Properties

Label 1274.2.v.d.361.4
Level $1274$
Weight $2$
Character 1274.361
Analytic conductor $10.173$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(361,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.v (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-4,6,0,-6,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 39 x^{10} - 140 x^{9} + 460 x^{8} - 1066 x^{7} + 2127 x^{6} - 3172 x^{5} + \cdots + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.4
Root \(0.500000 + 2.47866i\) of defining polynomial
Character \(\chi\) \(=\) 1274.361
Dual form 1274.2.v.d.667.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} -3.34469 q^{3} +(0.500000 + 0.866025i) q^{4} +(1.35408 - 0.781779i) q^{5} +(-2.89658 - 1.67234i) q^{6} +1.00000i q^{8} +8.18694 q^{9} +1.56356 q^{10} -2.86614i q^{11} +(-1.67234 - 2.89658i) q^{12} +(-2.99598 + 2.00602i) q^{13} +(-4.52898 + 2.61481i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.11481 + 1.93090i) q^{17} +(7.09010 + 4.09347i) q^{18} -7.23602i q^{19} +(1.35408 + 0.781779i) q^{20} +(1.43307 - 2.48215i) q^{22} +(-0.833676 + 1.44397i) q^{23} -3.34469i q^{24} +(-1.27764 + 2.21294i) q^{25} +(-3.59760 + 0.239275i) q^{26} -17.3487 q^{27} +(-2.41379 - 4.18080i) q^{29} -5.22961 q^{30} +(0.517851 + 0.298982i) q^{31} +(-0.866025 + 0.500000i) q^{32} +9.58634i q^{33} +2.22961i q^{34} +(4.09347 + 7.09010i) q^{36} +(-0.0333971 - 0.0192818i) q^{37} +(3.61801 - 6.26657i) q^{38} +(10.0206 - 6.70951i) q^{39} +(0.781779 + 1.35408i) q^{40} +(6.88896 - 3.97734i) q^{41} +(5.04571 - 8.73942i) q^{43} +(2.48215 - 1.43307i) q^{44} +(11.0858 - 6.40037i) q^{45} +(-1.44397 + 0.833676i) q^{46} +(6.08501 - 3.51318i) q^{47} +(1.67234 - 2.89658i) q^{48} +(-2.21294 + 1.27764i) q^{50} +(-3.72868 - 6.45826i) q^{51} +(-3.23525 - 1.59158i) q^{52} +(2.99202 - 5.18233i) q^{53} +(-15.0244 - 8.67434i) q^{54} +(-2.24069 - 3.88098i) q^{55} +24.2022i q^{57} -4.82757i q^{58} +(0.776138 - 0.448103i) q^{59} +(-4.52898 - 2.61481i) q^{60} +14.2569 q^{61} +(0.298982 + 0.517851i) q^{62} -1.00000 q^{64} +(-2.48853 + 5.05850i) q^{65} +(-4.79317 + 8.30201i) q^{66} -1.64086i q^{67} +(-1.11481 + 1.93090i) q^{68} +(2.78838 - 4.82962i) q^{69} +(-1.98724 - 1.14733i) q^{71} +8.18694i q^{72} +(-9.72351 - 5.61387i) q^{73} +(-0.0192818 - 0.0333971i) q^{74} +(4.27332 - 7.40161i) q^{75} +(6.26657 - 3.61801i) q^{76} +(12.0329 - 0.800299i) q^{78} +(-2.13049 - 3.69011i) q^{79} +1.56356i q^{80} +33.4651 q^{81} +7.95469 q^{82} -4.94829i q^{83} +(3.01907 + 1.74306i) q^{85} +(8.73942 - 5.04571i) q^{86} +(8.07337 + 13.9835i) q^{87} +2.86614 q^{88} +(2.09682 + 1.21060i) q^{89} +12.8007 q^{90} -1.66735 q^{92} +(-1.73205 - 1.00000i) q^{93} +7.02636 q^{94} +(-5.65696 - 9.79815i) q^{95} +(2.89658 - 1.67234i) q^{96} +(4.23338 + 2.44414i) q^{97} -23.4649i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} + 6 q^{4} - 6 q^{6} + 12 q^{9} - 4 q^{10} - 2 q^{12} + 8 q^{13} - 6 q^{15} - 6 q^{16} - 4 q^{17} - 2 q^{22} - 6 q^{23} + 12 q^{25} - 16 q^{26} - 40 q^{27} - 10 q^{29} - 28 q^{30} + 18 q^{31}+ \cdots - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) −3.34469 −1.93106 −0.965528 0.260298i \(-0.916179\pi\)
−0.965528 + 0.260298i \(0.916179\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.35408 0.781779i 0.605563 0.349622i −0.165664 0.986182i \(-0.552977\pi\)
0.771227 + 0.636560i \(0.219643\pi\)
\(6\) −2.89658 1.67234i −1.18253 0.682732i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 8.18694 2.72898
\(10\) 1.56356 0.494440
\(11\) 2.86614i 0.864173i −0.901832 0.432087i \(-0.857777\pi\)
0.901832 0.432087i \(-0.142223\pi\)
\(12\) −1.67234 2.89658i −0.482764 0.836172i
\(13\) −2.99598 + 2.00602i −0.830935 + 0.556370i
\(14\) 0 0
\(15\) −4.52898 + 2.61481i −1.16938 + 0.675140i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.11481 + 1.93090i 0.270380 + 0.468312i 0.968959 0.247221i \(-0.0795173\pi\)
−0.698579 + 0.715533i \(0.746184\pi\)
\(18\) 7.09010 + 4.09347i 1.67115 + 0.964840i
\(19\) 7.23602i 1.66006i −0.557722 0.830028i \(-0.688324\pi\)
0.557722 0.830028i \(-0.311676\pi\)
\(20\) 1.35408 + 0.781779i 0.302782 + 0.174811i
\(21\) 0 0
\(22\) 1.43307 2.48215i 0.305531 0.529196i
\(23\) −0.833676 + 1.44397i −0.173833 + 0.301088i −0.939757 0.341843i \(-0.888949\pi\)
0.765924 + 0.642932i \(0.222282\pi\)
\(24\) 3.34469i 0.682732i
\(25\) −1.27764 + 2.21294i −0.255529 + 0.442589i
\(26\) −3.59760 + 0.239275i −0.705548 + 0.0469256i
\(27\) −17.3487 −3.33876
\(28\) 0 0
\(29\) −2.41379 4.18080i −0.448229 0.776356i 0.550042 0.835137i \(-0.314612\pi\)
−0.998271 + 0.0587816i \(0.981278\pi\)
\(30\) −5.22961 −0.954792
\(31\) 0.517851 + 0.298982i 0.0930088 + 0.0536987i 0.545783 0.837927i \(-0.316232\pi\)
−0.452774 + 0.891625i \(0.649566\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 9.58634i 1.66877i
\(34\) 2.22961i 0.382375i
\(35\) 0 0
\(36\) 4.09347 + 7.09010i 0.682245 + 1.18168i
\(37\) −0.0333971 0.0192818i −0.00549045 0.00316991i 0.497252 0.867606i \(-0.334342\pi\)
