Properties

Label 2366.2.d.r.337.12
Level $2366$
Weight $2$
Character 2366.337
Analytic conductor $18.893$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,2,Mod(337,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,4,-12,0,0,0,0,12,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8926051182\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 39 x^{10} - 140 x^{9} + 460 x^{8} - 1066 x^{7} + 2127 x^{6} - 3172 x^{5} + \cdots + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.12
Root \(0.500000 + 2.47866i\) of defining polynomial
Character \(\chi\) \(=\) 2366.337
Dual form 2366.2.d.r.337.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +3.34469 q^{3} -1.00000 q^{4} +1.56356i q^{5} +3.34469i q^{6} -1.00000i q^{7} -1.00000i q^{8} +8.18694 q^{9} -1.56356 q^{10} +2.86614i q^{11} -3.34469 q^{12} +1.00000 q^{14} +5.22961i q^{15} +1.00000 q^{16} +2.22961 q^{17} +8.18694i q^{18} -7.23602i q^{19} -1.56356i q^{20} -3.34469i q^{21} -2.86614 q^{22} +1.66735 q^{23} -3.34469i q^{24} +2.55529 q^{25} +17.3487 q^{27} +1.00000i q^{28} +4.82757 q^{29} -5.22961 q^{30} -0.597963i q^{31} +1.00000i q^{32} +9.58634i q^{33} +2.22961i q^{34} +1.56356 q^{35} -8.18694 q^{36} -0.0385636i q^{37} +7.23602 q^{38} +1.56356 q^{40} +7.95469i q^{41} +3.34469 q^{42} -10.0914 q^{43} -2.86614i q^{44} +12.8007i q^{45} +1.66735i q^{46} +7.02636i q^{47} +3.34469 q^{48} -1.00000 q^{49} +2.55529i q^{50} +7.45736 q^{51} -5.98404 q^{53} +17.3487i q^{54} -4.48137 q^{55} -1.00000 q^{56} -24.2022i q^{57} +4.82757i q^{58} +0.896206i q^{59} -5.22961i q^{60} -14.2569 q^{61} +0.597963 q^{62} -8.18694i q^{63} -1.00000 q^{64} -9.58634 q^{66} +1.64086i q^{67} -2.22961 q^{68} +5.57677 q^{69} +1.56356i q^{70} -2.29466i q^{71} -8.18694i q^{72} +11.2277i q^{73} +0.0385636 q^{74} +8.54664 q^{75} +7.23602i q^{76} +2.86614 q^{77} +4.26098 q^{79} +1.56356i q^{80} +33.4651 q^{81} -7.95469 q^{82} -4.94829i q^{83} +3.34469i q^{84} +3.48613i q^{85} -10.0914i q^{86} +16.1467 q^{87} +2.86614 q^{88} -2.42120i q^{89} -12.8007 q^{90} -1.66735 q^{92} -2.00000i q^{93} -7.02636 q^{94} +11.3139 q^{95} +3.34469i q^{96} -4.88829i q^{97} -1.00000i q^{98} +23.4649i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} - 12 q^{4} + 12 q^{9} + 4 q^{10} - 4 q^{12} + 12 q^{14} + 12 q^{16} - 8 q^{17} + 4 q^{22} + 12 q^{23} - 24 q^{25} + 40 q^{27} + 20 q^{29} - 28 q^{30} - 4 q^{35} - 12 q^{36} + 8 q^{38} - 4 q^{40}+ \cdots - 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2366\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(2199\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 3.34469 1.93106 0.965528 0.260298i \(-0.0838210\pi\)
0.965528 + 0.260298i \(0.0838210\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.56356i 0.699244i 0.936891 + 0.349622i \(0.113690\pi\)
−0.936891 + 0.349622i \(0.886310\pi\)
\(6\) 3.34469i 1.36546i
\(7\) − 1.00000i − 0.377964i
\(8\) − 1.00000i − 0.353553i
\(9\) 8.18694 2.72898
\(10\) −1.56356 −0.494440
\(11\) 2.86614i 0.864173i 0.901832 + 0.432087i \(0.142223\pi\)
−0.901832 + 0.432087i \(0.857777\pi\)
\(12\) −3.34469 −0.965528
\(13\) 0 0
\(14\) 1.00000 0.267261
\(15\) 5.22961i 1.35028i
\(16\) 1.00000 0.250000
\(17\) 2.22961 0.540760 0.270380 0.962754i \(-0.412851\pi\)
0.270380 + 0.962754i \(0.412851\pi\)
\(18\) 8.18694i 1.92968i
\(19\) − 7.23602i − 1.66006i −0.557722 0.830028i \(-0.688324\pi\)
0.557722 0.830028i \(-0.311676\pi\)
\(20\) − 1.56356i − 0.349622i
\(21\) − 3.34469i − 0.729871i
\(22\) −2.86614 −0.611063
\(23\) 1.66735 0.347667 0.173833 0.984775i \(-0.444385\pi\)
0.173833 + 0.984775i \(0.444385\pi\)
\(24\) − 3.34469i − 0.682732i
\(25\) 2.55529 0.511058
\(26\) 0 0
\(27\) 17.3487 3.33876
\(28\) 1.00000i 0.188982i
\(29\) 4.82757 0.896458 0.448229 0.893919i \(-0.352055\pi\)
0.448229 + 0.893919i \(0.352055\pi\)
\(30\) −5.22961 −0.954792
\(31\) − 0.597963i − 0.107397i −0.998557 0.0536987i \(-0.982899\pi\)
0.998557 0.0536987i \(-0.0171010\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 9.58634i 1.66877i
\(34\) 2.22961i 0.382375i
\(35\) 1.56356 0.264289
\(36\) −8.18694 −1.36449
\(37\) − 0.0385636i − 0.00633982i −0.999995 0.00316991i \(-0.998991\pi\)
0.999995 0.00316991i \(-0.00100902\pi\)
\(38\) 7.23602 1.17384
\(39\) 0 0
\(40\) 1.56356 0.247220
\(41\) 7.95469i 1.24231i 0.783686 + 0.621157i \(0.213337\pi\)
−0.783686 + 0.621157i \(0.786663\pi\)
\(42\) 3.34469 0.516097
\(43\) −10.0914 −1.53893 −0.769463 0.638691i \(-0.779476\pi\)
−0.769463 + 0.638691i \(0.779476\pi\)
\(44\) − 2.86614i − 0.432087i
\(45\) 12.8007i 1.90822i
\(46\) 1.66735i 0.245838i
\(47\) 7.02636i 1.02490i 0.858717 + 0.512450i \(0.171262\pi\)
−0.858717 + 0.512450i \(0.828738\pi\)
\(48\) 3.34469 0.482764
\(49\) −1.00000 −0.142857
\(50\) 2.55529i 0.361372i
\(51\) 7.45736 1.04424
\(52\) 0 0
\(53\) −5.98404 −0.821971 −0.410985 0.911642i \(-0.634815\pi\)
−0.410985 + 0.911642i \(0.634815\pi\)
\(54\) 17.3487i 2.36086i
\(55\) −4.48137 −0.604268
\(56\) −1.00000 −0.133631
\(57\) − 24.2022i − 3.20566i
\(58\) 4.82757i 0.633892i
\(59\) 0.896206i 0.116676i 0.998297 + 0.0583381i \(0.0185801\pi\)
−0.998297 + 0.0583381i \(0.981420\pi\)
\(60\) − 5.22961i − 0.675140i
\(61\) −14.2569 −1.82541 −0.912706 0.408616i \(-0.866011\pi\)
−0.912706 + 0.408616i \(0.866011\pi\)
\(62\) 0.597963 0.0759414
\(63\) − 8.18694i − 1.03146i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −9.58634 −1.18000
