870 + 1265.90i 0.354460 + 0.613944i
\(163\) −1720.89 2980.67i −0.826936 1.43230i −0.900431 0.434999i \(-0.856749\pi\)
0.0734948 0.997296i \(-0.476585\pi\)
\(164\) −962.093 −0.458091
\(165\) −1624.19 2813.18i −0.766322 1.32731i
\(166\) 861.573 1492.29i 0.402838 0.697735i
\(167\) −1174.38 + 2034.09i −0.544171 + 0.942532i 0.454488 + 0.890753i \(0.349822\pi\)
−0.998659 + 0.0517786i \(0.983511\pi\)
\(168\) 291.359 0.133802
\(169\) −1835.17 1207.88i −0.835307 0.549784i
\(170\) −682.655 −0.307984
\(171\) −2.52404 + 4.37176i −0.00112876 + 0.00195507i
\(172\) 489.863 848.468i 0.217161 0.376134i
\(173\) −2174.81 3766.88i −0.955768 1.65544i −0.732601 0.680658i \(-0.761694\pi\)
−0.223167 0.974780i \(-0.571639\pi\)
\(174\) 1301.08 0.566865
\(175\) 641.808 + 1111.64i 0.277235 + 0.480185i
\(176\) 284.432 + 492.651i 0.121818 + 0.210994i
\(177\) −127.969 −0.0543431
\(178\) −1057.18 1831.10i −0.445165 0.771048i
\(179\) 1743.41 3019.68i 0.727981 1.26090i −0.229754 0.973249i \(-0.573792\pi\)
0.957735 0.287652i \(-0.0928747\pi\)
\(180\) −2.43921 + 4.22483i −0.00101004 + 0.00174945i
\(181\) 238.968 0.0981344 0.0490672 0.998795i \(-0.484375\pi\)
0.0490672 + 0.998795i \(0.484375\pi\)
\(182\) 188.307 628.612i 0.0766936 0.256021i
\(183\) −3718.31 −1.50200
\(184\) 221.446 383.556i 0.0887241 0.153675i
\(185\) −3093.80 + 5358.62i −1.22952 + 2.12959i
\(186\) 369.487 + 639.971i 0.145657 + 0.252285i
\(187\) 691.069 0.270246
\(188\) 474.119 + 821.198i 0.183929 + 0.318575i
\(189\) 490.403 + 849.403i 0.188738 + 0.326904i
\(190\) 2552.78 0.974728
\(191\) 1477.63 + 2559.33i 0.559779 + 0.969565i 0.997514 + 0.0704616i \(0.0224472\pi\)
−0.437736 + 0.899104i \(0.644219\pi\)
\(192\) 166.491 288.370i 0.0625803 0.108392i
\(193\) −1360.84 + 2357.05i −0.507543 + 0.879090i 0.492419 + 0.870358i \(0.336113\pi\)
−0.999962 + 0.00873172i \(0.997221\pi\)
\(194\) −1807.15 −0.668795
\(195\) 2938.29 + 3115.43i 1.07905 + 1.14411i
\(196\) 196.000 0.0714286
\(197\) 297.542 515.359i 0.107609 0.186385i −0.807192 0.590289i \(-0.799014\pi\)
0.914801 + 0.403904i \(0.132347\pi\)
\(198\) 2.46927 4.27691i 0.000886281 0.00153508i
\(199\) 83.6477 + 144.882i 0.0297971 + 0.0516102i 0.880539 0.473973i \(-0.157181\pi\)
−0.850742 + 0.525583i \(0.823847\pi\)
\(200\) 1466.99 0.518659
\(201\) −2499.09 4328.55i −0.876976 1.51897i
\(202\) −928.839 1608.80i −0.323529 0.560369i
\(203\) 875.249 0.302613
\(204\) −202.256 350.319i −0.0694156 0.120231i
\(205\) 2111.86 3657.85i 0.719507 1.24622i
\(206\) 386.662 669.718i 0.130777 0.226512i
\(207\) −3.84493 −0.00129102
\(208\) −514.560 545.582i −0.171530 0.181872i
\(209\) −2584.25 −0.855293
\(210\) −639.553 + 1107.74i −0.210159 + 0.364006i
\(211\) 1100.87 1906.76i 0.359181 0.622119i −0.628644 0.777694i \(-0.716390\pi\)
0.987824 + 0.155575i \(0.0497229\pi\)
\(212\) 305.484 + 529.114i 0.0989658 + 0.171414i
\(213\) 2384.85 0.767170
\(214\) −1017.09 1761.65i −0.324891 0.562727i
\(215\) 2150.57 + 3724.90i 0.682175 + 1.18156i
\(216\) 1120.92 0.353097
\(217\) 248.558 + 430.515i 0.0777567 + 0.134679i
\(218\) 1889.22 3272.22i 0.586945 1.01662i
\(219\) −262.411 + 454.509i −0.0809684 + 0.140241i
\(220\) −2497.40 −0.765338
\(221\) −886.538 + 209.959i −0.269842 + 0.0639067i
\(222\) −3666.52 −1.10847
\(223\) 2957.46 5122.47i 0.888099 1.53823i 0.0459800 0.998942i \(-0.485359\pi\)
0.842119 0.539291i \(-0.181308\pi\)
\(224\) 112.000 193.990i 0.0334077 0.0578638i
\(225\) −6.36777 11.0293i −0.00188675 0.00326794i
\(226\) 115.278 0.0339300
\(227\) 2785.52 + 4824.66i 0.814456 + 1.41068i 0.909718 + 0.415227i \(0.136298\pi\)
−0.0952617 + 0.995452i \(0.530369\pi\)
\(228\) 756.336 + 1310.01i 0.219691 + 0.380516i
\(229\) −3027.24 −0.873562 −0.436781 0.899568i \(-0.643882\pi\)
−0.436781 + 0.899568i \(0.643882\pi\)
\(230\) 972.181 + 1683.87i 0.278712 + 0.482743i
\(231\) 647.436 1121.39i 0.184408 0.319403i
\(232\) 500.142 866.272i 0.141534 0.245145i
\(233\) −3763.80 −1.05826 −0.529131 0.848540i \(-0.677482\pi\)
−0.529131 + 0.848540i \(0.677482\pi\)
\(234\) −1.86831 + 6.23684i −0.000521945 + 0.00174237i
\(235\) −4162.90 −1.15556
\(236\) −49.1920 + 85.2031i −0.0135683 + 0.0235010i
\(237\) −2980.56 + 5162.47i −0.816911 + 1.41493i
\(238\) −136.060 235.663i −0.0370566 0.0641839i
\(239\) 836.766 0.226468 0.113234 0.993568i \(-0.463879\pi\)
0.113234 + 0.993568i \(0.463879\pi\)
\(240\) 730.918 + 1265.99i 0.196586 + 0.340496i
\(241\) 2487.17 + 4307.91i 0.664784 + 1.15144i 0.979344 + 0.202202i \(0.0648096\pi\)
−0.314560 + 0.949237i \(0.601857\pi\)
\(242\) −133.821 −0.0355469
\(243\) −9.74372 16.8766i −0.00257226 0.00445529i
\(244\) −1429.34 + 2475.69i −0.375018 + 0.649549i
\(245\) −430.234 + 745.187i −0.112190 + 0.194319i
\(246\) 2502.80 0.648671
\(247\) 3315.20 785.141i 0.854013 0.202256i
\(248\) 568.133 0.145470
\(249\) −2241.31 + 3882.06i −0.570431 + 0.988015i
\(250\) −1025.08 + 1775.48i −0.259326 + 0.449166i
\(251\) −1070.16 1853.58i −0.269116 0.466123i 0.699518 0.714615i \(-0.253398\pi\)
−0.968634 + 0.248493i \(0.920065\pi\)
\(252\) −1.94464 −0.000486113
\(253\) −984.164 1704.62i −0.244561 0.423592i
\(254\) −956.570 1656.83i −0.236301 0.409286i
\(255\) 1775.87 0.436115
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 2534.11 4389.20i 0.615071 1.06533i −0.375301 0.926903i \(-0.622461\pi\)
0.990372 0.138432i \(-0.0442062\pi\)
\(258\) −1274.34 + 2207.22i −0.307507 + 0.532618i
\(259\) −2466.51 −0.591742
\(260\) 3203.79 758.754i 0.764194 0.180984i
\(261\) −8.68388 −0.00205946
\(262\) −2119.14 + 3670.45i −0.499697 + 0.865501i
\(263\) −1649.55 + 2857.10i −0.386751 + 0.669872i −0.992010 0.126156i \(-0.959736\pi\)