−0.502743 + 0.864436i \(0.667676\pi\)
\(38\) 3.61801 6.26657i 0.586918 1.01657i
\(39\) 10.0206 6.70951i 1.60458 1.07438i
\(40\) 0.781779 + 1.35408i 0.123610 + 0.214099i
\(41\) 6.88896 3.97734i 1.07588 0.621157i 0.146095 0.989271i \(-0.453330\pi\)
0.929781 + 0.368114i \(0.119996\pi\)
\(42\) 0 0
\(43\) 5.04571 8.73942i 0.769463 1.33275i −0.168391 0.985720i \(-0.553857\pi\)
0.937854 0.347029i \(-0.112809\pi\)
\(44\) 2.48215 1.43307i 0.374198 0.216043i
\(45\) 11.0858 6.40037i 1.65257 0.954111i
\(46\) −1.44397 + 0.833676i −0.212902 + 0.122919i
\(47\) 6.08501 3.51318i 0.887590 0.512450i 0.0144363 0.999896i \(-0.495405\pi\)
0.873153 + 0.487446i \(0.162071\pi\)
\(48\) 1.67234 2.89658i 0.241382 0.418086i
\(49\) 0 0
\(50\) −2.21294 + 1.27764i −0.312958 + 0.180686i
\(51\) −3.72868 6.45826i −0.522119 0.904337i
\(52\) −3.23525 1.59158i −0.448649 0.220713i
\(53\) 2.99202 5.18233i 0.410985 0.711848i −0.584012 0.811745i \(-0.698518\pi\)
0.994998 + 0.0998972i \(0.0318514\pi\)
\(54\) −15.0244 8.67434i −2.04456 1.18043i
\(55\) −2.24069 3.88098i −0.302134 0.523312i
\(56\) 0 0
\(57\) 24.2022i 3.20566i
\(58\) 4.82757i 0.633892i
\(59\) 0.776138 0.448103i 0.101044 0.0583381i −0.448626 0.893719i \(-0.648087\pi\)
0.549671 + 0.835381i \(0.314753\pi\)
\(60\) −4.52898 2.61481i −0.584688 0.337570i
\(61\) 14.2569 1.82541 0.912706 0.408616i \(-0.133989\pi\)
0.912706 + 0.408616i \(0.133989\pi\)
\(62\) 0.298982 + 0.517851i 0.0379707 + 0.0657672i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −2.48853 + 5.05850i −0.308664 + 0.627430i
\(66\) −4.79317 + 8.30201i −0.589998 + 1.02191i
\(67\) 1.64086i 0.200464i −0.994964 0.100232i \(-0.968042\pi\)
0.994964 0.100232i \(-0.0319584\pi\)
\(68\) −1.11481 + 1.93090i −0.135190 + 0.234156i
\(69\) 2.78838 4.82962i 0.335682 0.581418i
\(70\) 0 0
\(71\) −1.98724 1.14733i −0.235841 0.136163i 0.377422 0.926041i \(-0.376810\pi\)
−0.613264 + 0.789878i \(0.710144\pi\)
\(72\) 8.18694i 0.964840i
\(73\) −9.72351 5.61387i −1.13805 0.657054i −0.192104 0.981375i \(-0.561531\pi\)
−0.945947 + 0.324321i \(0.894864\pi\)
\(74\) −0.0192818 0.0333971i −0.00224147 0.00388233i
\(75\) 4.27332 7.40161i 0.493441 0.854664i
\(76\) 6.26657 3.61801i 0.718825 0.415014i
\(77\) 0 0
\(78\) 12.0329 0.800299i 1.36245 0.0906160i
\(79\) −2.13049 3.69011i −0.239699 0.415170i 0.720929 0.693009i \(-0.243715\pi\)
−0.960628 + 0.277839i \(0.910382\pi\)
\(80\) 1.56356i 0.174811i
\(81\) 33.4651 3.71835
\(82\) 7.95469 0.878449
\(83\) 4.94829i 0.543145i −0.962418 0.271572i \(-0.912456\pi\)
0.962418 0.271572i \(-0.0875437\pi\)
\(84\) 0 0
\(85\) 3.01907 + 1.74306i 0.327465 + 0.189062i
\(86\) 8.73942 5.04571i 0.942396 0.544092i
\(87\) 8.07337 + 13.9835i 0.865556 + 1.49919i
\(88\) 2.86614 0.305531
\(89\) 2.09682 + 1.21060i 0.222263 + 0.128323i 0.606997 0.794704i \(-0.292374\pi\)
−0.384735 + 0.923027i \(0.625707\pi\)
\(90\) 12.8007 1.34932
\(91\) 0 0
\(92\) −1.66735 −0.173833
\(93\) −1.73205 1.00000i −0.179605 0.103695i
\(94\) 7.02636 0.724714
\(95\) −5.65696 9.79815i −0.580392 1.00527i
\(96\) 2.89658 1.67234i 0.295631 0.170683i
\(97\) 4.23338 + 2.44414i 0.429835 + 0.248165i 0.699276 0.714852i \(-0.253506\pi\)
−0.269442 + 0.963017i \(0.586839\pi\)
\(98\) 0 0
\(99\) 23.4649i 2.35831i
\(100\) −2.55529 −0.255529
\(101\) 7.36747 0.733091 0.366545 0.930400i \(-0.380540\pi\)
0.366545 + 0.930400i \(0.380540\pi\)
\(102\) 7.45736i 0.738388i
\(103\) −2.89263 5.01017i −0.285019 0.493667i 0.687595 0.726094i \(-0.258667\pi\)
−0.972614 + 0.232427i \(0.925333\pi\)
\(104\) −2.00602 2.99598i −0.196706 0.293780i
\(105\) 0 0
\(106\) 5.18233 2.99202i 0.503352 0.290611i
\(107\) 0.514478 0.891102i 0.0497365 0.0861461i −0.840085 0.542454i \(-0.817495\pi\)
0.889822 + 0.456308i \(0.150829\pi\)
\(108\) −8.67434 15.0244i −0.834689 1.44572i
\(109\) −12.2573 7.07674i −1.17403 0.677829i −0.219407 0.975633i \(-0.570412\pi\)
−0.954627 + 0.297805i \(0.903746\pi\)
\(110\) 4.48137i 0.427282i
\(111\) 0.111703 + 0.0644917i 0.0106024 + 0.00612128i
\(112\) 0 0
\(113\) 6.77051 11.7269i 0.636916 1.10317i −0.349189 0.937052i \(-0.613543\pi\)
0.986106 0.166119i \(-0.0531237\pi\)
\(114\) −12.1011 + 20.9597i −1.13337 + 1.96306i
\(115\) 2.60700i 0.243104i
\(116\) 2.41379 4.18080i 0.224115 0.388178i
\(117\) −24.5279 + 16.4232i −2.26760 + 1.51832i
\(118\) 0.896206 0.0825025
\(119\) 0 0
\(120\) −2.61481 4.52898i −0.238698 0.413437i
\(121\) 2.78525 0.253205
\(122\) 12.3469 + 7.12846i 1.11783 + 0.645381i
\(123\) −23.0414 + 13.3030i −2.07758 + 1.19949i
\(124\) 0.597963i 0.0536987i
\(125\) 11.8131i 1.05660i
\(126\) 0 0
\(127\) 4.92583 + 8.53178i 0.437096 + 0.757073i 0.997464 0.0711707i \(-0.0226735\pi\)
−0.560368 + 0.828244i \(0.689340\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) −16.8763 + 29.2306i −1.48588 + 2.57361i
\(130\) −4.68438 + 3.13653i −0.410848 + 0.275092i
\(131\) 7.39614 + 12.8105i 0.646204 + 1.11926i 0.984022 + 0.178047i \(0.0569778\pi\)
−0.337818 + 0.941211i \(0.609689\pi\)
\(132\) −8.30201 + 4.79317i −0.722597 + 0.417192i