\(67\) 1.64086i 0.200464i 0.994964 + 0.100232i \(0.0319584\pi\)
−0.994964 + 0.100232i \(0.968042\pi\)
\(68\) −2.22961 −0.270380
\(69\) 5.57677 0.671364
\(70\) 1.56356i 0.186881i
\(71\) − 2.29466i − 0.272326i −0.990686 0.136163i \(-0.956523\pi\)
0.990686 0.136163i \(-0.0434771\pi\)
\(72\) − 8.18694i − 0.964840i
\(73\) 11.2277i 1.31411i 0.753844 + 0.657054i \(0.228198\pi\)
−0.753844 + 0.657054i \(0.771802\pi\)
\(74\) 0.0385636 0.00448293
\(75\) 8.54664 0.986881
\(76\) 7.23602i 0.830028i
\(77\) 2.86614 0.326627
\(78\) 0 0
\(79\) 4.26098 0.479397 0.239699 0.970847i \(-0.422951\pi\)
0.239699 + 0.970847i \(0.422951\pi\)
\(80\) 1.56356i 0.174811i
\(81\) 33.4651 3.71835
\(82\) −7.95469 −0.878449
\(83\) − 4.94829i − 0.543145i −0.962418 0.271572i \(-0.912456\pi\)
0.962418 0.271572i \(-0.0875437\pi\)
\(84\) 3.34469i 0.364935i
\(85\) 3.48613i 0.378123i
\(86\) − 10.0914i − 1.08818i
\(87\) 16.1467 1.73111
\(88\) 2.86614 0.305531
\(89\) − 2.42120i − 0.256647i −0.991732 0.128323i \(-0.959040\pi\)
0.991732 0.128323i \(-0.0409595\pi\)
\(90\) −12.8007 −1.34932
\(91\) 0 0
\(92\) −1.66735 −0.173833
\(93\) − 2.00000i − 0.207390i
\(94\) −7.02636 −0.724714
\(95\) 11.3139 1.16078
\(96\) 3.34469i 0.341366i
\(97\) − 4.88829i − 0.496330i −0.968718 0.248165i \(-0.920172\pi\)
0.968718 0.248165i \(-0.0798276\pi\)
\(98\) − 1.00000i − 0.101015i
\(99\) 23.4649i 2.35831i
\(100\) −2.55529 −0.255529
\(101\) −7.36747 −0.733091 −0.366545 0.930400i \(-0.619460\pi\)
−0.366545 + 0.930400i \(0.619460\pi\)
\(102\) 7.45736i 0.738388i
\(103\) −5.78525 −0.570038 −0.285019 0.958522i \(-0.592000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(104\) 0 0
\(105\) 5.22961 0.510358
\(106\) − 5.98404i − 0.581221i
\(107\) −1.02896 −0.0994729 −0.0497365 0.998762i \(-0.515838\pi\)
−0.0497365 + 0.998762i \(0.515838\pi\)
\(108\) −17.3487 −1.66938
\(109\) − 14.1535i − 1.35566i −0.735220 0.677829i \(-0.762921\pi\)
0.735220 0.677829i \(-0.237079\pi\)
\(110\) − 4.48137i − 0.427282i
\(111\) − 0.128983i − 0.0122426i
\(112\) − 1.00000i − 0.0944911i
\(113\) −13.5410 −1.27383 −0.636916 0.770933i \(-0.719790\pi\)
−0.636916 + 0.770933i \(0.719790\pi\)
\(114\) 24.2022 2.26675
\(115\) 2.60700i 0.243104i
\(116\) −4.82757 −0.448229
\(117\) 0 0
\(118\) −0.896206 −0.0825025
\(119\) − 2.22961i − 0.204388i
\(120\) 5.22961 0.477396
\(121\) 2.78525 0.253205
\(122\) − 14.2569i − 1.29076i
\(123\) 26.6060i 2.39898i
\(124\) 0.597963i 0.0536987i
\(125\) 11.8131i 1.05660i
\(126\) 8.18694 0.729350
\(127\) −9.85165 −0.874193 −0.437096 0.899415i \(-0.643993\pi\)
−0.437096 + 0.899415i \(0.643993\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −33.7526 −2.97175
\(130\) 0 0
\(131\) 14.7923 1.29241 0.646204 0.763165i \(-0.276355\pi\)
0.646204 + 0.763165i \(0.276355\pi\)
\(132\) − 9.58634i − 0.834384i
\(133\) −7.23602 −0.627442
\(134\) −1.64086 −0.141749
\(135\) 27.1257i 2.33461i
\(136\) − 2.22961i − 0.191188i
\(137\) 0.458997i 0.0392148i 0.999808 + 0.0196074i \(0.00624163\pi\)
−0.999808 + 0.0196074i \(0.993758\pi\)
\(138\) 5.57677i 0.474726i
\(139\) 15.3146 1.29897 0.649485 0.760375i \(-0.274985\pi\)
0.649485 + 0.760375i \(0.274985\pi\)
\(140\) −1.56356 −0.132145
\(141\) 23.5010i 1.97914i
\(142\) 2.29466 0.192564
\(143\) 0 0
\(144\) 8.18694 0.682245
\(145\) 7.54819i 0.626843i
\(146\) −11.2277 −0.929215
\(147\) −3.34469 −0.275865
\(148\) 0.0385636i 0.00316991i
\(149\) 10.2372i 0.838660i 0.907834 + 0.419330i \(0.137735\pi\)
−0.907834 + 0.419330i \(0.862265\pi\)
\(150\) 8.54664i 0.697830i
\(151\) − 15.2110i − 1.23785i −0.785448 0.618927i \(-0.787568\pi\)
0.785448 0.618927i \(-0.212432\pi\)
\(152\) −7.23602 −0.586918
\(153\) 18.2537 1.47572
\(154\) 2.86614i 0.230960i
\(155\) 0.934950 0.0750970
\(156\) 0 0
\(157\) −2.27419 −0.181500 −0.0907500 0.995874i \(-0.528926\pi\)
−0.0907500 + 0.995874i \(0.528926\pi\)
\(158\) 4.26098i 0.338985i
\(159\) −20.0147 −1.58727
\(160\) −1.56356 −0.123610
\(161\) − 1.66735i − 0.131406i
\(162\) 33.4651i 2.62927i
\(163\) 0.00979262i 0 0.000767017i 1.00000 0.000383509i \(0.000122075\pi\)
−1.00000 0.000383509i \(0.999878\pi\)
\(164\) − 7.95469i − 0.621157i
\(165\) −14.9888 −1.16688
\(166\) 4.94829 0.384061
\(167\) − 24.9508i − 1.93075i −0.260864 0.965376i \(-0.584007\pi\)
0.260864 0.965376i \(-0.415993\pi\)
\(168\) −3.34469 −0.258048
\(169\) 0 0
\(170\) −3.48613 −0.267374
\(171\) − 59.2408i − 4.53026i
\(172\) 10.0914 0.769463
\(173\) 3.20550 0.243709 0.121855 0.992548i \(-0.461116\pi\)
0.121855 + 0.992548i \(0.461116\pi\)
\(174\) 16.1467i 1.22408i
\(175\) − 2.55529i − 0.193162i
\(176\) 2.86614i 0.216043i
\(177\) 2.99753i 0.225308i
\(178\) 2.42120 0.181477
\(179\) 15.8000 1.18094 0.590472 0.807058i \(-0.298942\pi\)
0.590472 + 0.807058i \(0.298942\pi\)
\(180\) − 12.8007i − 0.954111i
\(181\) 9.11907 0.677815 0.338908 0.940820i \(-0.389943\pi\)
0.338908 + 0.940820i \(0.389943\pi\)
\(182\) 0 0
\(183\) −47.6850 −3.52497
\(184\) − 1.66735i − 0.122919i
\(185\) 0.0602965 0.00443308
\(186\) 2.00000 0.146647
\(187\) 6.39038i 0.467311i
\(188\) − 7.02636i − 0.512450i
\(189\) − 17.3487i − 1.26193i
\(190\) 11.3139i 0.820799i
\(191\) −3.26137 −0.235984 −0.117992 0.993015i \(-0.537646\pi\)
−0.117992 + 0.993015i \(0.537646\pi\)
\(192\) −3.34469 −0.241382
\(193\) − 22.0730i − 1.58885i −0.607361 0.794426i \(-0.707772\pi\)
0.607361 0.794426i \(-0.292228\pi\)
\(194\) 4.88829 0.350959