0.605260 + 0.796028i \(0.293069\pi\)
\(264\) −739.927 1281.59i −0.172497 0.298774i
\(265\) −2682.24 −0.621768
\(266\) 508.796 + 881.260i 0.117279 + 0.203133i
\(267\) 2750.18 + 4763.45i 0.630367 + 1.09183i
\(268\) −3842.66 −0.875850
\(269\) −2375.96 4115.28i −0.538531 0.932762i −0.998983 0.0450781i \(-0.985646\pi\)
0.460453 0.887684i \(-0.347687\pi\)
\(270\) −2460.50 + 4261.71i −0.554598 + 0.960591i
\(271\) 686.818 1189.60i 0.153953 0.266654i −0.778724 0.627366i \(-0.784133\pi\)
0.932677 + 0.360712i \(0.117466\pi\)
\(272\) −310.994 −0.0693265
\(273\) −489.864 + 1635.28i −0.108601 + 0.362534i
\(274\) −4915.46 −1.08377
\(275\) 3259.84 5646.20i 0.714820 1.23811i
\(276\) −576.074 + 997.789i −0.125636 + 0.217608i
\(277\) −1789.80 3100.02i −0.388226 0.672427i 0.603985 0.796996i \(-0.293579\pi\)
−0.992211 + 0.124569i \(0.960245\pi\)
\(278\) −4419.47 −0.953462
\(279\) −2.46610 4.27140i −0.000529180 0.000916567i
\(280\) 491.696 + 851.643i 0.104944 + 0.181769i
\(281\) −7576.39 −1.60843 −0.804216 0.594337i \(-0.797415\pi\)
−0.804216 + 0.594337i \(0.797415\pi\)
\(282\) −1233.38 2136.28i −0.260449 0.451112i
\(283\) 3129.30 5420.11i 0.657307 1.13849i −0.324003 0.946056i \(-0.605029\pi\)
0.981310 0.192433i \(-0.0616377\pi\)
\(284\) 916.751 1587.86i 0.191546 0.331768i
\(285\) −6640.85 −1.38025
\(286\) −3243.27 + 768.106i −0.670555 + 0.158808i
\(287\) 1683.66 0.346284
\(288\) −1.11122 + 1.92469i −0.000227359 + 0.000393797i
\(289\) 2267.60 3927.60i 0.461551 0.799429i
\(290\) 2195.70 + 3803.06i 0.444606 + 0.770080i
\(291\) 4701.16 0.947034
\(292\) 201.745 + 349.432i 0.0404322 + 0.0700307i
\(293\) 966.542 + 1674.10i 0.192717 + 0.333795i 0.946150 0.323730i \(-0.104937\pi\)
−0.753433 + 0.657525i \(0.771603\pi\)
\(294\) −509.877 −0.101145
\(295\) −215.960 374.054i −0.0426226 0.0738246i
\(296\) −1409.43 + 2441.21i −0.276762 + 0.479366i
\(297\) 2490.83 4314.24i 0.486642 0.842888i
\(298\) −1416.13 −0.275282
\(299\) 1780.43 + 1887.77i 0.344364 + 0.365125i
\(300\) −3816.25 −0.734438
\(301\) −857.261 + 1484.82i −0.164158 + 0.284331i
\(302\) 1080.25 1871.05i 0.205832 0.356512i
\(303\) 2416.30 + 4185.15i 0.458127 + 0.793500i
\(304\) 1162.96 0.219409
\(305\) −6275.02 10868.6i −1.17805 2.04045i
\(306\) 1.34994 + 2.33816i 0.000252192 + 0.000436809i
\(307\) 4886.39 0.908408 0.454204 0.890898i \(-0.349924\pi\)
0.454204 + 0.890898i \(0.349924\pi\)
\(308\) −497.757 862.140i −0.0920854 0.159497i
\(309\) −1005.87 + 1742.22i −0.185184 + 0.320748i
\(310\) −1247.09 + 2160.03i −0.228484 + 0.395746i
\(311\) −8145.44 −1.48516 −0.742581 0.669756i \(-0.766399\pi\)
−0.742581 + 0.669756i \(0.766399\pi\)
\(312\) 1338.58 + 1419.29i 0.242892 + 0.257536i
\(313\) 10759.6 1.94304 0.971518 0.236966i \(-0.0761531\pi\)
0.971518 + 0.236966i \(0.0761531\pi\)
\(314\) 1253.02 2170.29i 0.225197 0.390053i
\(315\) 4.26862 7.39346i 0.000763521 0.00132246i
\(316\) 2291.49 + 3968.97i 0.407931 + 0.706557i
\(317\) 5799.15 1.02748 0.513742 0.857945i \(-0.328259\pi\)
0.513742 + 0.857945i \(0.328259\pi\)
\(318\) −794.691 1376.45i −0.140139 0.242727i
\(319\) −2222.76 3849.93i −0.390128 0.675721i
\(320\) 1123.88 0.196333
\(321\) 2645.87 + 4582.77i 0.460055 + 0.796839i
\(322\) −387.531 + 671.224i −0.0670691 + 0.116167i
\(323\) 706.396 1223.51i 0.121687 0.210768i
\(324\) −2923.48 −0.501283
\(325\) −2466.47 + 8233.63i −0.420969 + 1.40529i
\(326\) 6883.56 1.16946
\(327\) −4914.65 + 8512.42i −0.831133 + 1.43956i
\(328\) 962.093 1666.39i 0.161959 0.280522i
\(329\) −829.708 1437.10i −0.139037 0.240820i
\(330\) 6496.77 1.08374
\(331\) −3249.60 5628.47i −0.539620 0.934649i −0.998924 0.0463699i \(-0.985235\pi\)
0.459305 0.888279i \(-0.348099\pi\)
\(332\) 1723.15 + 2984.58i 0.284849 + 0.493373i
\(333\) 24.4717 0.00402715
\(334\) −2348.77 4068.18i −0.384787 0.666470i
\(335\) 8434.91 14609.7i 1.37567 2.38273i
\(336\) −291.359 + 504.648i −0.0473063 + 0.0819369i
\(337\) −3846.02 −0.621680 −0.310840 0.950462i \(-0.600610\pi\)
−0.310840 + 0.950462i \(0.600610\pi\)
\(338\) 3927.27 1970.73i 0.631998 0.317141i
\(339\) −299.886 −0.0480459
\(340\) 682.655 1182.39i 0.108889 0.188601i
\(341\) 1262.46 2186.65i 0.200487 0.347254i
\(342\) −5.04807 8.74352i −0.000798153 0.00138244i
\(343\) −343.000 −0.0539949
\(344\) 979.727 + 1696.94i 0.153556 + 0.265967i
\(345\) −2529.05 4380.44i −0.394665 0.683579i
\(346\) 8699.25 1.35166
\(347\) −3223.83 5583.83i −0.498744 0.863849i 0.501255 0.865299i \(-0.332872\pi\)
−0.999999 + 0.00145003i \(0.999538\pi\)
\(348\) −1301.08 + 2253.53i −0.200417 + 0.347132i
\(349\) 1318.35 2283.45i 0.202205 0.350230i −0.747033 0.664787i \(-0.768522\pi\)
0.949239 + 0.314557i \(0.101856\pi\)
\(350\) −2567.23 −0.392069
\(351\) −1884.62 + 6291.28i −0.286591 + 0.956706i
\(352\) −1137.73 −0.172276
\(353\) −2048.05 + 3547.33i −0.308801 + 0.534859i −0.978100 0.208134i \(-0.933261\pi\)
0.669299 + 0.742993i \(0.266594\pi\)
\(354\) 127.969 221.649i 0.0192132 0.0332782i
\(355\) 4024.67 + 6970.93i 0.601710 + 1.04219i
\(356\) 4228.74 0.629558
\(357\) 353.949 + 613.057i 0.0524733 + 0.0908864i
\(358\) 3486.82 + 6039.35i 0.514761 + 0.891592i
\(359\) −4036.48 −0.593418 −0.296709 0.954968i \(-0.595889\pi\)
−0.296709 + 0.954968i \(0.595889\pi\)
\(360\) −4.87842 8.44967i −0.000714209 0.00123705i
\(361\) 787.940 1364.75i 0.114877 0.198973i
\(362\) −238.968 + 413.904i −0.0346957 + 0.0600948i
\(363\) 348.124 0.0503355
\(364\) 900.480 + 954.769i 0.129665 + 0.137482i
\(365\) −1771.38 −0.254022
\(366\) 3718.31 6440.31i 0.531037 0.919782i
\(367\) 6682.31 11574.1i 0.950446 1.64622i 0.205985 0.978555i \(-0.433960\pi\)
0.744461 0.667666i \(-0.232707\pi\)