\(133\) 0 0
\(134\) 0.820432 1.42103i 0.0708746 0.122758i
\(135\) −23.4915 + 13.5628i −2.02183 + 1.16730i
\(136\) −1.93090 + 1.11481i −0.165573 + 0.0955938i
\(137\) −0.397503 + 0.229499i −0.0339610 + 0.0196074i −0.516884 0.856055i \(-0.672908\pi\)
0.482923 + 0.875663i \(0.339575\pi\)
\(138\) 4.82962 2.78838i 0.411125 0.237363i
\(139\) 7.65731 13.2628i 0.649485 1.12494i −0.333762 0.942658i \(-0.608318\pi\)
0.983246 0.182283i \(-0.0583486\pi\)
\(140\) 0 0
\(141\) −20.3525 + 11.7505i −1.71399 + 0.989570i
\(142\) −1.14733 1.98724i −0.0962819 0.166765i
\(143\) 5.74953 + 8.58689i 0.480800 + 0.718072i
\(144\) −4.09347 + 7.09010i −0.341122 + 0.590841i
\(145\) −6.53693 3.77410i −0.542862 0.313422i
\(146\) −5.61387 9.72351i −0.464607 0.804723i
\(147\) 0 0
\(148\) 0.0385636i 0.00316991i
\(149\) 10.2372i 0.838660i −0.907834 0.419330i \(-0.862265\pi\)
0.907834 0.419330i \(-0.137735\pi\)
\(150\) 7.40161 4.27332i 0.604339 0.348915i
\(151\) −13.1731 7.60551i −1.07201 0.618927i −0.143283 0.989682i \(-0.545766\pi\)
−0.928731 + 0.370754i \(0.879099\pi\)
\(152\) 7.23602 0.586918
\(153\) 9.12684 + 15.8082i 0.737862 + 1.27801i
\(154\) 0 0
\(155\) 0.934950 0.0750970
\(156\) 10.8209 + 5.32335i 0.866366 + 0.426209i
\(157\) −1.13709 + 1.96950i −0.0907500 + 0.157184i −0.907827 0.419345i \(-0.862260\pi\)
0.817077 + 0.576529i \(0.195593\pi\)
\(158\) 4.26098i 0.338985i
\(159\) −10.0074 + 17.3333i −0.793636 + 1.37462i
\(160\) −0.781779 + 1.35408i −0.0618050 + 0.107049i
\(161\) 0 0
\(162\) 28.9816 + 16.7326i 2.27701 + 1.31463i
\(163\) 0.00979262i 0.000767017i −1.00000 0.000383509i \(-0.999878\pi\)
1.00000 0.000383509i \(-0.000122075\pi\)
\(164\) 6.88896 + 3.97734i 0.537938 + 0.310578i
\(165\) 7.49440 + 12.9807i 0.583438 + 1.01054i
\(166\) 2.47414 4.28534i 0.192031 0.332607i
\(167\) −21.6080 + 12.4754i −1.67208 + 0.965376i −0.705608 + 0.708603i \(0.749326\pi\)
−0.966472 + 0.256773i \(0.917341\pi\)
\(168\) 0 0
\(169\) 4.95177 12.0200i 0.380906 0.924614i
\(170\) 1.74306 + 3.01907i 0.133687 + 0.231552i
\(171\) 59.2408i 4.53026i
\(172\) 10.0914 0.769463
\(173\) −3.20550 −0.243709 −0.121855 0.992548i \(-0.538884\pi\)
−0.121855 + 0.992548i \(0.538884\pi\)
\(174\) 16.1467i 1.22408i
\(175\) 0 0
\(176\) 2.48215 + 1.43307i 0.187099 + 0.108022i
\(177\) −2.59594 + 1.49877i −0.195123 + 0.112654i
\(178\) 1.21060 + 2.09682i 0.0907383 + 0.157163i
\(179\) 15.8000 1.18094 0.590472 0.807058i \(-0.298942\pi\)
0.590472 + 0.807058i \(0.298942\pi\)
\(180\) 11.0858 + 6.40037i 0.826285 + 0.477056i
\(181\) −9.11907 −0.677815 −0.338908 0.940820i \(-0.610057\pi\)
−0.338908 + 0.940820i \(0.610057\pi\)
\(182\) 0 0
\(183\) −47.6850 −3.52497
\(184\) −1.44397 0.833676i −0.106451 0.0614594i
\(185\) −0.0602965 −0.00443308
\(186\) −1.00000 1.73205i −0.0733236 0.127000i
\(187\) 5.53423 3.19519i 0.404703 0.233655i
\(188\) 6.08501 + 3.51318i 0.443795 + 0.256225i
\(189\) 0 0
\(190\) 11.3139i 0.820799i
\(191\) −3.26137 −0.235984 −0.117992 0.993015i \(-0.537646\pi\)
−0.117992 + 0.993015i \(0.537646\pi\)
\(192\) 3.34469 0.241382
\(193\) 22.0730i 1.58885i 0.607361 + 0.794426i \(0.292228\pi\)
−0.607361 + 0.794426i \(0.707772\pi\)
\(194\) 2.44414 + 4.23338i 0.175479 + 0.303939i
\(195\) 8.32336 16.9191i 0.596048 1.21160i
\(196\) 0 0
\(197\) −4.56660 + 2.63653i −0.325357 + 0.187845i −0.653778 0.756687i \(-0.726817\pi\)
0.328421 + 0.944531i \(0.393484\pi\)
\(198\) 11.7324 20.3212i 0.833789 1.44416i
\(199\) −4.43381 7.67958i −0.314304 0.544391i 0.664985 0.746857i \(-0.268438\pi\)
−0.979289 + 0.202466i \(0.935105\pi\)
\(200\) −2.21294 1.27764i −0.156479 0.0903431i
\(201\) 5.48818i 0.387106i
\(202\) 6.38042 + 3.68373i 0.448924 + 0.259187i
\(203\) 0 0
\(204\) 3.72868 6.45826i 0.261060 0.452169i
\(205\) 6.21881 10.7713i 0.434340 0.752300i
\(206\) 5.78525i 0.403077i
\(207\) −6.82525 + 11.8217i −0.474388 + 0.821663i
\(208\) −0.239275 3.59760i −0.0165907 0.249449i
\(209\) −20.7394 −1.43458
\(210\) 0 0
\(211\) −3.28453 5.68898i −0.226117 0.391646i 0.730537 0.682873i \(-0.239270\pi\)
−0.956654 + 0.291227i \(0.905936\pi\)
\(212\) 5.98404 0.410985
\(213\) 6.64668 + 3.83746i 0.455423 + 0.262939i
\(214\) 0.891102 0.514478i 0.0609145 0.0351690i
\(215\) 15.7785i 1.07609i
\(216\) 17.3487i 1.18043i
\(217\) 0 0
\(218\) −7.07674 12.2573i −0.479297 0.830167i
\(219\) 32.5221 + 18.7766i 2.19764 + 1.26881i
\(220\) 2.24069 3.88098i 0.151067 0.261656i
\(221\) −7.21336 3.54861i −0.485223 0.238706i
\(222\) 0.0644917 + 0.111703i 0.00432840 + 0.00749700i
\(223\) 14.6463 8.45606i 0.980790 0.566260i 0.0782817 0.996931i \(-0.475057\pi\)
0.902509 + 0.430672i \(0.141723\pi\)
\(224\) 0 0
\(225\) −10.4600 + 18.1172i −0.697333 + 1.20782i
\(226\) 11.7269 6.77051i 0.780060 0.450368i
\(227\) −13.9709 + 8.06611i −0.927282 + 0.535367i −0.885951 0.463779i \(-0.846493\pi\)
−0.0413312 + 0.999146i \(0.513160\pi\)
\(228\) −20.9597 + 12.1011i −1.38809 + 0.801415i
\(229\) −5.98583 + 3.45592i −0.395555 + 0.228374i −0.684564 0.728953i \(-0.740007\pi\)
