Properties

Label 2366.4.a.bf
Level $2366$
Weight $4$
Character orbit 2366.a
Self dual yes
Analytic conductor $139.599$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,4,Mod(1,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2366.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,24,-10,48,-22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(139.598519074\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} - 162 x^{10} + 827 x^{9} + 8829 x^{8} - 37248 x^{7} - 176166 x^{6} + 653969 x^{5} + \cdots - 7489 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 13^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + ( - \beta_{2} - 1) q^{3} + 4 q^{4} + (\beta_1 - 2) q^{5} + ( - 2 \beta_{2} - 2) q^{6} + 7 q^{7} + 8 q^{8} + (\beta_{9} + \beta_{8} + \beta_{7} + \cdots + 5) q^{9} + (2 \beta_1 - 4) q^{10}+ \cdots + ( - 22 \beta_{11} - 25 \beta_{10} + \cdots - 255) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 24 q^{2} - 10 q^{3} + 48 q^{4} - 22 q^{5} - 20 q^{6} + 84 q^{7} + 96 q^{8} + 60 q^{9} - 44 q^{10} - 98 q^{11} - 40 q^{12} + 168 q^{14} - 92 q^{15} + 192 q^{16} - 5 q^{17} + 120 q^{18} - 152 q^{19}+ \cdots - 3003 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 6 x^{11} - 162 x^{10} + 827 x^{9} + 8829 x^{8} - 37248 x^{7} - 176166 x^{6} + 653969 x^{5} + \cdots - 7489 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 36\!\cdots\!75 \nu^{11} + \cdots + 21\!\cdots\!47 ) / 27\!\cdots\!86 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 91\!\cdots\!12 \nu^{11} + \cdots + 35\!\cdots\!21 ) / 93\!\cdots\!62 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 14\!\cdots\!78 \nu^{11} + \cdots - 37\!\cdots\!75 ) / 93\!\cdots\!62 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 64\!\cdots\!84 \nu^{11} + \cdots + 67\!\cdots\!35 ) / 27\!\cdots\!86 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 25\!\cdots\!73 \nu^{11} + \cdots + 16\!\cdots\!81 ) / 93\!\cdots\!62 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 58\!\cdots\!41 \nu^{11} + \cdots + 40\!\cdots\!28 ) / 13\!\cdots\!43 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 40\!\cdots\!96 \nu^{11} + \cdots + 16\!\cdots\!91 ) / 93\!\cdots\!62 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 13\!\cdots\!41 \nu^{11} + \cdots + 23\!\cdots\!52 ) / 27\!\cdots\!86 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 64\!\cdots\!82 \nu^{11} + \cdots - 21\!\cdots\!97 ) / 93\!\cdots\!62 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 28\!\cdots\!27 \nu^{11} + \cdots + 12\!\cdots\!87 ) / 39\!\cdots\!98 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 58\!\cdots\!43 \nu^{11} + \cdots + 77\!\cdots\!70 ) / 39\!\cdots\!98 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{9} + \beta_{7} - \beta_{3} - 13\beta_{2} + 5 ) / 13 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 7\beta_{9} + 13\beta_{8} + 14\beta_{7} - 13\beta_{6} - 5\beta_{5} - 13\beta_{4} + 7\beta_{3} - 26\beta_{2} + 375 ) / 13 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 13 \beta_{11} - 13 \beta_{10} + 11 \beta_{9} + 39 \beta_{8} + 214 \beta_{7} - 39 \beta_{6} + \cdots + 683 ) / 13 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 52 \beta_{11} + 182 \beta_{10} + 815 \beta_{9} + 897 \beta_{8} + 1292 \beta_{7} - 884 \beta_{6} + \cdots + 22714 ) / 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 1040 \beta_{11} - 949 \beta_{10} + 3800 \beta_{9} + 3822 \beta_{8} + 19849 \beta_{7} - 4628 \beta_{6} + \cdots + 78583 ) / 13 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 8970 \beta_{11} + 20449 \beta_{10} + 74143 \beta_{9} + 65754 \beta_{8} + 105022 \beta_{7} + \cdots + 1610697 ) / 13 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 73541 \beta_{11} - 37232 \beta_{10} + 430799 \beta_{9} + 343746 \beta_{8} + 1622004 \beta_{7} + \cdots + 7699398 ) / 13 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 890448 \beta_{11} + 1877720 \beta_{10} + 6378629 \beta_{9} + 5075733 \beta_{8} + 8504217 \beta_{7} + \cdots + 122171152 ) / 13 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 4642417 \beta_{11} + 838370 \beta_{10} + 42073011 \beta_{9} + 30351737 \beta_{8} + 127442447 \beta_{7} + \cdots + 704780794 ) / 13 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 76712844 \beta_{11} + 164868665 \beta_{10} + 543256891 \beta_{9} + 403112684 \beta_{8} + \cdots + 9589498965 ) / 13 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 250840486 \beta_{11} + 387470538 \beta_{10} + 3911626134 \beta_{9} + 2650689509 \beta_{8} + \cdots + 62391945745 ) / 13 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.46751