\(368\) 442.893 + 767.113i 0.0627374 + 0.108664i
\(369\) −16.7047 −0.00235667
\(370\) −6187.61 10717.2i −0.869401 1.50585i
\(371\) −534.597 925.950i −0.0748111 0.129577i
\(372\) −1477.95 −0.205989
\(373\) 3436.92 + 5952.92i 0.477097 + 0.826356i 0.999655 0.0262476i \(-0.00835584\pi\)
−0.522559 + 0.852603i \(0.675023\pi\)
\(374\) −691.069 + 1196.97i −0.0955464 + 0.165491i
\(375\) 2666.65 4618.77i 0.367214 0.636033i
\(376\) −1896.48 −0.260115
\(377\) 4021.15 + 4263.57i 0.549336 + 0.582454i
\(378\) −1961.61 −0.266916
\(379\) −4922.25 + 8525.59i −0.667122 + 1.15549i 0.311584 + 0.950219i \(0.399141\pi\)
−0.978705 + 0.205270i \(0.934193\pi\)
\(380\) −2552.78 + 4421.55i −0.344618 + 0.596897i
\(381\) 2488.44 + 4310.10i 0.334610 + 0.579562i
\(382\) −5910.53 −0.791647
\(383\) 4582.43 + 7937.01i 0.611361 + 1.05891i 0.991011 + 0.133779i \(0.0427111\pi\)
−0.379650 + 0.925130i \(0.623956\pi\)
\(384\) 332.981 + 576.740i 0.0442510 + 0.0766449i
\(385\) 4370.44 0.578542
\(386\) −2721.69 4714.11i −0.358887 0.621610i
\(387\) 8.50541 14.7318i 0.00111719 0.00193504i
\(388\) 1807.15 3130.08i 0.236455 0.409551i
\(389\) 5545.20 0.722758 0.361379 0.932419i \(-0.382306\pi\)
0.361379 + 0.932419i \(0.382306\pi\)
\(390\) −8334.38 + 1973.83i −1.08212 + 0.256279i
\(391\) 1076.07 0.139180
\(392\) −196.000 + 339.482i −0.0252538 + 0.0437409i
\(393\) 5512.75 9548.36i 0.707587 1.22558i
\(394\) 595.085 + 1030.72i 0.0760912 + 0.131794i
\(395\) −20119.9 −2.56289
\(396\) 4.93855 + 8.55382i 0.000626695 + 0.00108547i
\(397\) 6091.52 + 10550.8i 0.770088 + 1.33383i 0.937514 + 0.347946i \(0.113121\pi\)
−0.167427 + 0.985884i \(0.553546\pi\)
\(398\) −334.591 −0.0421395
\(399\) −1323.59 2292.52i −0.166071 0.287643i
\(400\) −1466.99 + 2540.90i −0.183374 + 0.317613i
\(401\) −5621.15 + 9736.12i −0.700018 + 1.21247i 0.268442 + 0.963296i \(0.413491\pi\)
−0.968460 + 0.249170i \(0.919842\pi\)
\(402\) 9996.36 1.24023
\(403\) −955.207 + 3188.70i −0.118070 + 0.394145i
\(404\) 3715.36 0.457539
\(405\) 6417.25 11115.0i 0.787348 1.36373i
\(406\) −875.249 + 1515.98i −0.106990 + 0.185312i
\(407\) 6263.87 + 10849.3i 0.762871 + 1.32133i
\(408\) 809.026 0.0981685
\(409\) −6062.21 10500.1i −0.732902 1.26942i −0.955638 0.294545i \(-0.904832\pi\)
0.222736 0.974879i \(-0.428501\pi\)
\(410\) 4223.73 + 7315.71i 0.508768 + 0.881213i
\(411\) 12787.2 1.53466
\(412\) 773.324 + 1339.44i 0.0924732 + 0.160168i
\(413\) 86.0860 149.105i 0.0102567 0.0177651i
\(414\) 3.84493 6.65962i 0.000456445 0.000790586i
\(415\) −15129.7 −1.78961
\(416\) 1459.54 345.662i 0.172018 0.0407392i
\(417\) 11496.9 1.35013
\(418\) 2584.25 4476.05i 0.302392 0.523758i
\(419\) 3666.43 6350.45i 0.427487 0.740429i −0.569162 0.822225i \(-0.692732\pi\)
0.996649 + 0.0817966i \(0.0260658\pi\)
\(420\) −1279.11 2215.48i −0.148605 0.257391i
\(421\) 8750.98 1.01306 0.506528 0.862223i \(-0.330929\pi\)
0.506528 + 0.862223i \(0.330929\pi\)
\(422\) 2201.74 + 3813.53i 0.253979 + 0.439904i
\(423\) 8.23204 + 14.2583i 0.000946231 + 0.00163892i
\(424\) −1221.94 −0.139959
\(425\) 1782.13 + 3086.74i 0.203403 + 0.352304i
\(426\) −2384.85 + 4130.68i −0.271236 + 0.469794i
\(427\) 2501.35 4332.46i 0.283487 0.491013i
\(428\) 4068.35 0.459465
\(429\) 8437.11 1998.16i 0.949528 0.224877i
\(430\) −8602.28 −0.964742
\(431\) 1222.07 2116.70i 0.136578 0.236561i −0.789621 0.613595i \(-0.789723\pi\)
0.926199 + 0.377034i \(0.123056\pi\)
\(432\) −1120.92 + 1941.49i −0.124839 + 0.216227i
\(433\) 5009.03 + 8675.89i 0.555932 + 0.962902i 0.997830 + 0.0658372i \(0.0209718\pi\)
−0.441898 + 0.897065i \(0.645695\pi\)
\(434\) −994.232 −0.109965
\(435\) −5711.92 9893.34i −0.629576 1.09046i
\(436\) 3778.44 + 6544.45i 0.415033 + 0.718858i
\(437\) −4023.96 −0.440485
\(438\) −524.822 909.018i −0.0572533 0.0991656i
\(439\) 821.158 1422.29i 0.0892750 0.154629i −0.817930 0.575318i \(-0.804878\pi\)
0.907205 + 0.420689i \(0.138212\pi\)
\(440\) 2497.40 4325.62i 0.270588 0.468672i
\(441\) 3.40311 0.000367467
\(442\) 522.878 1745.49i 0.0562688 0.187838i
\(443\) −2864.36 −0.307201 −0.153600 0.988133i \(-0.549087\pi\)
−0.153600 + 0.988133i \(0.549087\pi\)
\(444\) 3666.52 6350.59i 0.391904 0.678797i
\(445\) −9282.38 + 16077.6i −0.988825 + 1.71270i
\(446\) 5914.92 + 10244.9i 0.627981 + 1.08770i
\(447\) 3683.93 0.389807
\(448\) 224.000 + 387.979i 0.0236228 + 0.0409159i
\(449\) −7115.34 12324.1i −0.747870 1.29535i −0.948842 0.315751i \(-0.897744\pi\)
0.200973 0.979597i \(-0.435590\pi\)
\(450\) 25.4711 0.00266826
\(451\) −4275.79 7405.88i −0.446428 0.773236i
\(452\) −115.278 + 199.667i −0.0119961 + 0.0207778i
\(453\) −2810.18 + 4867.37i −0.291465 + 0.504832i
\(454\) −11142.1 −1.15181
\(455\) −5606.63 + 1327.82i −0.577676 + 0.136811i
\(456\) −3025.35 −0.310690
\(457\) 8529.32 14773.2i 0.873052 1.51217i 0.0142290 0.999899i \(-0.495471\pi\)
0.858823 0.512272i \(-0.171196\pi\)
\(458\) 3027.24 5243.34i 0.308851 0.534945i
\(459\) 1361.72 + 2358.57i 0.138474 + 0.239844i
\(460\) −3888.72 −0.394158
\(461\) 5562.03 + 9633.72i 0.561930 + 0.973291i 0.997328 + 0.0730527i \(0.0232741\pi\)
−0.435399 + 0.900238i \(0.643393\pi\)
\(462\) 1294.87 + 2242.78i 0.130396 + 0.225852i
\(463\) −4793.11 −0.481112 −0.240556 0.970635i \(-0.577330\pi\)
−0.240556 + 0.970635i \(0.577330\pi\)
\(464\) 1000.28 + 1732.54i 0.100080 + 0.173343i
\(465\) 3244.20 5619.12i 0.323540 0.560389i
\(466\) 3763.80 6519.10i 0.374152 0.648050i
\(467\) 1176.28 0.116557 0.0582783 0.998300i \(-0.481439\pi\)
0.0582783 + 0.998300i \(0.481439\pi\)
\(468\) −8.93422 9.47284i −0.000882445 0.000935646i
\(469\) 6724.66 0.662081
\(470\) 4162.90 7210.35i 0.408554 0.707636i