0.289009 + 0.957326i \(0.406674\pi\)
\(230\) −1.30350 + 2.25773i −0.0859502 + 0.148870i
\(231\) 0 0
\(232\) 4.18080 2.41379i 0.274483 0.158473i
\(233\) −3.73702 6.47272i −0.244821 0.424042i 0.717261 0.696805i \(-0.245396\pi\)
−0.962081 + 0.272763i \(0.912062\pi\)
\(234\) −29.4533 + 1.95893i −1.92543 + 0.128059i
\(235\) 5.49306 9.51426i 0.358328 0.620642i
\(236\) 0.776138 + 0.448103i 0.0505222 + 0.0291690i
\(237\) 7.12582 + 12.3423i 0.462872 + 0.801717i
\(238\) 0 0
\(239\) 19.8696i 1.28526i 0.766179 + 0.642628i \(0.222156\pi\)
−0.766179 + 0.642628i \(0.777844\pi\)
\(240\) 5.22961i 0.337570i
\(241\) −9.21842 + 5.32226i −0.593811 + 0.342837i −0.766603 0.642121i \(-0.778054\pi\)
0.172792 + 0.984958i \(0.444721\pi\)
\(242\) 2.41210 + 1.39263i 0.155055 + 0.0895213i
\(243\) −59.8843 −3.84158
\(244\) 7.12846 + 12.3469i 0.456353 + 0.790427i
\(245\) 0 0
\(246\) −26.6060 −1.69633
\(247\) 14.5156 + 21.6789i 0.923605 + 1.37940i
\(248\) −0.298982 + 0.517851i −0.0189853 + 0.0328836i
\(249\) 16.5505i 1.04884i
\(250\) −5.90656 + 10.2305i −0.373564 + 0.647032i
\(251\) −7.95696 + 13.7819i −0.502239 + 0.869904i 0.497757 + 0.867316i \(0.334157\pi\)
−0.999997 + 0.00258749i \(0.999176\pi\)
\(252\) 0 0
\(253\) 4.13861 + 2.38943i 0.260192 + 0.150222i
\(254\) 9.85165i 0.618148i
\(255\) −10.0979 5.83000i −0.632352 0.365089i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 15.5509 26.9350i 0.970039 1.68016i 0.274619 0.961553i \(-0.411448\pi\)
0.695420 0.718603i \(-0.255218\pi\)
\(258\) −29.2306 + 16.8763i −1.81982 + 1.05067i
\(259\) 0 0
\(260\) −5.62506 + 0.374120i −0.348851 + 0.0232019i
\(261\) −19.7615 34.2280i −1.22321 2.11866i
\(262\) 14.7923i 0.913871i
\(263\) −28.3747 −1.74966 −0.874829 0.484432i \(-0.839026\pi\)
−0.874829 + 0.484432i \(0.839026\pi\)
\(264\) −9.58634 −0.589998
\(265\) 9.35639i 0.574758i
\(266\) 0 0
\(267\) −7.01321 4.04908i −0.429202 0.247800i
\(268\) 1.42103 0.820432i 0.0868032 0.0501159i
\(269\) −10.7008 18.5344i −0.652441 1.13006i −0.982529 0.186111i \(-0.940412\pi\)
0.330088 0.943950i \(-0.392922\pi\)
\(270\) −27.1257 −1.65082
\(271\) 4.97667 + 2.87328i 0.302311 + 0.174539i 0.643481 0.765462i \(-0.277490\pi\)
−0.341170 + 0.940002i \(0.610823\pi\)
\(272\) −2.22961 −0.135190
\(273\) 0 0
\(274\) −0.458997 −0.0277290
\(275\) 6.34260 + 3.66190i 0.382473 + 0.220821i
\(276\) 5.57677 0.335682
\(277\) 13.3010 + 23.0380i 0.799180 + 1.38422i 0.920151 + 0.391564i \(0.128066\pi\)
−0.120971 + 0.992656i \(0.538601\pi\)
\(278\) 13.2628 7.65731i 0.795453 0.459255i
\(279\) 4.23962 + 2.44774i 0.253819 + 0.146543i
\(280\) 0 0
\(281\) 6.69143i 0.399177i 0.979880 + 0.199589i \(0.0639606\pi\)
−0.979880 + 0.199589i \(0.936039\pi\)
\(282\) −23.5010 −1.39946
\(283\) 19.9338 1.18494 0.592472 0.805591i \(-0.298152\pi\)
0.592472 + 0.805591i \(0.298152\pi\)
\(284\) 2.29466i 0.136163i
\(285\) 18.9208 + 32.7717i 1.12077 + 1.94123i
\(286\) 0.685794 + 10.3112i 0.0405519 + 0.609716i
\(287\) 0 0
\(288\) −7.09010 + 4.09347i −0.417788 + 0.241210i
\(289\) 6.01442 10.4173i 0.353789 0.612781i
\(290\) −3.77410 6.53693i −0.221623 0.383861i
\(291\) −14.1593 8.17490i −0.830035 0.479221i
\(292\) 11.2277i 0.657054i
\(293\) 7.67375 + 4.43044i 0.448305 + 0.258829i 0.707114 0.707099i \(-0.249997\pi\)
−0.258809 + 0.965929i \(0.583330\pi\)
\(294\) 0 0
\(295\) 0.700635 1.21354i 0.0407926 0.0706548i
\(296\) 0.0192818 0.0333971i 0.00112073 0.00194117i
\(297\) 49.7237i 2.88526i
\(298\) 5.11858 8.86563i 0.296511 0.513572i
\(299\) −0.398955 5.99847i −0.0230722 0.346900i
\(300\) 8.54664 0.493441
\(301\) 0 0
\(302\) −7.60551 13.1731i −0.437648 0.758028i
\(303\) −24.6419 −1.41564
\(304\) 6.26657 + 3.61801i 0.359413 + 0.207507i
\(305\) 19.3050 11.1458i 1.10540 0.638205i
\(306\) 18.2537i 1.04349i
\(307\) 8.34636i 0.476352i 0.971222 + 0.238176i \(0.0765495\pi\)
−0.971222 + 0.238176i \(0.923450\pi\)
\(308\) 0 0
\(309\) 9.67493 + 16.7575i 0.550387 + 0.953299i
\(310\) 0.809690 + 0.467475i 0.0459873 + 0.0265508i
\(311\) −3.34448 + 5.79281i −0.189648 + 0.328480i −0.945133 0.326686i \(-0.894068\pi\)
0.755485 + 0.655166i \(0.227401\pi\)
\(312\) 6.70951 + 10.0206i 0.379851 + 0.567305i
\(313\) −10.6894 18.5145i −0.604199 1.04650i −0.992177 0.124835i \(-0.960160\pi\)
0.387978 0.921669i \(-0.373174\pi\)
\(314\) −1.96950 + 1.13709i −0.111146 + 0.0641699i
\(315\) 0 0
\(316\) 2.13049 3.69011i 0.119849 0.207585i
\(317\) −27.4336 + 15.8388i −1.54083 + 0.889596i −0.542039 + 0.840353i \(0.682348\pi\)
−0.998787 + 0.0492433i \(0.984319\pi\)
\(318\) −17.3333 + 10.0074i −0.972002 + 0.561185i
\(319\) −11.9828 + 6.91825i −0.670906 + 0.387348i
\(320\) −1.35408 + 0.781779i −0.0756954 + 0.0437028i
\(321\) −1.72077 + 2.98046i −0.0960439 + 0.166353i
\(322\) 0 0
\(323\) 13.9720 8.06675i 0.777424 0.448846i
\(324\) 16.7326 + 28.9816i 0.929587 + 1.61009i
\(325\) −0.611416 9.19291i −0.0339152 0.509931i
\(326\) 0.00489631 0.00848066i 0.000271182 0.000469700i
\(327\) 40.9967 + 23.6695i 2.26713 + 1.30893i