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 5.27305i 0.375690i 0.982199 + 0.187845i \(0.0601502\pi\)
−0.982199 + 0.187845i \(0.939850\pi\)
\(198\) −23.4649 −1.66758
\(199\) −8.86762 −0.628609 −0.314304 0.949322i \(-0.601771\pi\)
−0.314304 + 0.949322i \(0.601771\pi\)
\(200\) − 2.55529i − 0.180686i
\(201\) 5.48818i 0.387106i
\(202\) − 7.36747i − 0.518373i
\(203\) − 4.82757i − 0.338829i
\(204\) −7.45736 −0.522119
\(205\) −12.4376 −0.868681
\(206\) − 5.78525i − 0.403077i
\(207\) 13.6505 0.948775
\(208\) 0 0
\(209\) 20.7394 1.43458
\(210\) 5.22961i 0.360877i
\(211\) 6.56907 0.452233 0.226117 0.974100i \(-0.427397\pi\)
0.226117 + 0.974100i \(0.427397\pi\)
\(212\) 5.98404 0.410985
\(213\) − 7.67493i − 0.525877i
\(214\) − 1.02896i − 0.0703380i
\(215\) − 15.7785i − 1.07609i
\(216\) − 17.3487i − 1.18043i
\(217\) −0.597963 −0.0405924
\(218\) 14.1535 0.958594
\(219\) 37.5533i 2.53762i
\(220\) 4.48137 0.302134
\(221\) 0 0
\(222\) 0.128983 0.00865679
\(223\) 16.9121i 1.13252i 0.824227 + 0.566260i \(0.191610\pi\)
−0.824227 + 0.566260i \(0.808390\pi\)
\(224\) 1.00000 0.0668153
\(225\) 20.9200 1.39467
\(226\) − 13.5410i − 0.900736i
\(227\) − 16.1322i − 1.07073i −0.844620 0.535367i \(-0.820173\pi\)
0.844620 0.535367i \(-0.179827\pi\)
\(228\) 24.2022i 1.60283i
\(229\) − 6.91184i − 0.456747i −0.973574 0.228374i \(-0.926659\pi\)
0.973574 0.228374i \(-0.0733408\pi\)
\(230\) −2.60700 −0.171900
\(231\) 9.58634 0.630735
\(232\) − 4.82757i − 0.316946i
\(233\) 7.47405 0.489641 0.244821 0.969568i \(-0.421271\pi\)
0.244821 + 0.969568i \(0.421271\pi\)
\(234\) 0 0
\(235\) −10.9861 −0.716656
\(236\) − 0.896206i − 0.0583381i
\(237\) 14.2516 0.925743
\(238\) 2.22961 0.144524
\(239\) − 19.8696i − 1.28526i −0.766179 0.642628i \(-0.777844\pi\)
0.766179 0.642628i \(-0.222156\pi\)
\(240\) 5.22961i 0.337570i
\(241\) − 10.6445i − 0.685674i −0.939395 0.342837i \(-0.888612\pi\)
0.939395 0.342837i \(-0.111388\pi\)
\(242\) 2.78525i 0.179043i
\(243\) 59.8843 3.84158
\(244\) 14.2569 0.912706
\(245\) − 1.56356i − 0.0998920i
\(246\) −26.6060 −1.69633
\(247\) 0 0
\(248\) −0.597963 −0.0379707
\(249\) − 16.5505i − 1.04884i
\(250\) −11.8131 −0.747128
\(251\) −15.9139 −1.00448 −0.502239 0.864729i \(-0.667490\pi\)
−0.502239 + 0.864729i \(0.667490\pi\)
\(252\) 8.18694i 0.515729i
\(253\) 4.77886i 0.300444i
\(254\) − 9.85165i − 0.618148i
\(255\) 11.6600i 0.730178i
\(256\) 1.00000 0.0625000
\(257\) 31.1018 1.94008 0.970039 0.242950i \(-0.0781150\pi\)
0.970039 + 0.242950i \(0.0781150\pi\)
\(258\) − 33.7526i − 2.10135i
\(259\) −0.0385636 −0.00239623
\(260\) 0 0
\(261\) 39.5230 2.44642
\(262\) 14.7923i 0.913871i
\(263\) −28.3747 −1.74966 −0.874829 0.484432i \(-0.839026\pi\)
−0.874829 + 0.484432i \(0.839026\pi\)
\(264\) 9.58634 0.589998
\(265\) − 9.35639i − 0.574758i
\(266\) − 7.23602i − 0.443669i
\(267\) − 8.09816i − 0.495599i
\(268\) − 1.64086i − 0.100232i
\(269\) −21.4017 −1.30488 −0.652441 0.757840i \(-0.726255\pi\)
−0.652441 + 0.757840i \(0.726255\pi\)
\(270\) −27.1257 −1.65082
\(271\) − 5.74656i − 0.349079i −0.984650 0.174539i \(-0.944156\pi\)
0.984650 0.174539i \(-0.0558436\pi\)
\(272\) 2.22961 0.135190
\(273\) 0 0
\(274\) −0.458997 −0.0277290
\(275\) 7.32381i 0.441642i
\(276\) −5.57677 −0.335682
\(277\) −26.6020 −1.59836 −0.799180 0.601092i \(-0.794733\pi\)
−0.799180 + 0.601092i \(0.794733\pi\)
\(278\) 15.3146i 0.918510i
\(279\) − 4.89549i − 0.293085i
\(280\) − 1.56356i − 0.0934404i
\(281\) − 6.69143i − 0.399177i −0.979880 0.199589i \(-0.936039\pi\)
0.979880 0.199589i \(-0.0639606\pi\)
\(282\) −23.5010 −1.39946
\(283\) −19.9338 −1.18494 −0.592472 0.805591i \(-0.701848\pi\)
−0.592472 + 0.805591i \(0.701848\pi\)
\(284\) 2.29466i 0.136163i
\(285\) 37.8416 2.24154
\(286\) 0 0
\(287\) 7.95469 0.469550
\(288\) 8.18694i 0.482420i
\(289\) −12.0288 −0.707578
\(290\) −7.54819 −0.443245
\(291\) − 16.3498i − 0.958442i
\(292\) − 11.2277i − 0.657054i
\(293\) − 8.86088i − 0.517658i −0.965923 0.258829i \(-0.916663\pi\)
0.965923 0.258829i \(-0.0833367\pi\)
\(294\) − 3.34469i − 0.195066i
\(295\) −1.40127 −0.0815851
\(296\) −0.0385636 −0.00224147
\(297\) 49.7237i 2.88526i
\(298\) −10.2372 −0.593022
\(299\) 0 0
\(300\) −8.54664 −0.493441
\(301\) 10.0914i 0.581659i
\(302\) 15.2110 0.875296
\(303\) −24.6419 −1.41564
\(304\) − 7.23602i − 0.415014i
\(305\) − 22.2915i − 1.27641i
\(306\) 18.2537i 1.04349i
\(307\) 8.34636i 0.476352i 0.971222 + 0.238176i \(0.0765495\pi\)
−0.971222 + 0.238176i \(0.923450\pi\)
\(308\) −2.86614 −0.163313
\(309\) −19.3499 −1.10077
\(310\) 0.934950i 0.0531016i
\(311\) −6.68896 −0.379296 −0.189648 0.981852i \(-0.560735\pi\)
−0.189648 + 0.981852i \(0.560735\pi\)
\(312\) 0 0
\(313\) −21.3788 −1.20840 −0.604199 0.796833i \(-0.706507\pi\)
−0.604199 + 0.796833i \(0.706507\pi\)
\(314\) − 2.27419i − 0.128340i
\(315\) 12.8007 0.721240
\(316\) −4.26098 −0.239699
\(317\) 31.6776i 1.77919i 0.456748 + 0.889596i \(0.349014\pi\)
−0.456748 + 0.889596i \(0.650986\pi\)
\(318\) − 20.0147i − 1.12237i
\(319\) 13.8365i 0.774695i
\(320\) − 1.56356i − 0.0874055i
\(321\) −3.44154 −0.192088
\(322\) 1.66735 0.0929178
\(323\) − 16.1335i − 0.897692i
\(324\) −33.4651 −1.85917
\(325\) 0 0
\(326\) −0.00979262 −0.000542363 0
\(327\) − 47.3390i − 2.61785i
\(328\) 7.95469 0.439224
\(329\) 7.02636 0.387376
\(330\) − 14.9888i − 0.825106i
\(331\) − 24.6695i − 1.35596i −0.735081 0.677979i \(-0.762856\pi\)