\(471\) −3259.62 + 5645.84i −0.318887 + 0.552328i
\(472\) −98.3840 170.406i −0.00959426 0.0166178i
\(473\) 8708.31 0.846530
\(474\) −5961.11 10324.9i −0.577643 1.00051i
\(475\) −6664.27 11542.8i −0.643742 1.11499i
\(476\) 544.240 0.0524059
\(477\) 5.30407 + 9.18692i 0.000509133 + 0.000881845i
\(478\) −836.766 + 1449.32i −0.0800686 + 0.138683i
\(479\) −3397.44 + 5884.53i −0.324077 + 0.561318i −0.981325 0.192356i \(-0.938387\pi\)
0.657248 + 0.753674i \(0.271720\pi\)
\(480\) −2923.67 −0.278014
\(481\) −11331.8 12015.0i −1.07419 1.13895i
\(482\) −9948.69 −0.940146
\(483\) 1008.13 1746.13i 0.0949720 0.164496i
\(484\) 133.821 231.785i 0.0125677 0.0217679i
\(485\) 7933.67 + 13741.5i 0.742782 + 1.28654i
\(486\) 38.9749 0.00363773
\(487\) 7537.49 + 13055.3i 0.701348 + 1.21477i 0.967994 + 0.250975i \(0.0807513\pi\)
−0.266646 + 0.963795i \(0.585915\pi\)
\(488\) −2858.68 4951.39i −0.265177 0.459301i
\(489\) −17907.0 −1.65600
\(490\) −860.468 1490.37i −0.0793306 0.137405i
\(491\) 350.389 606.891i 0.0322053 0.0557813i −0.849474 0.527631i \(-0.823080\pi\)
0.881679 + 0.471850i \(0.156414\pi\)
\(492\) −2502.80 + 4334.98i −0.229340 + 0.397228i
\(493\) 2430.34 0.222022
\(494\) −1955.30 + 6527.24i −0.178083 + 0.594483i
\(495\) −43.3619 −0.00393731
\(496\) −568.133 + 984.034i −0.0514313 + 0.0890815i
\(497\) −1604.31 + 2778.75i −0.144795 + 0.250793i
\(498\) −4482.62 7764.13i −0.403355 0.698632i
\(499\) −1528.64 −0.137137 −0.0685683 0.997646i \(-0.521843\pi\)
−0.0685683 + 0.997646i \(0.521843\pi\)
\(500\) −2050.15 3550.97i −0.183371 0.317608i
\(501\) 6110.12 + 10583.0i 0.544870 + 0.943743i
\(502\) 4280.66 0.380588
\(503\) 2006.91 + 3476.07i 0.177900 + 0.308132i 0.941161 0.337958i \(-0.109736\pi\)
−0.763261 + 0.646090i \(0.776403\pi\)
\(504\) 1.94464 3.36821i 0.000171867 0.000297682i
\(505\) −8155.47 + 14125.7i −0.718641 + 1.24472i
\(506\) 3936.66 0.345861
\(507\) −10216.5 + 5126.69i −0.894929 + 0.449081i
\(508\) 3826.28 0.334181
\(509\) 447.209 774.589i 0.0389434 0.0674520i −0.845897 0.533347i \(-0.820934\pi\)
0.884840 + 0.465895i \(0.154267\pi\)
\(510\) −1775.87 + 3075.90i −0.154190 + 0.267065i
\(511\) −353.053 611.506i −0.0305639 0.0529382i
\(512\) 512.000 0.0441942
\(513\) −5092.14 8819.84i −0.438252 0.759075i
\(514\) 5068.22 + 8778.41i 0.434921 + 0.753306i
\(515\) −6790.01 −0.580978
\(516\) −2548.68 4414.44i −0.217440 0.376618i
\(517\) −4214.21 + 7299.23i −0.358493 + 0.620928i
\(518\) 2466.51 4272.11i 0.209212 0.362366i
\(519\) −22630.4 −1.91399
\(520\) −1889.59 + 6307.87i −0.159354 + 0.531959i
\(521\) −586.692 −0.0493349 −0.0246674 0.999696i \(-0.507853\pi\)
−0.0246674 + 0.999696i \(0.507853\pi\)
\(522\) 8.68388 15.0409i 0.000728129 0.00126116i
\(523\) 6509.24 11274.3i 0.544224 0.942624i −0.454431 0.890782i \(-0.650157\pi\)
0.998655 0.0518421i \(-0.0165092\pi\)
\(524\) −4238.27 7340.90i −0.353339 0.612001i
\(525\) 6678.44 0.555183
\(526\) −3299.09 5714.20i −0.273474 0.473671i
\(527\) 690.180 + 1195.43i 0.0570488 + 0.0988114i
\(528\) 2959.71 0.243948
\(529\) 4551.05 + 7882.65i 0.374048 + 0.647871i
\(530\) 2682.24 4645.77i 0.219828 0.380754i
\(531\) −0.854112 + 1.47937i −6.98029e−5 + 0.000120902i
\(532\) −2035.18 −0.165858
\(533\) 7735.23 + 8201.57i 0.628612 + 0.666510i
\(534\) −11000.7 −0.891474
\(535\) −8930.31 + 15467.8i −0.721666 + 1.24996i
\(536\) 3842.66 6655.68i 0.309660 0.536347i
\(537\) −9070.67 15710.9i −0.728917 1.26252i
\(538\) 9503.83 0.761597
\(539\) 871.074 + 1508.74i 0.0696100 + 0.120568i
\(540\) −4921.00 8523.43i −0.392160 0.679241i
\(541\) −4069.61 −0.323413 −0.161706 0.986839i \(-0.551700\pi\)
−0.161706 + 0.986839i \(0.551700\pi\)
\(542\) 1373.64 + 2379.21i 0.108861 + 0.188553i
\(543\) 621.654 1076.74i 0.0491303 0.0850961i
\(544\) 310.994 538.658i 0.0245106 0.0424536i
\(545\) −33175.8 −2.60751
\(546\) −2342.52 2483.75i −0.183609 0.194679i
\(547\) −13272.7 −1.03748 −0.518740 0.854932i \(-0.673599\pi\)
−0.518740 + 0.854932i \(0.673599\pi\)
\(548\) 4915.46 8513.83i 0.383172 0.663673i
\(549\) −24.8174 + 42.9850i −0.00192929 + 0.00334163i
\(550\) 6519.68 + 11292.4i 0.505454 + 0.875473i
\(551\) −9088.22 −0.702670
\(552\) −1152.15 1995.58i −0.0888382 0.153872i
\(553\) −4010.10 6945.70i −0.308367 0.534107i
\(554\) 7159.19 0.549034
\(555\) 16096.5 + 27880.0i 1.23110 + 2.13233i
\(556\) 4419.47 7654.75i 0.337100 0.583874i
\(557\) −6119.66 + 10599.6i −0.465527 + 0.806316i −0.999225 0.0393589i \(-0.987468\pi\)
0.533698 + 0.845675i \(0.320802\pi\)
\(558\) 9.86438 0.000748374
\(559\) −11171.5 + 2645.74i −0.845264 + 0.200184i
\(560\) −1966.78 −0.148414
\(561\) 1797.76 3113.81i 0.135297 0.234341i
\(562\) 7576.39 13122.7i 0.568667 0.984960i
\(563\) −9813.48 16997.5i −0.734616 1.27239i −0.954891 0.296955i \(-0.904029\pi\)
0.220275 0.975438i \(-0.429305\pi\)
\(564\) 4933.52 0.368331
\(565\) −506.087 876.568i −0.0376836 0.0652699i
\(566\) 6258.61 + 10840.2i 0.464786 + 0.805033i
\(567\) 5116.09 0.378934
\(568\) 1833.50 + 3175.72i 0.135444 + 0.234595i
\(569\) −8433.43 + 14607.1i −0.621349 + 1.07621i 0.367885 + 0.929871i \(0.380082\pi\)
−0.989235 + 0.146338i \(0.953251\pi\)
\(570\) 6640.85 11502.3i 0.487990 0.845224i
\(571\) 3470.38 0.254345 0.127173 0.991881i \(-0.459410\pi\)
0.127173 + 0.991881i \(0.459410\pi\)
\(572\) 1912.88 6385.62i 0.139828 0.466777i
\(573\) 15375.7 1.12100
\(574\) −1683.66 + 2916.19i −0.122430 + 0.212055i
\(575\) 5075.93 8791.77i 0.368141 0.637638i
\(576\) −2.22244 3.84938i −0.000160767 0.000278456i
\(577\) 7642.02 0.551372 0.275686 0.961248i \(-0.411095\pi\)
0.275686 + 0.961248i \(0.411095\pi\)
\(578\) 4535.20 + 7855.19i 0.326366 + 0.565282i