\(328\) 3.97734 + 6.88896i 0.219612 + 0.380379i
\(329\) 0 0
\(330\) 14.9888i 0.825106i
\(331\) 24.6695i 1.35596i 0.735081 + 0.677979i \(0.237144\pi\)
−0.735081 + 0.677979i \(0.762856\pi\)
\(332\) 4.28534 2.47414i 0.235189 0.135786i
\(333\) −0.273420 0.157859i −0.0149833 0.00865062i
\(334\) −24.9508 −1.36525
\(335\) −1.28279 2.22186i −0.0700865 0.121393i
\(336\) 0 0
\(337\) 28.0871 1.53000 0.765002 0.644028i \(-0.222738\pi\)
0.765002 + 0.644028i \(0.222738\pi\)
\(338\) 10.2984 7.93372i 0.560156 0.431538i
\(339\) −22.6453 + 39.2227i −1.22992 + 2.13029i
\(340\) 3.48613i 0.189062i
\(341\) 0.856923 1.48423i 0.0464050 0.0803757i
\(342\) 29.6204 51.3040i 1.60169 2.77420i
\(343\) 0 0
\(344\) 8.73942 + 5.04571i 0.471198 + 0.272046i
\(345\) 8.71960i 0.469447i
\(346\) −2.77604 1.60275i −0.149241 0.0861643i
\(347\) 5.05398 + 8.75374i 0.271312 + 0.469926i 0.969198 0.246283i \(-0.0792093\pi\)
−0.697886 + 0.716209i \(0.745876\pi\)
\(348\) −8.07337 + 13.9835i −0.432778 + 0.749593i
\(349\) 15.0596 8.69465i 0.806121 0.465414i −0.0394863 0.999220i \(-0.512572\pi\)
0.845607 + 0.533806i \(0.179239\pi\)
\(350\) 0 0
\(351\) 51.9763 34.8018i 2.77429 1.85758i
\(352\) 1.43307 + 2.48215i 0.0763828 + 0.132299i
\(353\) 3.32659i 0.177056i −0.996074 0.0885282i \(-0.971784\pi\)
0.996074 0.0885282i \(-0.0282163\pi\)
\(354\) −2.99753 −0.159317
\(355\) −3.58784 −0.190423
\(356\) 2.42120i 0.128323i
\(357\) 0 0
\(358\) 13.6832 + 7.89998i 0.723177 + 0.417527i
\(359\) 6.94911 4.01207i 0.366760 0.211749i −0.305282 0.952262i \(-0.598751\pi\)
0.672042 + 0.740513i \(0.265417\pi\)
\(360\) 6.40037 + 11.0858i 0.337329 + 0.584271i
\(361\) −33.3599 −1.75579
\(362\) −7.89735 4.55954i −0.415075 0.239644i
\(363\) −9.31579 −0.488952
\(364\) 0 0
\(365\) −17.5552 −0.918882
\(366\) −41.2964 23.8425i −2.15860 1.24627i
\(367\) −1.03908 −0.0542395 −0.0271198 0.999632i \(-0.508634\pi\)
−0.0271198 + 0.999632i \(0.508634\pi\)
\(368\) −0.833676 1.44397i −0.0434583 0.0752721i
\(369\) 56.3995 32.5623i 2.93604 1.69512i
\(370\) −0.0522183 0.0301482i −0.00271470 0.00156733i
\(371\) 0 0
\(372\) 2.00000i 0.103695i
\(373\) 27.3124 1.41418 0.707092 0.707122i \(-0.250007\pi\)
0.707092 + 0.707122i \(0.250007\pi\)
\(374\) 6.39038 0.330438
\(375\) 39.5112i 2.04035i
\(376\) 3.51318 + 6.08501i 0.181178 + 0.313810i
\(377\) 15.6184 + 7.68349i 0.804390 + 0.395720i
\(378\) 0 0
\(379\) −1.91535 + 1.10583i −0.0983850 + 0.0568026i −0.548385 0.836226i \(-0.684757\pi\)
0.450000 + 0.893028i \(0.351424\pi\)
\(380\) 5.65696 9.79815i 0.290196 0.502634i
\(381\) −16.4754 28.5361i −0.844058 1.46195i
\(382\) −2.82443 1.63068i −0.144510 0.0834331i
\(383\) 22.3386i 1.14145i 0.821142 + 0.570724i \(0.193337\pi\)
−0.821142 + 0.570724i \(0.806663\pi\)
\(384\) 2.89658 + 1.67234i 0.147816 + 0.0853414i
\(385\) 0 0
\(386\) −11.0365 + 19.1158i −0.561744 + 0.972969i
\(387\) 41.3089 71.5491i 2.09985 3.63704i
\(388\) 4.88829i 0.248165i
\(389\) 6.13022 10.6178i 0.310814 0.538346i −0.667725 0.744408i \(-0.732732\pi\)
0.978539 + 0.206062i \(0.0660649\pi\)
\(390\) 15.6678 10.4907i 0.793370 0.531217i
\(391\) −3.71755 −0.188004
\(392\) 0 0
\(393\) −24.7378 42.8471i −1.24786 2.16135i
\(394\) −5.27305 −0.265653
\(395\) −5.76971 3.33114i −0.290305 0.167608i
\(396\) 20.3212 11.7324i 1.02118 0.589578i
\(397\) 2.93517i 0.147312i 0.997284 + 0.0736561i \(0.0234667\pi\)
−0.997284 + 0.0736561i \(0.976533\pi\)
\(398\) 8.86762i 0.444493i
\(399\) 0 0
\(400\) −1.27764 2.21294i −0.0638822 0.110647i
\(401\) −18.9229 10.9251i −0.944963 0.545575i −0.0534502 0.998571i \(-0.517022\pi\)
−0.891513 + 0.452996i \(0.850355\pi\)
\(402\) −2.74409 + 4.75290i −0.136863 + 0.237053i
\(403\) −2.15123 + 0.143077i −0.107161 + 0.00712719i
\(404\) 3.68373 + 6.38042i 0.183273 + 0.317438i
\(405\) 45.3145 26.1623i 2.25169 1.30002i
\(406\) 0 0
\(407\) −0.0552644 + 0.0957207i −0.00273935 + 0.00474470i
\(408\) 6.45826 3.72868i 0.319731 0.184597i
\(409\) −6.39292 + 3.69095i −0.316109 + 0.182506i −0.649657 0.760227i \(-0.725088\pi\)
0.333548 + 0.942733i \(0.391754\pi\)
\(410\) 10.7713 6.21881i 0.531956 0.307125i
\(411\) 1.32952 0.767601i 0.0655806 0.0378630i
\(412\) 2.89263 5.01017i 0.142509 0.246834i
\(413\) 0 0
\(414\) −11.8217 + 6.82525i −0.581004 + 0.335443i
\(415\) −3.86846 6.70038i −0.189895 0.328909i
\(416\) 1.59158 3.23525i 0.0780338 0.158621i
\(417\) −25.6113 + 44.3601i −1.25419 + 2.17232i
\(418\) −17.9609 10.3697i −0.878495 0.507199i
\(419\) −4.29137 7.43287i −0.209647 0.363119i 0.741956 0.670448i \(-0.233898\pi\)
−0.951603 + 0.307329i \(0.900565\pi\)
\(420\) 0 0
\(421\) 7.49525i 0.365296i −0.983178 0.182648i \(-0.941533\pi\)
0.983178 0.182648i \(-0.0584669\pi\)
\(422\) 6.56907i 0.319777i
\(423\) 49.8176 28.7622i 2.42221 1.39847i
\(424\) 5.18233 + 2.99202i 0.251676 + 0.145305i
\(425\) −5.69730 −0.276360
\(426\) 3.83746 + 6.64668i 0.185926 + 0.322033i
\(427\) 0 0
\(428\) 1.02896 0.0497365
\(429\) −19.2304 28.7205i −0.928452 1.38664i
\(430\) 7.88925 13.6646i 0.380454 0.658965i