0.735081 0.677979i \(-0.237144\pi\)
\(332\) 4.94829i 0.271572i
\(333\) − 0.315718i − 0.0173012i
\(334\) 24.9508 1.36525
\(335\) −2.56559 −0.140173
\(336\) − 3.34469i − 0.182468i
\(337\) 28.0871 1.53000 0.765002 0.644028i \(-0.222738\pi\)
0.765002 + 0.644028i \(0.222738\pi\)
\(338\) 0 0
\(339\) −45.2905 −2.45984
\(340\) − 3.48613i − 0.189062i
\(341\) 1.71385 0.0928099
\(342\) 59.2408 3.20338
\(343\) 1.00000i 0.0539949i
\(344\) 10.0914i 0.544092i
\(345\) 8.71960i 0.469447i
\(346\) 3.20550i 0.172329i
\(347\) −10.1080 −0.542623 −0.271312 0.962492i \(-0.587457\pi\)
−0.271312 + 0.962492i \(0.587457\pi\)
\(348\) −16.1467 −0.865556
\(349\) 17.3893i 0.930828i 0.885093 + 0.465414i \(0.154095\pi\)
−0.885093 + 0.465414i \(0.845905\pi\)
\(350\) 2.55529 0.136586
\(351\) 0 0
\(352\) −2.86614 −0.152766
\(353\) − 3.32659i − 0.177056i −0.996074 0.0885282i \(-0.971784\pi\)
0.996074 0.0885282i \(-0.0282163\pi\)
\(354\) −2.99753 −0.159317
\(355\) 3.58784 0.190423
\(356\) 2.42120i 0.128323i
\(357\) − 7.45736i − 0.394685i
\(358\) 15.8000i 0.835053i
\(359\) − 8.02414i − 0.423498i −0.977324 0.211749i \(-0.932084\pi\)
0.977324 0.211749i \(-0.0679159\pi\)
\(360\) 12.8007 0.674659
\(361\) −33.3599 −1.75579
\(362\) 9.11907i 0.479288i
\(363\) 9.31579 0.488952
\(364\) 0 0
\(365\) −17.5552 −0.918882
\(366\) − 47.6850i − 2.49253i
\(367\) 1.03908 0.0542395 0.0271198 0.999632i \(-0.491366\pi\)
0.0271198 + 0.999632i \(0.491366\pi\)
\(368\) 1.66735 0.0869167
\(369\) 65.1245i 3.39025i
\(370\) 0.0602965i 0.00313466i
\(371\) 5.98404i 0.310676i
\(372\) 2.00000i 0.103695i
\(373\) 27.3124 1.41418 0.707092 0.707122i \(-0.250007\pi\)
0.707092 + 0.707122i \(0.250007\pi\)
\(374\) −6.39038 −0.330438
\(375\) 39.5112i 2.04035i
\(376\) 7.02636 0.362357
\(377\) 0 0
\(378\) 17.3487 0.892320
\(379\) 2.21166i 0.113605i 0.998385 + 0.0568026i \(0.0180906\pi\)
−0.998385 + 0.0568026i \(0.981909\pi\)
\(380\) −11.3139 −0.580392
\(381\) −32.9507 −1.68812
\(382\) − 3.26137i − 0.166866i
\(383\) 22.3386i 1.14145i 0.821142 + 0.570724i \(0.193337\pi\)
−0.821142 + 0.570724i \(0.806663\pi\)
\(384\) − 3.34469i − 0.170683i
\(385\) 4.48137i 0.228392i
\(386\) 22.0730 1.12349
\(387\) −82.6178 −4.19970
\(388\) 4.88829i 0.248165i
\(389\) −12.2604 −0.621629 −0.310814 0.950471i \(-0.600602\pi\)
−0.310814 + 0.950471i \(0.600602\pi\)
\(390\) 0 0
\(391\) 3.71755 0.188004
\(392\) 1.00000i 0.0505076i
\(393\) 49.4756 2.49571
\(394\) −5.27305 −0.265653
\(395\) 6.66228i 0.335216i
\(396\) − 23.4649i − 1.17916i
\(397\) 2.93517i 0.147312i 0.997284 + 0.0736561i \(0.0234667\pi\)
−0.997284 + 0.0736561i \(0.976533\pi\)
\(398\) − 8.86762i − 0.444493i
\(399\) −24.2022 −1.21163
\(400\) 2.55529 0.127764
\(401\) − 21.8502i − 1.09115i −0.838062 0.545575i \(-0.816311\pi\)
0.838062 0.545575i \(-0.183689\pi\)
\(402\) −5.48818 −0.273726
\(403\) 0 0
\(404\) 7.36747 0.366545
\(405\) 52.3246i 2.60003i
\(406\) 4.82757 0.239589
\(407\) 0.110529 0.00547871
\(408\) − 7.45736i − 0.369194i
\(409\) − 7.38191i − 0.365012i −0.983205 0.182506i \(-0.941579\pi\)
0.983205 0.182506i \(-0.0584208\pi\)
\(410\) − 12.4376i − 0.614250i
\(411\) 1.53520i 0.0757260i
\(412\) 5.78525 0.285019
\(413\) 0.896206 0.0440994
\(414\) 13.6505i 0.670885i
\(415\) 7.73693 0.379791
\(416\) 0 0
\(417\) 51.2226 2.50838
\(418\) 20.7394i 1.01440i
\(419\) −8.58273 −0.419294 −0.209647 0.977777i \(-0.567231\pi\)
−0.209647 + 0.977777i \(0.567231\pi\)
\(420\) −5.22961 −0.255179
\(421\) 7.49525i 0.365296i 0.983178 + 0.182648i \(0.0584669\pi\)
−0.983178 + 0.182648i \(0.941533\pi\)
\(422\) 6.56907i 0.319777i
\(423\) 57.5244i 2.79693i
\(424\) 5.98404i 0.290611i
\(425\) 5.69730 0.276360
\(426\) 7.67493 0.371851
\(427\) 14.2569i 0.689941i
\(428\) 1.02896 0.0497365
\(429\) 0 0
\(430\) 15.7785 0.760907
\(431\) 16.4791i 0.793772i 0.917868 + 0.396886i \(0.129909\pi\)
−0.917868 + 0.396886i \(0.870091\pi\)
\(432\) 17.3487 0.834689
\(433\) 25.5610 1.22838 0.614192 0.789156i \(-0.289482\pi\)
0.614192 + 0.789156i \(0.289482\pi\)
\(434\) − 0.597963i − 0.0287031i
\(435\) 25.2463i 1.21047i
\(436\) 14.1535i 0.677829i
\(437\) − 12.0650i − 0.577146i
\(438\) −37.5533 −1.79437
\(439\) −9.20839 −0.439493 −0.219746 0.975557i \(-0.570523\pi\)
−0.219746 + 0.975557i \(0.570523\pi\)
\(440\) 4.48137i 0.213641i
\(441\) −8.18694 −0.389854
\(442\) 0 0
\(443\) −6.20759 −0.294931 −0.147466 0.989067i \(-0.547112\pi\)
−0.147466 + 0.989067i \(0.547112\pi\)
\(444\) 0.128983i 0.00612128i
\(445\) 3.78569 0.179459
\(446\) −16.9121 −0.800812
\(447\) 34.2401i 1.61950i
\(448\) 1.00000i 0.0472456i
\(449\) 5.21888i 0.246294i 0.992388 + 0.123147i \(0.0392987\pi\)
−0.992388 + 0.123147i \(0.960701\pi\)
\(450\) 20.9200i 0.986177i
\(451\) −22.7992 −1.07357
\(452\) 13.5410 0.636916
\(453\) − 50.8761i − 2.39037i
\(454\) 16.1322 0.757123
\(455\) 0 0
\(456\) −24.2022 −1.13337
\(457\) 33.9332i 1.58733i 0.608357 + 0.793664i \(0.291829\pi\)
−0.608357 + 0.793664i \(0.708171\pi\)
\(458\) 6.91184 0.322969
\(459\) 38.6808 1.80547
\(460\) − 2.60700i − 0.121552i
\(461\) 0.844759i 0.0393444i 0.999806 + 0.0196722i \(0.00626225\pi\)
−0.999806 + 0.0196722i \(0.993738\pi\)
\(462\) 9.58634i 0.445997i
\(463\) − 6.50221i − 0.302183i −0.988520 0.151092i \(-0.951721\pi\)
0.988520 0.151092i \(-0.0482789\pi\)
\(464\) 4.82757 0.224115
\(465\) 3.12712 0.145016
\(466\) 7.47405i 0.346229i
\(467\) 9.52759 0.440884 0.220442 0.975400i \(-0.429250\pi\)