−6.70108
−8.16486
−3.14934
−0.0235045
0.325383
0.361462
3.46969
1.89367
5.33182
8.85766
9.26662
2.00000 −8.26945 4.00000 −7.23331 −16.5389 7.00000 8.00000 41.3838 −14.4666
1.2 2.00000 −8.14613 4.00000 21.2016 −16.2923 7.00000 8.00000 39.3594 42.4033
1.3 2.00000 −7.91788 4.00000 2.25379 −15.8358 7.00000 8.00000 35.6928 4.50758
1.4 2.00000 −4.59438 4.00000 −18.7970 −9.18877 7.00000 8.00000 −5.89164 −37.5941
1.5 2.00000 −2.82544 4.00000 7.85430 −5.65088 7.00000 8.00000 −19.0169 15.7086
1.6 2.00000 −2.47655 4.00000 −14.9661 −4.95311 7.00000 8.00000 −20.8667 −29.9321
1.7 2.00000 0.608442 4.00000 −16.3018 1.21688 7.00000 8.00000 −26.6298 −32.6037
1.8 2.00000 2.02464 4.00000 −0.214291 4.04929 7.00000 8.00000 −22.9008 −0.428582
1.9 2.00000 2.14065 4.00000 9.18764 4.28131 7.00000 8.00000 −22.4176 18.3753
1.10 2.00000 3.88678 4.00000 4.25233 7.77356 7.00000 8.00000 −11.8929 8.50466
1.11 2.00000 6.05572 4.00000 0.131944 12.1114 7.00000 8.00000 9.67172 0.263889
1.12 2.00000 9.51360 4.00000 −9.36911 19.0272 7.00000 8.00000 63.5086 −18.7382
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.12
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2366.4.a.bf yes 12
13.b even 2 1 2366.4.a.bc 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2366.4.a.bc 12 13.b even 2 1
2366.4.a.bf yes 12 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2366))\):

\( T_{3}^{12} + 10 T_{3}^{11} - 142 T_{3}^{10} - 1561 T_{3}^{9} + 5332 T_{3}^{8} + 71630 T_{3}^{7} + \cdots + 10125416 \) Copy content Toggle raw display
\( T_{5}^{12} + 22 T_{5}^{11} - 559 T_{5}^{10} - 14298 T_{5}^{9} + 53450 T_{5}^{8} + 2223165 T_{5}^{7} + \cdots + 128850184 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{12} \) Copy content Toggle raw display
$3$ \( T^{12} + 10 T^{11} + \cdots + 10125416 \) Copy content Toggle raw display
$5$ \( T^{12} + \cdots + 128850184 \) Copy content Toggle raw display
$7$ \( (T - 7)^{12} \) Copy content Toggle raw display
$11$ \( T^{12} + \cdots - 14\!\cdots\!43 \) Copy content Toggle raw display
$13$ \( T^{12} \) Copy content Toggle raw display
$17$ \( T^{12} + \cdots + 24\!\cdots\!04 \) Copy content Toggle raw display
$19$ \( T^{12} + \cdots - 28\!\cdots\!88 \) Copy content Toggle raw display
$23$ \( T^{12} + \cdots - 16\!\cdots\!19 \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 15\!\cdots\!21 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 78\!\cdots\!64 \) Copy content Toggle raw display
$37$ \( T^{12} + \cdots - 94\!\cdots\!09 \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots - 56\!\cdots\!88 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 26\!\cdots\!61 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 65\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots - 29\!\cdots\!07 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 95\!\cdots\!16 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 32\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 26\!\cdots\!11 \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 85\!\cdots\!83 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 42\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 38\!\cdots\!03 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 34\!\cdots\!88 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 32\!\cdots\!92 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots - 42\!\cdots\!64 \) Copy content Toggle raw display
show more
show less