\(431\) 16.4791i 0.793772i −0.917868 0.396886i \(-0.870091\pi\)
0.917868 0.396886i \(-0.129909\pi\)
\(432\) 8.67434 15.0244i 0.417344 0.722862i
\(433\) 12.7805 22.1365i 0.614192 1.06381i −0.376333 0.926484i \(-0.622815\pi\)
0.990526 0.137328i \(-0.0438515\pi\)
\(434\) 0 0
\(435\) 21.8640 + 12.6232i 1.04830 + 0.605235i
\(436\) 14.1535i 0.677829i
\(437\) 10.4486 + 6.03249i 0.499823 + 0.288573i
\(438\) 18.7766 + 32.5221i 0.897183 + 1.55397i
\(439\) −4.60420 + 7.97470i −0.219746 + 0.380612i −0.954730 0.297473i \(-0.903856\pi\)
0.734984 + 0.678084i \(0.237190\pi\)
\(440\) 3.88098 2.24069i 0.185019 0.106821i
\(441\) 0 0
\(442\) −4.47264 6.67987i −0.212742 0.317729i
\(443\) 3.10379 + 5.37593i 0.147466 + 0.255418i 0.930290 0.366825i \(-0.119555\pi\)
−0.782824 + 0.622243i \(0.786222\pi\)
\(444\) 0.128983i 0.00612128i
\(445\) 3.78569 0.179459
\(446\) 16.9121 0.800812
\(447\) 34.2401i 1.61950i
\(448\) 0 0
\(449\) 4.51968 + 2.60944i 0.213297 + 0.123147i 0.602843 0.797860i \(-0.294035\pi\)
−0.389546 + 0.921007i \(0.627368\pi\)
\(450\) −18.1172 + 10.4600i −0.854055 + 0.493089i
\(451\) −11.3996 19.7447i −0.536787 0.929743i
\(452\) 13.5410 0.636916
\(453\) 44.0600 + 25.4380i 2.07012 + 1.19518i
\(454\) −16.1322 −0.757123
\(455\) 0 0
\(456\) −24.2022 −1.13337
\(457\) 29.3870 + 16.9666i 1.37467 + 0.793664i 0.991511 0.130021i \(-0.0415043\pi\)
0.383155 + 0.923684i \(0.374838\pi\)
\(458\) −6.91184 −0.322969
\(459\) −19.3404 33.4986i −0.902733 1.56358i
\(460\) −2.25773 + 1.30350i −0.105267 + 0.0607760i
\(461\) −0.731583 0.422380i −0.0340732 0.0196722i 0.482867 0.875694i \(-0.339596\pi\)
−0.516940 + 0.856022i \(0.672929\pi\)
\(462\) 0 0
\(463\) 6.50221i 0.302183i 0.988520 + 0.151092i \(0.0482789\pi\)
−0.988520 + 0.151092i \(0.951721\pi\)
\(464\) 4.82757 0.224115
\(465\) −3.12712 −0.145016
\(466\) 7.47405i 0.346229i
\(467\) 4.76379 + 8.25113i 0.220442 + 0.381817i 0.954942 0.296792i \(-0.0959167\pi\)
−0.734500 + 0.678608i \(0.762583\pi\)
\(468\) −26.4868 13.0302i −1.22435 0.602321i
\(469\) 0 0
\(470\) 9.51426 5.49306i 0.438860 0.253376i
\(471\) 3.80322 6.58738i 0.175243 0.303530i
\(472\) 0.448103 + 0.776138i 0.0206256 + 0.0357246i
\(473\) −25.0484 14.4617i −1.15173 0.664949i
\(474\) 14.2516i 0.654599i
\(475\) 16.0129 + 9.24505i 0.734722 + 0.424192i
\(476\) 0 0
\(477\) 24.4955 42.4274i 1.12157 1.94262i
\(478\) −9.93478 + 17.2075i −0.454406 + 0.787055i
\(479\) 2.84198i 0.129854i 0.997890 + 0.0649268i \(0.0206814\pi\)
−0.997890 + 0.0649268i \(0.979319\pi\)
\(480\) 2.61481 4.52898i 0.119349 0.206719i
\(481\) 0.138737 0.00922730i 0.00632585 0.000420729i
\(482\) −10.6445 −0.484844
\(483\) 0 0
\(484\) 1.39263 + 2.41210i 0.0633011 + 0.109641i
\(485\) 7.64312 0.347056
\(486\) −51.8613 29.9422i −2.35248 1.35820i
\(487\) 4.55853 2.63187i 0.206567 0.119261i −0.393148 0.919475i \(-0.628614\pi\)
0.599715 + 0.800214i \(0.295281\pi\)
\(488\) 14.2569i 0.645381i
\(489\) 0.0327533i 0.00148115i
\(490\) 0 0
\(491\) 11.4457 + 19.8245i 0.516536 + 0.894666i 0.999816 + 0.0192004i \(0.00611205\pi\)
−0.483280 + 0.875466i \(0.660555\pi\)
\(492\) −23.0414 13.3030i −1.03879 0.599745i
\(493\) 5.38181 9.32157i 0.242384 0.419822i
\(494\) 1.73140 + 26.0323i 0.0778992 + 1.17125i
\(495\) −18.3444 31.7734i −0.824517 1.42811i
\(496\) −0.517851 + 0.298982i −0.0232522 + 0.0134247i
\(497\) 0 0
\(498\) −8.27524 + 14.3331i −0.370822 + 0.642283i
\(499\) −5.88791 + 3.39938i −0.263579 + 0.152177i −0.625966 0.779850i \(-0.715295\pi\)
0.362387 + 0.932028i \(0.381962\pi\)
\(500\) −10.2305 + 5.90656i −0.457520 + 0.264150i
\(501\) 72.2721 41.7263i 3.22888 1.86419i
\(502\) −13.7819 + 7.95696i −0.615115 + 0.355137i
\(503\) 5.40300 9.35827i 0.240908 0.417265i −0.720065 0.693906i \(-0.755888\pi\)
0.960973 + 0.276642i \(0.0892215\pi\)
\(504\) 0 0
\(505\) 9.97615 5.75973i 0.443933 0.256305i
\(506\) 2.38943 + 4.13861i 0.106223 + 0.183984i
\(507\) −16.5621 + 40.2031i −0.735550 + 1.78548i
\(508\) −4.92583 + 8.53178i −0.218548 + 0.378537i
\(509\) −23.6593 13.6597i −1.04868 0.605455i −0.126400 0.991979i \(-0.540342\pi\)
−0.922279 + 0.386524i \(0.873676\pi\)
\(510\) −5.83000 10.0979i −0.258157 0.447141i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 125.535i 5.54252i
\(514\) 26.9350 15.5509i 1.18805 0.685921i
\(515\) −7.83369 4.52279i −0.345194 0.199298i
\(516\) −33.7526 −1.48588
\(517\) −10.0693 17.4405i −0.442846 0.767031i
\(518\) 0 0
\(519\) 10.7214 0.470616
\(520\) −5.05850 2.48853i −0.221830 0.109129i
\(521\) −1.81790 + 3.14870i −0.0796437 + 0.137947i −0.903096 0.429438i \(-0.858712\pi\)
0.823453 + 0.567385i \(0.192045\pi\)
\(522\) 39.5230i 1.72988i
\(523\) −3.59223 + 6.22193i −0.157077 + 0.272066i −0.933813 0.357760i \(-0.883541\pi\)
0.776736 + 0.629826i \(0.216874\pi\)
\(524\) −7.39614 + 12.8105i −0.323102 + 0.559629i
\(525\) 0 0
\(526\) −24.5732 14.1873i −1.07144 0.618597i
\(527\) 1.33323i 0.0580762i
\(528\) −8.30201 4.79317i −0.361299 0.208596i
\(529\) 10.1100 + 17.5110i 0.439564 + 0.761347i
\(530\) 4.67819 8.10287i 0.203208 0.351966i