0.220442 + 0.975400i \(0.429250\pi\)
\(468\) 0 0
\(469\) 1.64086 0.0757681
\(470\) − 10.9861i − 0.506752i
\(471\) −7.60645 −0.350487
\(472\) 0.896206 0.0412512
\(473\) − 28.9234i − 1.32990i
\(474\) 14.2516i 0.654599i
\(475\) − 18.4901i − 0.848384i
\(476\) 2.22961i 0.102194i
\(477\) −48.9909 −2.24314
\(478\) 19.8696 0.908813
\(479\) 2.84198i 0.129854i 0.997890 + 0.0649268i \(0.0206814\pi\)
−0.997890 + 0.0649268i \(0.979319\pi\)
\(480\) −5.22961 −0.238698
\(481\) 0 0
\(482\) 10.6445 0.484844
\(483\) − 5.57677i − 0.253752i
\(484\) −2.78525 −0.126602
\(485\) 7.64312 0.347056
\(486\) 59.8843i 2.71641i
\(487\) − 5.26374i − 0.238523i −0.992863 0.119261i \(-0.961947\pi\)
0.992863 0.119261i \(-0.0380526\pi\)
\(488\) 14.2569i 0.645381i
\(489\) 0.0327533i 0.00148115i
\(490\) 1.56356 0.0706343
\(491\) −22.8913 −1.03307 −0.516536 0.856266i \(-0.672779\pi\)
−0.516536 + 0.856266i \(0.672779\pi\)
\(492\) − 26.6060i − 1.19949i
\(493\) 10.7636 0.484769
\(494\) 0 0
\(495\) −36.6887 −1.64903
\(496\) − 0.597963i − 0.0268493i
\(497\) −2.29466 −0.102930
\(498\) 16.5505 0.741644
\(499\) 6.79877i 0.304355i 0.988353 + 0.152177i \(0.0486285\pi\)
−0.988353 + 0.152177i \(0.951372\pi\)
\(500\) − 11.8131i − 0.528299i
\(501\) − 83.4527i − 3.72839i
\(502\) − 15.9139i − 0.710273i
\(503\) 10.8060 0.481816 0.240908 0.970548i \(-0.422555\pi\)
0.240908 + 0.970548i \(0.422555\pi\)
\(504\) −8.18694 −0.364675
\(505\) − 11.5195i − 0.512609i
\(506\) −4.77886 −0.212446
\(507\) 0 0
\(508\) 9.85165 0.437096
\(509\) 27.3194i 1.21091i 0.795879 + 0.605455i \(0.207009\pi\)
−0.795879 + 0.605455i \(0.792991\pi\)
\(510\) −11.6600 −0.516314
\(511\) 11.2277 0.496686
\(512\) 1.00000i 0.0441942i
\(513\) − 125.535i − 5.54252i
\(514\) 31.1018i 1.37184i
\(515\) − 9.04557i − 0.398595i
\(516\) 33.7526 1.48588
\(517\) −20.1385 −0.885691
\(518\) − 0.0385636i − 0.00169439i
\(519\) 10.7214 0.470616
\(520\) 0 0
\(521\) −3.63580 −0.159287 −0.0796437 0.996823i \(-0.525378\pi\)
−0.0796437 + 0.996823i \(0.525378\pi\)
\(522\) 39.5230i 1.72988i
\(523\) −7.18446 −0.314155 −0.157077 0.987586i \(-0.550207\pi\)
−0.157077 + 0.987586i \(0.550207\pi\)
\(524\) −14.7923 −0.646204
\(525\) − 8.54664i − 0.373006i
\(526\) − 28.3747i − 1.23719i
\(527\) − 1.33323i − 0.0580762i
\(528\) 9.58634i 0.417192i
\(529\) −20.2199 −0.879128
\(530\) 9.35639 0.406415
\(531\) 7.33718i 0.318407i
\(532\) 7.23602 0.313721
\(533\) 0 0
\(534\) 8.09816 0.350442
\(535\) − 1.60883i − 0.0695559i
\(536\) 1.64086 0.0708746
\(537\) 52.8459 2.28047
\(538\) − 21.4017i − 0.922691i
\(539\) − 2.86614i − 0.123453i
\(540\) − 27.1257i − 1.16730i
\(541\) 0.445063i 0.0191347i 0.999954 + 0.00956737i \(0.00304543\pi\)
−0.999954 + 0.00956737i \(0.996955\pi\)
\(542\) 5.74656 0.246836
\(543\) 30.5004 1.30890
\(544\) 2.22961i 0.0955938i
\(545\) 22.1298 0.947935
\(546\) 0 0
\(547\) −5.67129 −0.242487 −0.121243 0.992623i \(-0.538688\pi\)
−0.121243 + 0.992623i \(0.538688\pi\)
\(548\) − 0.458997i − 0.0196074i
\(549\) −116.721 −4.98151
\(550\) −7.32381 −0.312288
\(551\) − 34.9324i − 1.48817i
\(552\) − 5.57677i − 0.237363i
\(553\) − 4.26098i − 0.181195i
\(554\) − 26.6020i − 1.13021i
\(555\) 0.201673 0.00856054
\(556\) −15.3146 −0.649485
\(557\) − 26.5075i − 1.12316i −0.827423 0.561579i \(-0.810194\pi\)
0.827423 0.561579i \(-0.189806\pi\)
\(558\) 4.89549 0.207242
\(559\) 0 0
\(560\) 1.56356 0.0660724
\(561\) 21.3738i 0.902403i
\(562\) 6.69143 0.282261
\(563\) 11.5376 0.486252 0.243126 0.969995i \(-0.421827\pi\)
0.243126 + 0.969995i \(0.421827\pi\)
\(564\) − 23.5010i − 0.989570i
\(565\) − 21.1722i − 0.890720i
\(566\) − 19.9338i − 0.837882i
\(567\) − 33.4651i − 1.40540i
\(568\) −2.29466 −0.0962819
\(569\) 32.1581 1.34814 0.674069 0.738668i \(-0.264545\pi\)
0.674069 + 0.738668i \(0.264545\pi\)
\(570\) 37.8416i 1.58501i
\(571\) −11.5540 −0.483521 −0.241761 0.970336i \(-0.577725\pi\)
−0.241761 + 0.970336i \(0.577725\pi\)
\(572\) 0 0
\(573\) −10.9083 −0.455699
\(574\) 7.95469i 0.332022i
\(575\) 4.26056 0.177678
\(576\) −8.18694 −0.341122
\(577\) − 9.14050i − 0.380524i −0.981733 0.190262i \(-0.939066\pi\)
0.981733 0.190262i \(-0.0609337\pi\)
\(578\) − 12.0288i − 0.500333i
\(579\) − 73.8274i − 3.06816i
\(580\) − 7.54819i − 0.313422i
\(581\) −4.94829 −0.205289
\(582\) 16.3498 0.677721
\(583\) − 17.1511i − 0.710325i
\(584\) 11.2277 0.464607
\(585\) 0 0
\(586\) 8.86088 0.366040
\(587\) − 42.7965i − 1.76640i −0.468994 0.883201i \(-0.655383\pi\)
0.468994 0.883201i \(-0.344617\pi\)
\(588\) 3.34469 0.137933
\(589\) −4.32687 −0.178286
\(590\) − 1.40127i − 0.0576894i
\(591\) 17.6367i 0.725478i
\(592\) − 0.0385636i − 0.00158496i
\(593\) 14.2439i 0.584927i 0.956277 + 0.292463i \(0.0944750\pi\)
−0.956277 + 0.292463i \(0.905525\pi\)
\(594\) −49.7237 −2.04019
\(595\) 3.48613 0.142917
\(596\) − 10.2372i − 0.419330i
\(597\) −29.6594 −1.21388
\(598\) 0 0
\(599\) 3.74735 0.153113 0.0765563 0.997065i \(-0.475608\pi\)
0.0765563 + 0.997065i \(0.475608\pi\)
\(600\) − 8.54664i − 0.348915i
\(601\) 10.6692 0.435208 0.217604 0.976037i \(-0.430176\pi\)
0.217604 + 0.976037i \(0.430176\pi\)
\(602\) −10.0914 −0.411295
\(603\) 13.4337i 0.547061i
\(604\) 15.2110i 0.618927i
\(605\) 4.35490i 0.177052i
\(606\) − 24.6419i − 1.00101i
\(607\) 9.65256 0.391785 0.195893 0.980625i \(-0.437240\pi\)
0.195893 + 0.980625i \(0.437240\pi\)
\(608\) 7.23602 0.293459
\(609\) − 16.1467i − 0.654299i
