Properties

Label 2-2366-1.1-c3-0-149
Degree $2$
Conductor $2366$
Sign $-1$
Analytic cond. $139.598$
Root an. cond. $11.8151$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 2.47·3-s + 4·4-s − 14.9·5-s − 4.95·6-s + 7·7-s + 8·8-s − 20.8·9-s − 29.9·10-s + 15.6·11-s − 9.90·12-s + 14·14-s + 37.0·15-s + 16·16-s + 105.·17-s − 41.7·18-s − 145.·19-s − 59.8·20-s − 17.3·21-s + 31.3·22-s + 146.·23-s − 19.8·24-s + 98.9·25-s + 118.·27-s + 28·28-s − 278.·29-s + 74.1·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.476·3-s + 0.5·4-s − 1.33·5-s − 0.337·6-s + 0.377·7-s + 0.353·8-s − 0.772·9-s − 0.946·10-s + 0.430·11-s − 0.238·12-s + 0.267·14-s + 0.637·15-s + 0.250·16-s + 1.50·17-s − 0.546·18-s − 1.75·19-s − 0.669·20-s − 0.180·21-s + 0.304·22-s + 1.32·23-s − 0.168·24-s + 0.791·25-s + 0.844·27-s + 0.188·28-s − 1.78·29-s + 0.451·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2366\)    =    \(2 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(139.598\)
Root analytic conductor: \(11.8151\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2366,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
7 \( 1 - 7T \)
13 \( 1 \)
good3 \( 1 + 2.47T + 27T^{2} \)
5 \( 1 + 14.9T + 125T^{2} \)
11 \( 1 - 15.6T + 1.33e3T^{2} \)
17 \( 1 - 105.T + 4.91e3T^{2} \)
19 \( 1 + 145.T + 6.85e3T^{2} \)
23 \( 1 - 146.T + 1.21e4T^{2} \)
29 \( 1 + 278.T + 2.43e4T^{2} \)
31 \( 1 - 237.T + 2.97e4T^{2} \)
37 \( 1 + 229.T + 5.06e4T^{2} \)
41 \( 1 - 40.7T + 6.89e4T^{2} \)
43 \( 1 - 364.T + 7.95e4T^{2} \)
47 \( 1 + 191.T + 1.03e5T^{2} \)
53 \( 1 + 181.T + 1.48e5T^{2} \)
59 \( 1 - 654.T + 2.05e5T^{2} \)
61 \( 1 - 420.T + 2.26e5T^{2} \)
67 \( 1 - 663.T + 3.00e5T^{2} \)
71 \( 1 + 49.2T + 3.57e5T^{2} \)
73 \( 1 - 635.T + 3.89e5T^{2} \)
79 \( 1 + 1.15e3T + 4.93e5T^{2} \)
83 \( 1 + 1.40e3T + 5.71e5T^{2} \)
89 \( 1 - 49.0T + 7.04e5T^{2} \)
97 \( 1 + 1.78e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.215656096918459156249878560289, −7.37119444233865318894172420266, −6.66772554063026622994494245114, −5.73353221452164705798873707841, −5.07102239287988055251601830546, −4.14909401570216188273287583088, −3.55406023038711281996351644617, −2.55638362993802964983275883527, −1.12680430924178666094422842262, 0, 1.12680430924178666094422842262, 2.55638362993802964983275883527, 3.55406023038711281996351644617, 4.14909401570216188273287583088, 5.07102239287988055251601830546, 5.73353221452164705798873707841, 6.66772554063026622994494245114, 7.37119444233865318894172420266, 8.215656096918459156249878560289

Graph of the $Z$-function along the critical line