\(531\) 6.35419 3.66859i 0.275748 0.159203i
\(532\) 0 0
\(533\) −12.6606 + 25.7354i −0.548389 + 1.11473i
\(534\) −4.04908 7.01321i −0.175221 0.303491i
\(535\) 1.60883i 0.0695559i
\(536\) 1.64086 0.0708746
\(537\) −52.8459 −2.28047
\(538\) 21.4017i 0.922691i
\(539\) 0 0
\(540\) −23.4915 13.5628i −1.01091 0.583651i
\(541\) −0.385436 + 0.222531i −0.0165712 + 0.00956737i −0.508263 0.861202i \(-0.669712\pi\)
0.491692 + 0.870769i \(0.336379\pi\)
\(542\) 2.87328 + 4.97667i 0.123418 + 0.213766i
\(543\) 30.5004 1.30890
\(544\) −1.93090 1.11481i −0.0827867 0.0477969i
\(545\) −22.1298 −0.947935
\(546\) 0 0
\(547\) −5.67129 −0.242487 −0.121243 0.992623i \(-0.538688\pi\)
−0.121243 + 0.992623i \(0.538688\pi\)
\(548\) −0.397503 0.229499i −0.0169805 0.00980370i
\(549\) 116.721 4.98151
\(550\) 3.66190 + 6.34260i 0.156144 + 0.270450i
\(551\) −30.2524 + 17.4662i −1.28879 + 0.744085i
\(552\) 4.82962 + 2.78838i 0.205562 + 0.118682i
\(553\) 0 0
\(554\) 26.6020i 1.13021i
\(555\) 0.201673 0.00856054
\(556\) 15.3146 0.649485
\(557\) 26.5075i 1.12316i 0.827423 + 0.561579i \(0.189806\pi\)
−0.827423 + 0.561579i \(0.810194\pi\)
\(558\) 2.44774 + 4.23962i 0.103621 + 0.179477i
\(559\) 2.41462 + 36.3049i 0.102128 + 1.53553i
\(560\) 0 0
\(561\) −18.5103 + 10.6869i −0.781504 + 0.451202i
\(562\) −3.34571 + 5.79495i −0.141130 + 0.244445i
\(563\) 5.76880 + 9.99186i 0.243126 + 0.421107i 0.961603 0.274444i \(-0.0884938\pi\)
−0.718477 + 0.695551i \(0.755160\pi\)
\(564\) −20.3525 11.7505i −0.856993 0.494785i
\(565\) 21.1722i 0.890720i
\(566\) 17.2632 + 9.96692i 0.725627 + 0.418941i
\(567\) 0 0
\(568\) 1.14733 1.98724i 0.0481409 0.0833826i
\(569\) −16.0791 + 27.8497i −0.674069 + 1.16752i 0.302671 + 0.953095i \(0.402122\pi\)
−0.976740 + 0.214427i \(0.931212\pi\)
\(570\) 37.8416i 1.58501i
\(571\) 5.77702 10.0061i 0.241761 0.418742i −0.719455 0.694539i \(-0.755608\pi\)
0.961216 + 0.275797i \(0.0889418\pi\)
\(572\) −4.56170 + 9.27268i −0.190734 + 0.387710i
\(573\) 10.9083 0.455699
\(574\) 0 0
\(575\) −2.13028 3.68976i −0.0888389 0.153873i
\(576\) −8.18694 −0.341122
\(577\) 7.91591 + 4.57025i 0.329543 + 0.190262i 0.655638 0.755075i \(-0.272400\pi\)
−0.326095 + 0.945337i \(0.605733\pi\)
\(578\) 10.4173 6.01442i 0.433301 0.250167i
\(579\) 73.8274i 3.06816i
\(580\) 7.54819i 0.313422i
\(581\) 0 0
\(582\) −8.17490 14.1593i −0.338860 0.586923i
\(583\) −14.8533 8.57554i −0.615160 0.355163i
\(584\) 5.61387 9.72351i 0.232304 0.402362i
\(585\) −20.3735 + 41.4137i −0.842339 + 1.71224i
\(586\) 4.43044 + 7.67375i 0.183020 + 0.317000i
\(587\) −37.0629 + 21.3983i −1.52975 + 0.883201i −0.530378 + 0.847761i \(0.677950\pi\)
−0.999372 + 0.0354398i \(0.988717\pi\)
\(588\) 0 0
\(589\) 2.16344 3.74718i 0.0891428 0.154400i
\(590\) 1.21354 0.700635i 0.0499605 0.0288447i
\(591\) 15.2738 8.81836i 0.628282 0.362739i
\(592\) 0.0333971 0.0192818i 0.00137261 0.000792478i
\(593\) 12.3356 7.12195i 0.506561 0.292463i −0.224858 0.974392i \(-0.572192\pi\)
0.731419 + 0.681928i \(0.238858\pi\)
\(594\) −24.8619 + 43.0620i −1.02009 + 1.76686i
\(595\) 0 0
\(596\) 8.86563 5.11858i 0.363150 0.209665i
\(597\) 14.8297 + 25.6858i 0.606939 + 1.05125i
\(598\) 2.65373 5.39430i 0.108519 0.220589i
\(599\) −1.87367 + 3.24530i −0.0765563 + 0.132599i −0.901762 0.432233i \(-0.857726\pi\)
0.825206 + 0.564832i \(0.191059\pi\)
\(600\) 7.40161 + 4.27332i 0.302169 + 0.174458i
\(601\) 5.33462 + 9.23984i 0.217604 + 0.376901i 0.954075 0.299568i \(-0.0968426\pi\)
−0.736471 + 0.676469i \(0.763509\pi\)
\(602\) 0 0
\(603\) 13.4337i 0.547061i
\(604\) 15.2110i 0.618927i
\(605\) 3.77145 2.17745i 0.153331 0.0885259i
\(606\) −21.3405 12.3209i −0.866898 0.500504i
\(607\) −9.65256 −0.391785 −0.195893 0.980625i \(-0.562760\pi\)
−0.195893 + 0.980625i \(0.562760\pi\)
\(608\) 3.61801 + 6.26657i 0.146730 + 0.254143i
\(609\) 0 0
\(610\) 22.2915 0.902558
\(611\) −11.1830 + 22.7321i −0.452417 + 0.919641i
\(612\) −9.12684 + 15.8082i −0.368931 + 0.639007i
\(613\) 3.99489i 0.161352i −0.996740 0.0806761i \(-0.974292\pi\)
0.996740 0.0806761i \(-0.0257079\pi\)
\(614\) −4.17318 + 7.22816i −0.168416 + 0.291705i
\(615\) −20.8000 + 36.0266i −0.838736 + 1.45273i
\(616\) 0 0
\(617\) 2.80199 + 1.61773i 0.112804 + 0.0651273i 0.555340 0.831623i \(-0.312588\pi\)
−0.442537 + 0.896750i \(0.645921\pi\)
\(618\) 19.3499i 0.778365i
\(619\) −34.0070 19.6340i −1.36686 0.789156i −0.376333 0.926485i \(-0.622815\pi\)
−0.990526 + 0.137329i \(0.956148\pi\)
\(620\) 0.467475 + 0.809690i 0.0187742 + 0.0325179i
\(621\) 14.4632 25.0510i 0.580387 1.00526i
\(622\) −5.79281 + 3.34448i −0.232270 + 0.134101i
\(623\) 0 0
\(624\) 0.800299 + 12.0329i 0.0320376 + 0.481700i
\(625\) 2.84703 + 4.93120i 0.113881 + 0.197248i
\(626\) 21.3788i 0.854467i
\(627\) 69.3669 2.77025
\(628\) −2.27419 −0.0907500
\(629\) 0.0859819i 0.00342832i
\(630\) 0 0
\(631\) 25.4983 + 14.7215i 1.01507 + 0.586052i 0.912673 0.408691i \(-0.134015\pi\)
0.102400 + 0.994743i \(0.467348\pi\)
\(632\) 3.69011 2.13049i 0.146785 0.0847463i