\(610\) 22.2915 0.902558
\(611\) 0 0
\(612\) −18.2537 −0.737862
\(613\) 3.99489i 0.161352i 0.996740 + 0.0806761i \(0.0257079\pi\)
−0.996740 + 0.0806761i \(0.974292\pi\)
\(614\) −8.34636 −0.336832
\(615\) −41.5999 −1.67747
\(616\) − 2.86614i − 0.115480i
\(617\) 3.23546i 0.130255i 0.997877 + 0.0651273i \(0.0207454\pi\)
−0.997877 + 0.0651273i \(0.979255\pi\)
\(618\) − 19.3499i − 0.778365i
\(619\) 39.2679i 1.57831i 0.614193 + 0.789156i \(0.289482\pi\)
−0.614193 + 0.789156i \(0.710518\pi\)
\(620\) −0.934950 −0.0375485
\(621\) 28.9263 1.16077
\(622\) − 6.68896i − 0.268203i
\(623\) −2.42120 −0.0970033
\(624\) 0 0
\(625\) −5.69406 −0.227763
\(626\) − 21.3788i − 0.854467i
\(627\) 69.3669 2.77025
\(628\) 2.27419 0.0907500
\(629\) − 0.0859819i − 0.00342832i
\(630\) 12.8007i 0.509994i
\(631\) 29.4429i 1.17210i 0.810273 + 0.586052i \(0.199319\pi\)
−0.810273 + 0.586052i \(0.800681\pi\)
\(632\) − 4.26098i − 0.169493i
\(633\) 21.9715 0.873288
\(634\) −31.6776 −1.25808
\(635\) − 15.4036i − 0.611274i
\(636\) 20.0147 0.793636
\(637\) 0 0
\(638\) −13.8365 −0.547792
\(639\) − 18.7863i − 0.743173i
\(640\) 1.56356 0.0618050
\(641\) −4.09119 −0.161592 −0.0807961 0.996731i \(-0.525746\pi\)
−0.0807961 + 0.996731i \(0.525746\pi\)
\(642\) − 3.44154i − 0.135827i
\(643\) 22.2479i 0.877370i 0.898641 + 0.438685i \(0.144556\pi\)
−0.898641 + 0.438685i \(0.855444\pi\)
\(644\) 1.66735i 0.0657028i
\(645\) − 52.7742i − 2.07798i
\(646\) 16.1335 0.634764
\(647\) 49.8583 1.96013 0.980066 0.198670i \(-0.0636622\pi\)
0.980066 + 0.198670i \(0.0636622\pi\)
\(648\) − 33.4651i − 1.31463i
\(649\) −2.56865 −0.100828
\(650\) 0 0
\(651\) −2.00000 −0.0783862
\(652\) − 0.00979262i 0 0.000383509i
\(653\) 7.40353 0.289723 0.144861 0.989452i \(-0.453726\pi\)
0.144861 + 0.989452i \(0.453726\pi\)
\(654\) 47.3390 1.85110
\(655\) 23.1286i 0.903709i
\(656\) 7.95469i 0.310578i
\(657\) 91.9208i 3.58617i
\(658\) 7.02636i 0.273916i
\(659\) 30.0820 1.17183 0.585914 0.810373i \(-0.300736\pi\)
0.585914 + 0.810373i \(0.300736\pi\)
\(660\) 14.9888 0.583438
\(661\) − 26.6319i − 1.03586i −0.855423 0.517931i \(-0.826702\pi\)
0.855423 0.517931i \(-0.173298\pi\)
\(662\) 24.6695 0.958807
\(663\) 0 0
\(664\) −4.94829 −0.192031
\(665\) − 11.3139i − 0.438735i
\(666\) 0.315718 0.0122338
\(667\) 8.04926 0.311669
\(668\) 24.9508i 0.965376i
\(669\) 56.5657i 2.18696i
\(670\) − 2.56559i − 0.0991172i
\(671\) − 40.8623i − 1.57747i
\(672\) 3.34469 0.129024
\(673\) 3.69305 0.142357 0.0711783 0.997464i \(-0.477324\pi\)
0.0711783 + 0.997464i \(0.477324\pi\)
\(674\) 28.0871i 1.08188i
\(675\) 44.3309 1.70630
\(676\) 0 0
\(677\) −35.6533 −1.37027 −0.685134 0.728417i \(-0.740256\pi\)
−0.685134 + 0.728417i \(0.740256\pi\)
\(678\) − 45.2905i − 1.73937i
\(679\) −4.88829 −0.187595
\(680\) 3.48613 0.133687
\(681\) − 53.9572i − 2.06765i
\(682\) 1.71385i 0.0656265i
\(683\) − 30.2653i − 1.15807i −0.815304 0.579034i \(-0.803430\pi\)
0.815304 0.579034i \(-0.196570\pi\)
\(684\) 59.2408i 2.26513i
\(685\) −0.717669 −0.0274207
\(686\) −1.00000 −0.0381802
\(687\) − 23.1179i − 0.882004i
\(688\) −10.0914 −0.384731
\(689\) 0 0
\(690\) −8.71960 −0.331949
\(691\) − 3.50309i − 0.133264i −0.997778 0.0666320i \(-0.978775\pi\)
0.997778 0.0666320i \(-0.0212253\pi\)
\(692\) −3.20550 −0.121855
\(693\) 23.4649 0.891358
\(694\) − 10.1080i − 0.383693i
\(695\) 23.9453i 0.908297i
\(696\) − 16.1467i − 0.612040i
\(697\) 17.7359i 0.671794i
\(698\) −17.3893 −0.658195
\(699\) 24.9984 0.945525
\(700\) 2.55529i 0.0965808i
\(701\) −45.2243 −1.70810 −0.854048 0.520194i \(-0.825860\pi\)
−0.854048 + 0.520194i \(0.825860\pi\)
\(702\) 0 0
\(703\) −0.279047 −0.0105245
\(704\) − 2.86614i − 0.108022i
\(705\) −36.7451 −1.38390
\(706\) 3.32659 0.125198
\(707\) 7.36747i 0.277082i
\(708\) − 2.99753i − 0.112654i
\(709\) 2.99826i 0.112602i 0.998414 + 0.0563009i \(0.0179306\pi\)
−0.998414 + 0.0563009i \(0.982069\pi\)
\(710\) 3.58784i 0.134649i
\(711\) 34.8843 1.30827
\(712\) −2.42120 −0.0907383
\(713\) − 0.997014i − 0.0373385i
\(714\) 7.45736 0.279085
\(715\) 0 0
\(716\) −15.8000 −0.590472
\(717\) − 66.4575i − 2.48190i
\(718\) 8.02414 0.299458
\(719\) 20.0794 0.748834 0.374417 0.927260i \(-0.377843\pi\)
0.374417 + 0.927260i \(0.377843\pi\)
\(720\) 12.8007i 0.477056i
\(721\) 5.78525i 0.215454i
\(722\) − 33.3599i − 1.24153i
\(723\) − 35.6026i − 1.32407i
\(724\) −9.11907 −0.338908
\(725\) 12.3358 0.458142
\(726\) 9.31579i 0.345741i
\(727\) −32.5895 −1.20868 −0.604338 0.796728i \(-0.706562\pi\)
−0.604338 + 0.796728i \(0.706562\pi\)
\(728\) 0 0
\(729\) 99.8990 3.69996
\(730\) − 17.5552i − 0.649748i
\(731\) −22.4999 −0.832190
\(732\) 47.6850 1.76249
\(733\) − 18.5190i − 0.684017i −0.939697 0.342008i \(-0.888893\pi\)
0.939697 0.342008i \(-0.111107\pi\)
\(734\) 1.03908i 0.0383531i
\(735\) − 5.22961i − 0.192897i
\(736\) 1.66735i 0.0614594i
\(737\) −4.70294 −0.173235
\(738\) −65.1245 −2.39727
\(739\) − 15.9312i − 0.586038i −0.956107 0.293019i \(-0.905340\pi\)
0.956107 0.293019i \(-0.0946600\pi\)
\(740\) −0.0602965 −0.00221654
\(741\) 0 0
\(742\) −5.98404 −0.219681
\(743\) − 12.2355i − 0.448876i −0.974488 0.224438i \(-0.927945\pi\)
0.974488 0.224438i \(-0.0720546\pi\)
\(744\) −2.00000 −0.0733236
\(745\) −16.0064 −0.586428
\(746\) 27.3124i 0.999979i
\(747\) − 40.5113i − 1.48223i
\(748\) − 6.39038i − 0.233655i
\(749\) 1.02896i 0.0375972i
\(750\) −39.5112 −1.44275