\(579\) 7080.25 + 12263.3i 0.508195 + 0.880220i
\(580\) −8782.79 −0.628768
\(581\) −3015.51 5223.01i −0.215326 0.372955i
\(582\) −4701.16 + 8142.65i −0.334827 + 0.579938i
\(583\) −2715.30 + 4703.04i −0.192892 + 0.334099i
\(584\) −806.979 −0.0571798
\(585\) 55.6268 13.1741i 0.00393143 0.000931081i
\(586\) −3866.17 −0.272543
\(587\) 2127.99 3685.79i 0.149628 0.259163i −0.781462 0.623953i \(-0.785526\pi\)
0.931090 + 0.364789i \(0.118859\pi\)
\(588\) 509.877 883.134i 0.0357602 0.0619385i
\(589\) −2580.92 4470.29i −0.180552 0.312725i
\(590\) 863.840 0.0602775
\(591\) −1548.06 2681.32i −0.107748 0.186624i
\(592\) −2818.86 4882.41i −0.195700 0.338963i
\(593\) 25016.9 1.73242 0.866208 0.499684i \(-0.166551\pi\)
0.866208 + 0.499684i \(0.166551\pi\)
\(594\) 4981.66 + 8628.48i 0.344108 + 0.596012i
\(595\) −1194.65 + 2069.19i −0.0823122 + 0.142569i
\(596\) 1416.13 2452.80i 0.0973268 0.168575i
\(597\) 870.410 0.0596709
\(598\) −5050.14 + 1196.03i −0.345344 + 0.0817879i
\(599\) 7004.91 0.477818 0.238909 0.971042i \(-0.423210\pi\)
0.238909 + 0.971042i \(0.423210\pi\)
\(600\) 3816.25 6609.94i 0.259663 0.449749i
\(601\) 8949.64 15501.2i 0.607427 1.05209i −0.384236 0.923235i \(-0.625535\pi\)
0.991663 0.128859i \(-0.0411316\pi\)
\(602\) −1714.52 2969.64i −0.116078 0.201052i
\(603\) −66.7194 −0.00450585
\(604\) 2160.50 + 3742.09i 0.145545 + 0.252092i
\(605\) 587.493 + 1017.57i 0.0394793 + 0.0683802i
\(606\) −9665.19 −0.647890
\(607\) −157.690 273.127i −0.0105444 0.0182634i 0.860705 0.509104i \(-0.170023\pi\)
−0.871249 + 0.490841i \(0.836690\pi\)
\(608\) −1162.96 + 2014.31i −0.0775729 + 0.134360i
\(609\) 2276.89 3943.68i 0.151501 0.262407i
\(610\) 25100.1 1.66602
\(611\) 3188.57 10644.2i 0.211122 0.704774i
\(612\) −5.39974 −0.000356653
\(613\) −14024.3 + 24290.8i −0.924041 + 1.60049i −0.130944 + 0.991390i \(0.541801\pi\)
−0.793097 + 0.609096i \(0.791533\pi\)
\(614\) −4886.39 + 8463.48i −0.321171 + 0.556284i
\(615\) −10987.7 19031.2i −0.720432 1.24782i
\(616\) 1991.03 0.130228
\(617\) −13478.1 23344.8i −0.879432 1.52322i −0.851966 0.523598i \(-0.824590\pi\)
−0.0274660 0.999623i \(-0.508744\pi\)
\(618\) −2011.74 3484.43i −0.130945 0.226803i
\(619\) 9116.91 0.591986 0.295993 0.955190i \(-0.404349\pi\)
0.295993 + 0.955190i \(0.404349\pi\)
\(620\) −2494.18 4320.05i −0.161563 0.279835i
\(621\) 3878.50 6717.75i 0.250626 0.434097i
\(622\) 8145.44 14108.3i 0.525084 0.909472i
\(623\) −7400.29 −0.475901
\(624\) −3796.86 + 899.212i −0.243583 + 0.0576879i
\(625\) −4920.80 −0.314931
\(626\) −10759.6 + 18636.2i −0.686967 + 1.18986i
\(627\) −6722.70 + 11644.1i −0.428196 + 0.741657i
\(628\) 2506.04 + 4340.59i 0.159239 + 0.275809i
\(629\) −6848.84 −0.434151
\(630\) 8.53723 + 14.7869i 0.000539891 + 0.000935119i
\(631\) −9251.39 16023.9i −0.583664 1.01094i −0.995041 0.0994700i \(-0.968285\pi\)
0.411377 0.911465i \(-0.365048\pi\)
\(632\) −9165.95 −0.576902
\(633\) −5727.65 9920.57i −0.359642 0.622919i
\(634\) −5799.15 + 10044.4i −0.363271 + 0.629203i
\(635\) −8398.96 + 14547.4i −0.524886 + 0.909129i
\(636\) 3178.77 0.198186
\(637\) −1575.84 1670.85i −0.0980174 0.103927i
\(638\) 8891.04 0.551724
\(639\) 15.9174 27.5697i 0.000985418 0.00170679i
\(640\) −1123.88 + 1946.61i −0.0694143 + 0.120229i
\(641\) −6041.50 10464.2i −0.372269 0.644790i 0.617645 0.786457i \(-0.288087\pi\)
−0.989914 + 0.141668i \(0.954754\pi\)
\(642\) −10583.5 −0.650617
\(643\) 4782.65 + 8283.79i 0.293327 + 0.508057i 0.974594 0.223977i \(-0.0719042\pi\)
−0.681267 + 0.732035i \(0.738571\pi\)
\(644\) −775.062 1342.45i −0.0474250 0.0821426i
\(645\) 22378.1 1.36610
\(646\) 1412.79 + 2447.03i 0.0860457 + 0.149036i
\(647\) 16082.0 27854.8i 0.977199 1.69256i 0.304720 0.952442i \(-0.401437\pi\)
0.672479 0.740116i \(-0.265230\pi\)
\(648\) 2923.48 5063.62i 0.177230 0.306972i
\(649\) −874.487 −0.0528916
\(650\) −11794.6 12505.7i −0.711727 0.754635i
\(651\) 2586.41 0.155713
\(652\) −6883.56 + 11922.7i −0.413468 + 0.716148i
\(653\) −2251.94 + 3900.47i −0.134954 + 0.233748i −0.925580 0.378552i \(-0.876422\pi\)
0.790626 + 0.612300i \(0.209755\pi\)
\(654\) −9829.29 17024.8i −0.587700 1.01793i
\(655\) 37213.2 2.21991
\(656\) 1924.19 + 3332.79i 0.114523 + 0.198359i
\(657\) 3.50286 + 6.06713i 0.000208005 + 0.000360276i
\(658\) 3318.83 0.196629
\(659\) −7798.15 13506.8i −0.460960 0.798407i 0.538049 0.842914i \(-0.319162\pi\)
−0.999009 + 0.0445071i \(0.985828\pi\)
\(660\) −6496.77 + 11252.7i −0.383161 + 0.663654i
\(661\) −6213.94 + 10762.9i −0.365649 + 0.633323i −0.988880 0.148715i \(-0.952486\pi\)
0.623231 + 0.782038i \(0.285820\pi\)
\(662\) 12998.4 0.763137
\(663\) −1360.22 + 4540.74i −0.0796783 + 0.265985i
\(664\) −6892.59 −0.402838
\(665\) 4467.37 7737.71i 0.260507 0.451211i
\(666\) −24.4717 + 42.3862i −0.00142381 + 0.00246612i
\(667\) −3461.08 5994.77i −0.200920 0.348004i
\(668\) 9395.07 0.544171
\(669\) −15387.2 26651.4i −0.889241 1.54021i
\(670\) 16869.8 + 29219.4i 0.972744 + 1.68484i
\(671\) −25409.4 −1.46188
\(672\) −582.717 1009.30i −0.0334506 0.0579381i
\(673\) −6562.47 + 11366.5i −0.375876 + 0.651036i −0.990458 0.137817i \(-0.955991\pi\)
0.614582 + 0.788853i \(0.289325\pi\)
\(674\) 3846.02 6661.51i 0.219797 0.380700i
\(675\) 25693.4 1.46510
\(676\) −513.868 + 8772.96i −0.0292369 + 0.499144i
\(677\) 15546.9 0.882595 0.441297 0.897361i \(-0.354518\pi\)
0.441297 + 0.897361i \(0.354518\pi\)
\(678\) 299.886 519.418i 0.0169868 0.0294220i
\(679\) −3162.52 + 5477.65i −0.178743 + 0.309592i
\(680\) 1365.31 + 2364.79i 0.0769960 + 0.133361i
\(681\) 28985.2 1.63101
\(682\) 2524.93 + 4373.30i 0.141766 + 0.245546i
\(683\) 12275.0 + 21261.0i 0.687688 + 1.19111i 0.972584 + 0.232552i \(0.0747077\pi\)
−0.284896 + 0.958558i \(0.591959\pi\)
\(684\) 20.1923 0.00112876
\(685\) 21579.6 + 37377.0i 1.20367 + 2.08482i
\(686\) 343.000 594.093i 0.0190901 0.0330650i
\(687\) −7875.11 + 13640.1i −0.437343 + 0.757499i
\(688\) −3918.91 −0.217161
\(689\) 2054.46 6858.25i 0.113597 0.379214i
\(690\) 10116.2 0.558140
\(691\) 5163.62 8943.65i 0.284274 0.492377i −0.688159 0.725560i \(-0.741581\pi\)
0.972433 + 0.233183i \(0.0749142\pi\)
\(692\) −8699.25 + 15067.5i −0.477884 + 0.827719i
\(693\) −8.64246 14.9692i −0.000473737 0.000820537i
\(694\) 12895.3 0.705330
\(695\) 19402.1 + 33605.5i 1.05894 + 1.83414i
\(696\) −2602.16 4507.07i −0.141716 0.245460i
\(697\) 4675.09 0.254063
\(698\) 2636.70 + 4566.90i 0.142981 + 0.247650i
\(699\) −9791.22 + 16958.9i −0.529811 + 0.917659i
\(700\) 2567.23 4446.58i 0.138617 0.240093i
\(701\) 19970.4 1.07599 0.537996 0.842947i \(-0.319181\pi\)
0.537996 + 0.842947i \(0.319181\pi\)
\(702\) −9012.21 9555.54i −0.484535 0.513747i
\(703\) 25611.2 1.37403
\(704\) 1137.73 1970.60i 0.0609088 0.105497i
\(705\) −10829.4 + 18757.1i −0.578525 + 1.00203i
\(706\) −4096.10 7094.65i −0.218355 0.378202i
\(707\) −6501.87 −0.345867
\(708\) 255.938 + 443.297i 0.0135858 + 0.0235313i
\(709\) −7037.69 12189.6i −0.372787 0.645686i 0.617206 0.786802i \(-0.288264\pi\)
−0.989993 + 0.141115i \(0.954931\pi\)
\(710\) −16098.7 −0.850947
\(711\) 39.7867 + 68.9126i 0.00209862 + 0.00363491i
\(712\) −4228.74 + 7324.39i −0.222582 + 0.385524i
\(713\) 1965.79 3404.86i 0.103253 0.178840i
\(714\) −1415.80 −0.0742084
\(715\) 20079.1 + 21289.6i 1.05023 + 1.11355i
\(716\) −13947.3 −0.727981
\(717\) 2176.78 3770.29i 0.113380 0.196379i
\(718\) 4036.48 6991.38i 0.209805 0.363393i
\(719\) −13300.2 23036.6i −0.689867 1.19488i −0.971881 0.235474i \(-0.924336\pi\)
0.282014 0.959410i \(-0.408997\pi\)
\(720\) 19.5137 0.00101004
\(721\) −1353.32 2344.01i −0.0699032 0.121076i
\(722\) 1575.88 + 2729.50i 0.0812302 + 0.140695i
\(723\) 25880.7 1.33128
\(724\) −477.935 827.808i −0.0245336 0.0424934i
\(725\) 11464.1 19856.4i 0.587265 1.01717i
\(726\) −348.124 + 602.969i −0.0177963 + 0.0308241i
\(727\) 25153.0 1.28318 0.641591 0.767047i \(-0.278275\pi\)
0.641591 + 0.767047i \(0.278275\pi\)
\(728\) −2554.19 + 604.909i −0.130034 + 0.0307959i
\(729\) 19632.1 0.997415
\(730\) 1771.38 3068.11i 0.0898104 0.155556i
\(731\) −2380.39 + 4122.95i −0.120440 + 0.208609i
\(732\) 7436.63 + 12880.6i 0.375500 + 0.650384i
\(733\) 18255.3 0.919886 0.459943 0.887948i \(-0.347870\pi\)
0.459943 + 0.887948i \(0.347870\pi\)
\(734\) 13364.6 + 23148.2i 0.672067 + 1.16405i
\(735\) 2238.43 + 3877.08i 0.112335 + 0.194569i
\(736\) −1771.57 −0.0887241
\(737\) −17077.8 29579.6i −0.853551 1.47839i
\(738\) 16.7047 28.9333i 0.000833207 0.00144316i
\(739\) −10927.5 + 18927.0i −0.543943 + 0.942138i 0.454729 + 0.890630i \(0.349736\pi\)
−0.998673 + 0.0515079i \(0.983597\pi\)
\(740\) 24750.4 1.22952
\(741\) 5086.55 16980.1i 0.252171 0.841806i
\(742\) 2138.39 0.105799
\(743\) −6108.29 + 10579.9i −0.301604 + 0.522393i −0.976499 0.215520i \(-0.930855\pi\)
0.674896 + 0.737913i \(0.264189\pi\)
\(744\) 1477.95 2559.88i 0.0728283 0.126142i
\(745\) 6216.99 + 10768.1i 0.305736 + 0.529550i
\(746\) −13747.7 −0.674716
\(747\) 29.9187 + 51.8207i 0.00146542 + 0.00253818i
\(748\) −1382.14 2393.93i −0.0675615 0.117020i
\(749\) −7119.61 −0.347323
\(750\) 5333.30 + 9237.54i 0.259659 + 0.449743i
\(751\) 8766.53 15184.1i 0.425959 0.737783i −0.570550 0.821263i \(-0.693270\pi\)
0.996509 + 0.0834798i \(0.0266034\pi\)
\(752\) 1896.48 3284.79i 0.0919646 0.159287i
\(753\) −11135.8 −0.538924
\(754\) −11405.9 + 2701.26i −0.550898 + 0.130469i
\(755\) −18969.8 −0.914412
\(756\) 1961.61 3397.61i 0.0943692 0.163452i
\(757\) 16608.2 28766.2i 0.797403 1.38114i −0.123899 0.992295i \(-0.539540\pi\)
0.921302 0.388848i \(-0.127127\pi\)
\(758\) −9844.51 17051.2i −0.471726 0.817054i
\(759\) −10240.9 −0.489750
\(760\) −5105.57 8843.10i −0.243682 0.422070i
\(761\) 6299.21 + 10910.6i 0.300061 + 0.519720i 0.976149 0.217100i \(-0.0696597\pi\)
−0.676089 + 0.736820i \(0.736326\pi\)
\(762\) −9953.75 −0.473210
\(763\) −6612.27 11452.8i −0.313736 0.543406i
\(764\) 5910.53 10237.3i 0.279889 0.484783i
\(765\) 11.8528 20.5297i 0.000560183 0.000970265i
\(766\) −18329.7 −0.864596
\(767\) 1121.84 265.685i 0.0528125 0.0125076i
\(768\) −1331.92 −0.0625803
\(769\) −4325.52 + 7492.01i −0.202838 + 0.351325i −0.949442 0.313944i \(-0.898350\pi\)
0.746604 + 0.665269i \(0.231683\pi\)
\(770\) −4370.44 + 7569.83i −0.204545 + 0.354283i
\(771\) −13184.5 22836.3i −0.615862 1.06670i
\(772\) 10886.8 0.507543
\(773\) 8483.89 + 14694.5i 0.394753 + 0.683732i 0.993070 0.117527i \(-0.0374968\pi\)
−0.598317 + 0.801260i \(0.704163\pi\)
\(774\) 17.0108 + 29.4636i 0.000789976 + 0.00136828i
\(775\) 13022.6 0.603593
\(776\) 3614.31 + 6260.17i 0.167199 + 0.289597i
\(777\) −6416.40 + 11113.5i −0.296251 + 0.513122i
\(778\) −5545.20 + 9604.57i −0.255533 + 0.442597i
\(779\) −17482.5 −0.804074
\(780\) 4915.60 16409.4i 0.225650 0.753270i
\(781\) 16297.1 0.746679
\(782\) −1076.07 + 1863.81i −0.0492075 + 0.0852299i
\(783\) 8759.69 15172.2i 0.399803 0.692479i
\(784\) −392.000 678.964i −0.0178571 0.0309295i
\(785\) −22003.7 −1.00044
\(786\) 11025.5 + 19096.7i 0.500339 + 0.866613i
\(787\) −14077.7 24383.4i −0.637633 1.10441i −0.985951 0.167036i \(-0.946580\pi\)
0.348318 0.937377i \(-0.386753\pi\)
\(788\) −2380.34 −0.107609
\(789\) 8582.31 + 14865.0i 0.387248 + 0.670733i
\(790\) 20119.9 34848.7i 0.906119 1.56944i
\(791\) 201.736 349.418i 0.00906817 0.0157065i
\(792\) −19.7542 −0.000886281