\(751\) 20.8213 0.759782 0.379891 0.925031i \(-0.375962\pi\)
0.379891 + 0.925031i \(0.375962\pi\)
\(752\) 7.02636i 0.256225i
\(753\) −53.2271 −1.93970
\(754\) 0 0
\(755\) 23.7833 0.865563
\(756\) 17.3487i 0.630966i
\(757\) 27.1151 0.985514 0.492757 0.870167i \(-0.335989\pi\)
0.492757 + 0.870167i \(0.335989\pi\)
\(758\) −2.21166 −0.0803310
\(759\) 15.9838i 0.580175i
\(760\) − 11.3139i − 0.410399i
\(761\) 48.3727i 1.75351i 0.480937 + 0.876755i \(0.340297\pi\)
−0.480937 + 0.876755i \(0.659703\pi\)
\(762\) − 32.9507i − 1.19368i
\(763\) −14.1535 −0.512390
\(764\) 3.26137 0.117992
\(765\) 28.5407i 1.03189i
\(766\) −22.3386 −0.807125
\(767\) 0 0
\(768\) 3.34469 0.120691
\(769\) 17.3453i 0.625486i 0.949838 + 0.312743i \(0.101248\pi\)
−0.949838 + 0.312743i \(0.898752\pi\)
\(770\) −4.48137 −0.161497
\(771\) 104.026 3.74640
\(772\) 22.0730i 0.794426i
\(773\) − 14.0480i − 0.505270i −0.967562 0.252635i \(-0.918703\pi\)
0.967562 0.252635i \(-0.0812971\pi\)
\(774\) − 82.6178i − 2.96963i
\(775\) − 1.52797i − 0.0548862i
\(776\) −4.88829 −0.175479
\(777\) −0.128983 −0.00462725
\(778\) − 12.2604i − 0.439558i
\(779\) 57.5603 2.06231
\(780\) 0 0
\(781\) 6.57682 0.235337
\(782\) 3.71755i 0.132939i
\(783\) 83.7521 2.99305
\(784\) −1.00000 −0.0357143
\(785\) − 3.55582i − 0.126913i
\(786\) 49.4756i 1.76474i
\(787\) − 7.75577i − 0.276463i −0.990400 0.138232i \(-0.955858\pi\)
0.990400 0.138232i \(-0.0441419\pi\)
\(788\) − 5.27305i − 0.187845i
\(789\) −94.9044 −3.37869
\(790\) −6.66228 −0.237033
\(791\) 13.5410i 0.481464i
\(792\) 23.4649 0.833789
\(793\) 0 0
\(794\) −2.93517 −0.104165
\(795\) − 31.2942i − 1.10989i
\(796\) 8.86762 0.314304
\(797\) 33.8492 1.19900 0.599500 0.800375i \(-0.295366\pi\)
0.599500 + 0.800375i \(0.295366\pi\)
\(798\) − 24.2022i − 0.856749i
\(799\) 15.6661i 0.554225i
\(800\) 2.55529i 0.0903431i
\(801\) − 19.8222i − 0.700383i
\(802\) 21.8502 0.771559
\(803\) −32.1803 −1.13562
\(804\) − 5.48818i − 0.193553i
\(805\) 2.60700 0.0918847
\(806\) 0 0
\(807\) −71.5819 −2.51980
\(808\) 7.36747i 0.259187i
\(809\) −32.8340 −1.15438 −0.577191 0.816609i \(-0.695851\pi\)
−0.577191 + 0.816609i \(0.695851\pi\)
\(810\) −52.3246 −1.83850
\(811\) 12.2083i 0.428690i 0.976758 + 0.214345i \(0.0687617\pi\)
−0.976758 + 0.214345i \(0.931238\pi\)
\(812\) 4.82757i 0.169415i
\(813\) − 19.2205i − 0.674091i
\(814\) 0.110529i 0.00387403i
\(815\) −0.0153113 −0.000536332 0
\(816\) 7.45736 0.261060
\(817\) 73.0216i 2.55470i
\(818\) 7.38191 0.258102
\(819\) 0 0
\(820\) 12.4376 0.434340
\(821\) − 47.4868i − 1.65730i −0.559767 0.828650i \(-0.689109\pi\)
0.559767 0.828650i \(-0.310891\pi\)
\(822\) −1.53520 −0.0535463
\(823\) −22.0459 −0.768471 −0.384235 0.923235i \(-0.625535\pi\)
−0.384235 + 0.923235i \(0.625535\pi\)
\(824\) 5.78525i 0.201539i
\(825\) 24.4959i 0.852836i
\(826\) 0.896206i 0.0311830i
\(827\) 45.9092i 1.59642i 0.602380 + 0.798209i \(0.294219\pi\)
−0.602380 + 0.798209i \(0.705781\pi\)
\(828\) −13.6505 −0.474388
\(829\) −26.7766 −0.929991 −0.464996 0.885313i \(-0.653944\pi\)
−0.464996 + 0.885313i \(0.653944\pi\)
\(830\) 7.73693i 0.268553i
\(831\) −88.9754 −3.08652
\(832\) 0 0
\(833\) −2.22961 −0.0772515
\(834\) 51.2226i 1.77369i
\(835\) 39.0120 1.35007
\(836\) −20.7394 −0.717288
\(837\) − 10.3739i − 0.358574i
\(838\) − 8.58273i − 0.296486i
\(839\) − 28.4010i − 0.980511i −0.871579 0.490255i \(-0.836904\pi\)
0.871579 0.490255i \(-0.163096\pi\)
\(840\) − 5.22961i − 0.180439i
\(841\) −5.69452 −0.196363
\(842\) −7.49525 −0.258304
\(843\) − 22.3807i − 0.770834i
\(844\) −6.56907 −0.226117
\(845\) 0 0
\(846\) −57.5244 −1.97773
\(847\) − 2.78525i − 0.0957023i
\(848\) −5.98404 −0.205493
\(849\) −66.6725 −2.28819
\(850\) 5.69730i 0.195416i
\(851\) − 0.0642991i − 0.00220415i
\(852\) 7.67493i 0.262939i
\(853\) 21.3316i 0.730379i 0.930933 + 0.365189i \(0.118996\pi\)
−0.930933 + 0.365189i \(0.881004\pi\)
\(854\) −14.2569 −0.487862
\(855\) 92.6264 3.16776
\(856\) 1.02896i 0.0351690i
\(857\) −41.0823 −1.40335 −0.701673 0.712499i \(-0.747563\pi\)
−0.701673 + 0.712499i \(0.747563\pi\)
\(858\) 0 0
\(859\) 28.8618 0.984752 0.492376 0.870383i \(-0.336129\pi\)
0.492376 + 0.870383i \(0.336129\pi\)
\(860\) 15.7785i 0.538043i
\(861\) 26.6060 0.906728
\(862\) −16.4791 −0.561281
\(863\) 22.7332i 0.773847i 0.922112 + 0.386923i \(0.126462\pi\)
−0.922112 + 0.386923i \(0.873538\pi\)
\(864\) 17.3487i 0.590214i
\(865\) 5.01198i 0.170412i
\(866\) 25.5610i 0.868599i
\(867\) −40.2327 −1.36637
\(868\) 0.597963 0.0202962
\(869\) 12.2125i 0.414282i
\(870\) −25.2463 −0.855931
\(871\) 0 0
\(872\) −14.1535 −0.479297
\(873\) − 40.0201i − 1.35448i
\(874\) 12.0650 0.408104
\(875\) 11.8131 0.399357
\(876\) − 37.5533i − 1.26881i
\(877\) 29.4178i 0.993368i 0.867932 + 0.496684i \(0.165449\pi\)
−0.867932 + 0.496684i \(0.834551\pi\)
\(878\) − 9.20839i − 0.310768i
\(879\) − 29.6369i − 0.999627i
\(880\) −4.48137 −0.151067
\(881\) −4.22209 −0.142246 −0.0711229 0.997468i \(-0.522658\pi\)
−0.0711229 + 0.997468i \(0.522658\pi\)
\(882\) − 8.18694i − 0.275668i
\(883\) 37.1982 1.25182 0.625910 0.779895i \(-0.284728\pi\)
0.625910 + 0.779895i \(0.284728\pi\)
\(884\) 0 0
\(885\) −4.68681 −0.157545
\(886\) − 6.20759i − 0.208548i
\(887\) −56.1894 −1.88665 −0.943327 0.331865i \(-0.892322\pi\)
−0.943327 + 0.331865i \(0.892322\pi\)
\(888\) −0.128983 −0.00432840
\(889\) 9.85165i 0.330414i
\(890\) 3.78569i 0.126896i