\(793\) 32596.5 7719.84i 1.45969 0.345699i
\(794\) −24366.1 −1.08907
\(795\) −6977.62 + 12085.6i −0.311284 + 0.539159i
\(796\) 334.591 579.528i 0.0148986 0.0258051i
\(797\) 7813.98 + 13534.2i 0.347284 + 0.601514i 0.985766 0.168123i \(-0.0537707\pi\)
−0.638482 + 0.769637i \(0.720437\pi\)
\(798\) 5294.35 0.234860
\(799\) −2303.88 3990.44i −0.102009 0.176685i
\(800\) −2933.98 5081.80i −0.129665 0.224586i
\(801\) 73.4228 0.00323879
\(802\) −11242.3 19472.2i −0.494987 0.857343i
\(803\) −1793.21 + 3105.93i −0.0788057 + 0.136495i
\(804\) −9996.36 + 17314.2i −0.438488 + 0.759483i
\(805\) 6805.27 0.297956
\(806\) −4567.79 4843.17i −0.199620 0.211654i
\(807\) −24723.4 −1.07845
\(808\) −3715.36 + 6435.19i −0.161765 + 0.280184i
\(809\) −3114.28 + 5394.08i −0.135343 + 0.234420i −0.925728 0.378189i \(-0.876547\pi\)
0.790386 + 0.612610i \(0.209880\pi\)
\(810\) 12834.5 + 22230.0i 0.556739 + 0.964300i
\(811\) −20273.2 −0.877790 −0.438895 0.898538i \(-0.644630\pi\)
−0.438895 + 0.898538i \(0.644630\pi\)
\(812\) −1750.50 3031.95i −0.0756533 0.131035i
\(813\) −3573.40 6189.31i −0.154151 0.266997i
\(814\) −25055.5 −1.07886
\(815\) −30219.8 52342.3i −1.29884 2.24966i
\(816\) −809.026 + 1401.27i −0.0347078 + 0.0601157i
\(817\) 8901.44 15417.7i 0.381177 0.660219i
\(818\) 24248.8 1.03648
\(819\) 15.6349 + 16.5775i 0.000667066 + 0.000707282i
\(820\) −16894.9 −0.719507
\(821\) 10770.2 18654.4i 0.457833 0.792990i −0.541013 0.841014i \(-0.681959\pi\)
0.998846 + 0.0480241i \(0.0152924\pi\)
\(822\) −12787.2 + 22148.0i −0.542583 + 0.939782i
\(823\) −2892.48 5009.92i −0.122510 0.212193i 0.798247 0.602330i \(-0.205761\pi\)
−0.920757 + 0.390137i \(0.872428\pi\)
\(824\) −3093.30 −0.130777
\(825\) −16960.4 29376.2i −0.715739 1.23970i
\(826\) 172.172 + 298.211i 0.00725258 + 0.0125618i
\(827\) −5065.76 −0.213003 −0.106502 0.994313i \(-0.533965\pi\)
−0.106502 + 0.994313i \(0.533965\pi\)
\(828\) 7.68987 + 13.3192i 0.000322755 + 0.000559029i
\(829\) −13055.6 + 22612.9i −0.546971 + 0.947381i 0.451509 + 0.892266i \(0.350886\pi\)
−0.998480 + 0.0551147i \(0.982448\pi\)
\(830\) 15129.7 26205.4i 0.632723 1.09591i
\(831\) −18624.0 −0.777450
\(832\) −860.831 + 2873.65i −0.0358701 + 0.119743i
\(833\) −952.421 −0.0396151
\(834\) −11496.9 + 19913.2i −0.477344 + 0.826784i
\(835\) −20622.8 + 35719.8i −0.854710 + 1.48040i
\(836\) 5168.50 + 8952.10i 0.213823 + 0.370353i
\(837\) 9950.49 0.410919
\(838\) 7332.86 + 12700.9i 0.302279 + 0.523562i
\(839\) −18418.1 31901.1i −0.757882 1.31269i −0.943929 0.330149i \(-0.892901\pi\)
0.186047 0.982541i \(-0.440432\pi\)
\(840\) 5116.42 0.210159
\(841\) 4377.55 + 7582.14i 0.179489 + 0.310883i
\(842\) −8750.98 + 15157.1i −0.358169 + 0.620368i
\(843\) −19709.3 + 34137.6i −0.805250 + 1.39473i
\(844\) −8806.97 −0.359181
\(845\) −32226.6 21211.0i −1.31199 0.863527i
\(846\) −32.9282 −0.00133817
\(847\) −234.187 + 405.623i −0.00950030 + 0.0164550i
\(848\) 1221.94 2116.46i 0.0494829 0.0857069i
\(849\) −16281.2 28199.9i −0.658152 1.13995i
\(850\) −7128.53 −0.287655
\(851\) 9753.55 + 16893.6i 0.392887 + 0.680501i
\(852\) −4769.70 8261.36i −0.191793 0.332194i
\(853\) 37518.2 1.50598 0.752989 0.658033i \(-0.228611\pi\)
0.752989 + 0.658033i \(0.228611\pi\)
\(854\) 5002.70 + 8664.93i 0.200455 + 0.347199i
\(855\) −44.3235 + 76.7706i −0.00177290 + 0.00307076i
\(856\) −4068.35 + 7046.58i −0.162445 + 0.281364i
\(857\) 28899.8 1.15192 0.575962 0.817477i \(-0.304628\pi\)
0.575962 + 0.817477i \(0.304628\pi\)
\(858\) −4976.19 + 16611.7i −0.198000 + 0.660970i
\(859\) −23027.2 −0.914643 −0.457322 0.889301i \(-0.651191\pi\)
−0.457322 + 0.889301i \(0.651191\pi\)
\(860\) 8602.28 14899.6i 0.341088 0.590781i
\(861\) 4379.91 7586.22i 0.173365 0.300276i
\(862\) 2444.15 + 4233.39i 0.0965755 + 0.167274i
\(863\) −13042.4 −0.514450 −0.257225 0.966352i \(-0.582808\pi\)
−0.257225 + 0.966352i \(0.582808\pi\)
\(864\) −2241.84 3882.98i −0.0882743 0.152896i
\(865\) −38190.9 66148.6i −1.50119 2.60014i
\(866\) −20036.1 −0.786206
\(867\) −11797.9 20434.6i −0.462144 0.800457i
\(868\) 994.232 1722.06i 0.0388784 0.0673393i
\(869\) −20367.9 + 35278.2i −0.795091 + 1.37714i
\(870\) 22847.7 0.890355
\(871\) 30895.0 + 32757.6i 1.20188 + 1.27434i
\(872\) −15113.8 −0.586945
\(873\) 31.3773 54.3471i 0.00121645 0.00210695i
\(874\) 4023.96 6969.70i 0.155735 0.269741i
\(875\) 3587.77 + 6214.19i 0.138616 + 0.240089i
\(876\) 2099.29 0.0809684
\(877\) 3430.15 + 5941.20i 0.132073 + 0.228757i 0.924476 0.381241i \(-0.124503\pi\)
−0.792403 + 0.609999i \(0.791170\pi\)
\(878\) 1642.32 + 2844.57i 0.0631270 + 0.109339i
\(879\) 10057.5 0.385929
\(880\) 4994.79 + 8651.24i 0.191335 + 0.331401i
\(881\) 2893.62 5011.90i 0.110657 0.191663i −0.805379 0.592761i \(-0.798038\pi\)
0.916035 + 0.401098i \(0.131371\pi\)
\(882\) −3.40311 + 5.89437i −0.000129919 + 0.000225027i
\(883\) 35206.6 1.34178 0.670892 0.741555i \(-0.265911\pi\)
0.670892 + 0.741555i \(0.265911\pi\)
\(884\) 2500.40 + 2651.14i 0.0951329 + 0.100868i
\(885\) −2247.21 −0.0853548
\(886\) 2864.36 4961.22i 0.108612 0.188121i
\(887\) −1626.01 + 2816.33i −0.0615513 + 0.106610i −0.895159 0.445747i \(-0.852938\pi\)
0.833608 + 0.552357i \(0.186271\pi\)
\(888\) 7333.03 + 12701.2i 0.277118 + 0.479982i
\(889\) −6695.99 −0.252617
\(890\) −18564.8 32155.1i −0.699205 1.21106i
\(891\) −12992.7 22504.0i −0.488520 0.846142i
\(892\) −23659.7 −0.888099
\(893\) 8615.34 + 14922.2i 0.322846 + 0.559186i
\(894\) −3683.93 + 6380.75i −0.137818 + 0.238707i
\(895\) 30615.3 53027.3i 1.14342 1.98045i
\(896\) −896.000 −0.0334077
\(897\) 13137.5 3111.36i 0.489018 0.115814i
\(898\) 28461.3 1.05765
\(899\) 4439.80 7689.96i 0.164711 0.285289i
\(900\) −25.4711 + 44.1172i −0.000943373 + 0.00163397i
\(901\) −1484.44 2571.12i −0.0548876 0.0950681i
\(902\) 17103.1 0.631344
\(903\) 4460.18 + 7725.27i 0.164369 + 0.284696i
\(904\) −230.556 399.335i −0.00848250 0.0146921i
\(905\) 4196.41 0.154136
\(906\) −5620.35 9734.74i −0.206097 0.356970i
\(907\) −25691.5 + 44498.9i −0.940541 + 1.62907i −0.176100 + 0.984372i \(0.556348\pi\)
−0.764441 + 0.644693i \(0.776985\pi\)
\(908\) 11142.1 19298.7i 0.407228 0.705340i
\(909\) 64.5091 0.00235383
\(910\) 3306.78 11038.8i 0.120460 0.402123i
\(911\) 2406.21 0.0875096 0.0437548 0.999042i \(-0.486068\pi\)
0.0437548 + 0.999042i \(0.486068\pi\)
\(912\) 3025.35 5240.05i 0.109846 0.190258i
\(913\) −15316.2 + 26528.4i −0.555194 + 0.961625i
\(914\) 17058.6 + 29546.4i 0.617341 + 1.06927i
\(915\) −65295.7 −2.35914
\(916\) 6054.48 + 10486.7i 0.218391 + 0.378264i
\(917\) 7416.97 + 12846.6i 0.267099 + 0.462629i
\(918\) −5446.88 −0.195832
\(919\) 1584.47 + 2744.38i 0.0568736 + 0.0985080i 0.893060 0.449937i \(-0.148553\pi\)
−0.836187 + 0.548445i \(0.815220\pi\)
\(920\) 3888.72 6735.47i 0.139356 0.241372i
\(921\) 12711.5 22017.0i 0.454788 0.787716i
\(922\) −22248.1 −0.794688
\(923\) −20906.7 + 4951.35i −0.745562 + 0.176572i
\(924\) −5179.49 −0.184408
\(925\) −32306.6 + 55956.6i −1.14836 + 1.98902i
\(926\) 4793.11 8301.92i 0.170099 0.294620i
\(927\) 13.4271 + 23.2564i 0.000475732 + 0.000823992i
\(928\) −4001.14 −0.141534
\(929\) 13990.4 + 24232.1i 0.494090 + 0.855789i 0.999977 0.00681092i \(-0.00216800\pi\)
−0.505887 + 0.862600i \(0.668835\pi\)
\(930\) 6488.41 + 11238.2i 0.228778 + 0.396255i
\(931\) 3561.57 0.125377
\(932\) 7527.61 + 13038.2i 0.264565 + 0.458241i
\(933\) −21189.7 + 36701.6i −0.743536 + 1.28784i
\(934\) −1176.28 + 2037.38i −0.0412090 + 0.0713760i
\(935\) 12135.6 0.424466
\(936\) 25.3417 6.00168i 0.000884955 0.000209584i
\(937\) 39522.4 1.37795 0.688975 0.724785i \(-0.258061\pi\)
0.688975 + 0.724785i \(0.258061\pi\)
\(938\) −6724.66 + 11647.4i −0.234081 + 0.405440i
\(939\) 27990.3 48480.6i 0.972767 1.68488i
\(940\) 8325.80 + 14420.7i 0.288891 + 0.500374i
\(941\) 4246.22 0.147102 0.0735509 0.997291i \(-0.476567\pi\)
0.0735509 + 0.997291i \(0.476567\pi\)
\(942\) −6519.25 11291.7i −0.225487 0.390555i
\(943\) −6657.88 11531.8i −0.229915 0.398225i
\(944\) 393.536 0.0135683
\(945\) 8611.75 + 14916.0i 0.296445 + 0.513458i
\(946\) −8708.31 + 15083.2i −0.299293 + 0.518391i
\(947\) 12031.8 20839.6i 0.412861 0.715097i −0.582340 0.812945i \(-0.697863\pi\)
0.995201 + 0.0978487i \(0.0311961\pi\)
\(948\) 23844.4 0.816911
\(949\) 1356.78 4529.25i 0.0464099 0.154927i
\(950\) 26657.1 0.910389
\(951\) 15086.0 26129.7i 0.514403 0.890972i
\(952\) −544.240 + 942.652i −0.0185283 + 0.0320919i
\(953\) 23910.9 + 41414.9i 0.812750 + 1.40772i 0.910932 + 0.412556i \(0.135364\pi\)
−0.0981826 + 0.995168i \(0.531303\pi\)
\(954\) −21.2163 −0.000720023
\(955\) 25948.1 + 44943.4i 0.879225 + 1.52286i
\(956\) −1673.53 2898.64i −0.0566171 0.0980636i
\(957\) −23129.3 −0.781258
\(958\) −6794.88 11769.1i −0.229157 0.396912i
\(959\) −8602.06 + 14899.2i −0.289651 + 0.501690i
\(960\) 2923.67 5063.95i 0.0982928 0.170248i
\(961\) −24747.6 −0.830709
\(962\) 32142.4 7612.30i 1.07725 0.255125i
\(963\) 70.6380 0.00236374
\(964\) 9948.69 17231.6i 0.332392 0.575719i
\(965\) −23897.2 + 41391.2i −0.797180 + 1.38076i
\(966\) 2016.26 + 3492.26i 0.0671553 + 0.116316i
\(967\) −45369.7 −1.50878 −0.754391 0.656425i \(-0.772068\pi\)
−0.754391 + 0.656425i \(0.772068\pi\)
\(968\) 267.642 + 463.570i 0.00888672 + 0.0153922i
\(969\) −3675.26 6365.73i −0.121843 0.211039i
\(970\) −31734.7 −1.05045
\(971\) 6271.11 + 10861.9i 0.207260 + 0.358985i 0.950850 0.309650i \(-0.100212\pi\)
−0.743590 + 0.668635i \(0.766879\pi\)
\(972\) −38.9749 + 67.5065i −0.00128613 + 0.00222765i
\(973\) −7734.08 + 13395.8i −0.254823 + 0.441367i
\(974\) −30150.0 −0.991855
\(975\) 30682.7 + 32532.5i 1.00783 + 1.06859i
\(976\) 11434.7 0.375018
\(977\) −9256.37 + 16032.5i −0.303109 + 0.525000i −0.976839 0.213978i \(-0.931358\pi\)
0.673729 + 0.738978i \(0.264691\pi\)
\(978\) 17907.0 31015.8i 0.585484 1.01409i
\(979\) 18793.6 + 32551.5i 0.613530 + 1.06267i
\(980\) 3441.87 0.112190
\(981\) 65.6044 + 113.630i 0.00213515 + 0.00369820i
\(982\) 700.777 + 1213.78i 0.0227726 + 0.0394433i
\(983\) −28145.6 −0.913231 −0.456615 0.889664i \(-0.650938\pi\)
−0.456615 + 0.889664i \(0.650938\pi\)
\(984\) −5005.61 8669.97i −0.162168 0.280883i
\(985\) 5225.02 9049.99i 0.169018 0.292748i
\(986\) −2430.34 + 4209.47i −0.0784966 + 0.135960i
\(987\) −8633.66 −0.278432
\(988\) −9350.21 9913.92i −0.301083 0.319235i
\(989\) 13559.8 0.435972
\(990\) 43.3619 75.1049i 0.00139205 0.00241110i
\(991\) 12217.3 21161.1i 0.391621 0.678308i −0.601042 0.799217i \(-0.705248\pi\)
0.992664 + 0.120909i \(0.0385810\pi\)
\(992\) −1136.27 1968.07i −0.0363674 0.0629902i
\(993\) −33814.2 −1.08063
\(994\) −3208.63 5557.51i −0.102386 0.177337i
\(995\) 1468.90 + 2544.21i 0.0468013 + 0.0810623i
\(996\) 17930.5 0.570431
\(997\) −3310.07 5733.21i −0.105146 0.182119i 0.808652 0.588288i \(-0.200198\pi\)
−0.913798 + 0.406169i \(0.866864\pi\)
\(998\) 1528.64 2647.68i 0.0484851 0.0839787i
\(999\) −24685.3 + 42756.2i −0.781791 + 1.35410i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 182.4.g.a.113.3 yes 8
13.3 even 3 inner 182.4.g.a.29.3 8
13.4 even 6 2366.4.a.q.1.2 4
13.9 even 3 2366.4.a.r.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.4.g.a.29.3 8 13.3 even 3 inner
182.4.g.a.113.3 yes 8 1.1 even 1 trivial
2366.4.a.q.1.2 4 13.4 even 6
2366.4.a.r.1.2 4 13.9 even 3