\(891\) 95.9157i 3.21330i
\(892\) − 16.9121i − 0.566260i
\(893\) 50.8429 1.70139
\(894\) −34.2401 −1.14516
\(895\) 24.7041i 0.825768i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −5.21888 −0.174156
\(899\) − 2.88671i − 0.0962772i
\(900\) −20.9200 −0.697333
\(901\) −13.3421 −0.444489
\(902\) − 22.7992i − 0.759132i
\(903\) 33.7526i 1.12322i
\(904\) 13.5410i 0.450368i
\(905\) 14.2582i 0.473958i
\(906\) 50.8761 1.69025
\(907\) 0.653612 0.0217028 0.0108514 0.999941i \(-0.496546\pi\)
0.0108514 + 0.999941i \(0.496546\pi\)
\(908\) 16.1322i 0.535367i
\(909\) −60.3170 −2.00059
\(910\) 0 0
\(911\) 39.7806 1.31799 0.658995 0.752147i \(-0.270982\pi\)
0.658995 + 0.752147i \(0.270982\pi\)
\(912\) − 24.2022i − 0.801415i
\(913\) 14.1825 0.469371
\(914\) −33.9332 −1.12241
\(915\) − 74.5582i − 2.46482i
\(916\) 6.91184i 0.228374i
\(917\) − 14.7923i − 0.488484i
\(918\) 38.6808i 1.27666i
\(919\) 34.6056 1.14153 0.570767 0.821112i \(-0.306646\pi\)
0.570767 + 0.821112i \(0.306646\pi\)
\(920\) 2.60700 0.0859502
\(921\) 27.9160i 0.919863i
\(922\) −0.844759 −0.0278207
\(923\) 0 0
\(924\) −9.58634 −0.315367
\(925\) − 0.0985412i − 0.00324001i
\(926\) 6.50221 0.213676
\(927\) −47.3635 −1.55562
\(928\) 4.82757i 0.158473i
\(929\) 19.2707i 0.632252i 0.948717 + 0.316126i \(0.102382\pi\)
−0.948717 + 0.316126i \(0.897618\pi\)
\(930\) 3.12712i 0.102542i
\(931\) 7.23602i 0.237151i
\(932\) −7.47405 −0.244821
\(933\) −22.3725 −0.732442
\(934\) 9.52759i 0.311752i
\(935\) −9.99172 −0.326764
\(936\) 0 0
\(937\) −50.9507 −1.66449 −0.832244 0.554410i \(-0.812944\pi\)
−0.832244 + 0.554410i \(0.812944\pi\)
\(938\) 1.64086i 0.0535761i
\(939\) −71.5052 −2.33349
\(940\) 10.9861 0.358328
\(941\) − 24.3014i − 0.792204i −0.918207 0.396102i \(-0.870363\pi\)
0.918207 0.396102i \(-0.129637\pi\)
\(942\) − 7.60645i − 0.247831i
\(943\) 13.2633i 0.431911i
\(944\) 0.896206i 0.0291690i
\(945\) 27.1257 0.882398
\(946\) 28.9234 0.940380
\(947\) − 25.6665i − 0.834049i −0.908895 0.417024i \(-0.863073\pi\)
0.908895 0.417024i \(-0.136927\pi\)
\(948\) −14.2516 −0.462872
\(949\) 0 0
\(950\) 18.4901 0.599898
\(951\) 105.952i 3.43572i
\(952\) −2.22961 −0.0722621
\(953\) −4.80983 −0.155806 −0.0779029 0.996961i \(-0.524822\pi\)
−0.0779029 + 0.996961i \(0.524822\pi\)
\(954\) − 48.9909i − 1.58614i
\(955\) − 5.09934i − 0.165011i
\(956\) 19.8696i 0.642628i
\(957\) 46.2788i 1.49598i
\(958\) −2.84198 −0.0918203
\(959\) 0.458997 0.0148218
\(960\) − 5.22961i − 0.168785i
\(961\) 30.6424 0.988466
\(962\) 0 0
\(963\) −8.42400 −0.271460
\(964\) 10.6445i 0.342837i
\(965\) 34.5125 1.11100
\(966\) 5.57677 0.179430
\(967\) 58.2044i 1.87173i 0.352362 + 0.935864i \(0.385378\pi\)
−0.352362 + 0.935864i \(0.614622\pi\)
\(968\) − 2.78525i − 0.0895213i
\(969\) − 53.9615i − 1.73349i
\(970\) 7.64312i 0.245406i
\(971\) −36.1337 −1.15959 −0.579793 0.814764i \(-0.696867\pi\)
−0.579793 + 0.814764i \(0.696867\pi\)
\(972\) −59.8843 −1.92079
\(973\) − 15.3146i − 0.490964i
\(974\) 5.26374 0.168661
\(975\) 0 0
\(976\) −14.2569 −0.456353
\(977\) − 16.7194i − 0.534901i −0.963572 0.267451i \(-0.913819\pi\)
0.963572 0.267451i \(-0.0861812\pi\)
\(978\) −0.0327533 −0.00104733
\(979\) 6.93950 0.221787
\(980\) 1.56356i 0.0499460i
\(981\) − 115.874i − 3.69956i
\(982\) − 22.8913i − 0.730492i
\(983\) − 46.4764i − 1.48237i −0.671303 0.741183i \(-0.734265\pi\)
0.671303 0.741183i \(-0.265735\pi\)
\(984\) 26.6060 0.848167
\(985\) −8.24472 −0.262699
\(986\) 10.7636i 0.342783i
\(987\) 23.5010 0.748045
\(988\) 0 0
\(989\) −16.8259 −0.535033
\(990\) − 36.6887i − 1.16604i
\(991\) 35.3510 1.12296 0.561480 0.827490i \(-0.310232\pi\)
0.561480 + 0.827490i \(0.310232\pi\)
\(992\) 0.597963 0.0189853
\(993\) − 82.5118i − 2.61843i
\(994\) − 2.29466i − 0.0727823i
\(995\) − 13.8650i − 0.439551i
\(996\) 16.5505i 0.524422i
\(997\) 1.48780 0.0471190 0.0235595 0.999722i \(-0.492500\pi\)
0.0235595 + 0.999722i \(0.492500\pi\)
\(998\) −6.79877 −0.215211
\(999\) − 0.669028i − 0.0211671i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2366.2.d.r.337.12 12
13.3 even 3 182.2.m.b.43.1 12
13.4 even 6 182.2.m.b.127.1 yes 12
13.5 odd 4 2366.2.a.bh.1.6 6
13.8 odd 4 2366.2.a.bf.1.6 6
13.12 even 2 inner 2366.2.d.r.337.6 12
39.17 odd 6 1638.2.bj.g.127.6 12
39.29 odd 6 1638.2.bj.g.1135.4 12
52.3 odd 6 1456.2.cc.d.225.6 12
52.43 odd 6 1456.2.cc.d.673.6 12
91.3 odd 6 1274.2.v.d.667.4 12
91.4 even 6 1274.2.o.d.569.1 12
91.16 even 3 1274.2.o.d.459.4 12
91.17 odd 6 1274.2.o.e.569.3 12
91.30 even 6 1274.2.v.e.361.6 12
91.55 odd 6 1274.2.m.c.589.3 12
91.68 odd 6 1274.2.o.e.459.6 12
91.69 odd 6 1274.2.m.c.491.3 12
91.81 even 3 1274.2.v.e.667.6 12
91.82 odd 6 1274.2.v.d.361.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.m.b.43.1 12 13.3 even 3
182.2.m.b.127.1 yes 12 13.4 even 6
1274.2.m.c.491.3 12 91.69 odd 6
1274.2.m.c.589.3 12 91.55 odd 6
1274.2.o.d.459.4 12 91.16 even 3
1274.2.o.d.569.1 12 91.4 even 6
1274.2.o.e.459.6 12 91.68 odd 6
1274.2.o.e.569.3 12 91.17 odd 6
1274.2.v.d.361.4 12 91.82 odd 6
1274.2.v.d.667.4 12 91.3 odd 6
1274.2.v.e.361.6 12 91.30 even 6
1274.2.v.e.667.6 12 91.81 even 3
1456.2.cc.d.225.6 12 52.3 odd 6
1456.2.cc.d.673.6 12 52.43 odd 6
1638.2.bj.g.127.6 12 39.17 odd 6
1638.2.bj.g.1135.4 12 39.29 odd 6
2366.2.a.bf.1.6 6 13.8 odd 4
2366.2.a.bh.1.6 6 13.5 odd 4
2366.2.d.r.337.6 12 13.12 even 2 inner
2366.2.d.r.337.12 12 1.1 even 1 trivial