\(633\) 10.9857 + 19.0279i 0.436644 + 0.756290i
\(634\) −31.6776 −1.25808
\(635\) 13.3399 + 7.70181i 0.529379 + 0.305637i
\(636\) −20.0147 −0.793636
\(637\) 0 0
\(638\) −13.8365 −0.547792
\(639\) −16.2694 9.39313i −0.643606 0.371586i
\(640\) −1.56356 −0.0618050
\(641\) 2.04559 + 3.54307i 0.0807961 + 0.139943i 0.903592 0.428394i \(-0.140920\pi\)
−0.822796 + 0.568337i \(0.807587\pi\)
\(642\) −2.98046 + 1.72077i −0.117629 + 0.0679133i
\(643\) −19.2672 11.1239i −0.759825 0.438685i 0.0694080 0.997588i \(-0.477889\pi\)
−0.829233 + 0.558903i \(0.811222\pi\)
\(644\) 0 0
\(645\) 52.7742i 2.07798i
\(646\) 16.1335 0.634764
\(647\) −49.8583 −1.96013 −0.980066 0.198670i \(-0.936338\pi\)
−0.980066 + 0.198670i \(0.936338\pi\)
\(648\) 33.4651i 1.31463i
\(649\) −1.28433 2.22452i −0.0504142 0.0873200i
\(650\) 4.06695 8.26700i 0.159519 0.324259i
\(651\) 0 0
\(652\) 0.00848066 0.00489631i 0.000332128 0.000191754i
\(653\) −3.70177 + 6.41165i −0.144861 + 0.250907i −0.929321 0.369272i \(-0.879607\pi\)
0.784460 + 0.620180i \(0.212940\pi\)
\(654\) 23.6695 + 40.9967i 0.925550 + 1.60310i
\(655\) 20.0299 + 11.5643i 0.782635 + 0.451854i
\(656\) 7.95469i 0.310578i
\(657\) −79.6058 45.9604i −3.10572 1.79309i
\(658\) 0 0
\(659\) −15.0410 + 26.0518i −0.585914 + 1.01483i 0.408847 + 0.912603i \(0.365931\pi\)
−0.994761 + 0.102230i \(0.967402\pi\)
\(660\) −7.49440 + 12.9807i −0.291719 + 0.505272i
\(661\) 26.6319i 1.03586i −0.855423 0.517931i \(-0.826702\pi\)
0.855423 0.517931i \(-0.173298\pi\)
\(662\) −12.3347 + 21.3644i −0.479404 + 0.830351i
\(663\) 24.1264 + 11.8690i 0.936993 + 0.460954i
\(664\) 4.94829 0.192031
\(665\) 0 0
\(666\) −0.157859 0.273420i −0.00611691 0.0105948i
\(667\) 8.04926 0.311669
\(668\) −21.6080 12.4754i −0.836040 0.482688i
\(669\) −48.9874 + 28.2829i −1.89396 + 1.09348i
\(670\) 2.56559i 0.0991172i
\(671\) 40.8623i 1.57747i
\(672\) 0 0
\(673\) −1.84652 3.19827i −0.0711783 0.123284i 0.828240 0.560374i \(-0.189343\pi\)
−0.899418 + 0.437090i \(0.856009\pi\)
\(674\) 24.3242 + 14.0436i 0.936932 + 0.540938i
\(675\) 22.1654 38.3917i 0.853148 1.47770i
\(676\) 12.8855 1.72163i 0.495596 0.0662166i
\(677\) −17.8266 30.8767i −0.685134 1.18669i −0.973395 0.229134i \(-0.926410\pi\)
0.288261 0.957552i \(-0.406923\pi\)
\(678\) −39.2227 + 22.6453i −1.50634 + 0.869686i
\(679\) 0 0
\(680\) −1.74306 + 3.01907i −0.0668434 + 0.115776i
\(681\) 46.7283 26.9786i 1.79063 1.03382i
\(682\) 1.48423 0.856923i 0.0568342 0.0328133i
\(683\) 26.2105 15.1326i 1.00292 0.579034i 0.0938062 0.995590i \(-0.470097\pi\)
0.909110 + 0.416557i \(0.136763\pi\)
\(684\) 51.3040 29.6204i 1.96166 1.13256i
\(685\) −0.358834 + 0.621519i −0.0137104 + 0.0237470i
\(686\) 0 0
\(687\) 20.0207 11.5590i 0.763838 0.441002i
\(688\) 5.04571 + 8.73942i 0.192366 + 0.333187i
\(689\) 1.43183 + 21.5282i 0.0545483 + 0.820159i
\(690\) 4.35980 7.55139i 0.165975 0.287477i
\(691\) 3.03377 + 1.75155i 0.115410 + 0.0666320i 0.556594 0.830785i \(-0.312108\pi\)
−0.441184 + 0.897417i \(0.645441\pi\)
\(692\) −1.60275 2.77604i −0.0609273 0.105529i
\(693\) 0 0
\(694\) 10.1080i 0.383693i
\(695\) 23.9453i 0.908297i
\(696\) −13.9835 + 8.07337i −0.530042 + 0.306020i
\(697\) 15.3597 + 8.86793i 0.581791 + 0.335897i
\(698\) 17.3893 0.658195
\(699\) 12.4992 + 21.6492i 0.472762 + 0.818849i
\(700\) 0 0
\(701\) −45.2243 −1.70810 −0.854048 0.520194i \(-0.825860\pi\)
−0.854048 + 0.520194i \(0.825860\pi\)
\(702\) 62.4137 4.15110i 2.35565 0.156673i
\(703\) −0.139524 + 0.241662i −0.00526223 + 0.00911445i
\(704\) 2.86614i 0.108022i
\(705\) −18.3726 + 31.8222i −0.691951 + 1.19849i
\(706\) 1.66329 2.88091i 0.0625989 0.108424i
\(707\) 0 0
\(708\) −2.59594 1.49877i −0.0975613 0.0563270i
\(709\) 2.99826i 0.112602i −0.998414 0.0563009i \(-0.982069\pi\)
0.998414 0.0563009i \(-0.0179306\pi\)
\(710\) −3.10716 1.79392i −0.116610 0.0673245i
\(711\) −17.4422 30.2107i −0.654133 1.13299i
\(712\) −1.21060 + 2.09682i −0.0453692 + 0.0785817i
\(713\) −0.863440 + 0.498507i −0.0323361 + 0.0186692i
\(714\) 0 0
\(715\) 14.4984 + 7.13248i 0.542208 + 0.266740i
\(716\) 7.89998 + 13.6832i 0.295236 + 0.511364i
\(717\) 66.4575i 2.48190i
\(718\) 8.02414 0.299458
\(719\) −20.0794 −0.748834 −0.374417 0.927260i \(-0.622157\pi\)
−0.374417 + 0.927260i \(0.622157\pi\)
\(720\) 12.8007i 0.477056i
\(721\) 0 0
\(722\) −28.8905 16.6800i −1.07519 0.620764i
\(723\) 30.8327 17.8013i 1.14668 0.662037i
\(724\) −4.55954 7.89735i −0.169454 0.293503i
\(725\) 12.3358 0.458142
\(726\) −8.06771 4.65790i −0.299421 0.172871i
\(727\) 32.5895 1.20868 0.604338 0.796728i \(-0.293438\pi\)
0.604338 + 0.796728i \(0.293438\pi\)
\(728\) 0 0
\(729\) 99.8990 3.69996
\(730\) −15.2033 8.77761i −0.562698 0.324874i
\(731\) 22.4999 0.832190
\(732\) −23.8425 41.2964i −0.881244 1.52636i
\(733\) −16.0380 + 9.25952i −0.592376 + 0.342008i −0.766036 0.642797i \(-0.777774\pi\)
0.173661 + 0.984806i \(0.444440\pi\)
\(734\) −0.899869 0.519540i −0.0332148 0.0191766i
\(735\) 0 0
\(736\) 1.66735i 0.0614594i
\(737\) −4.70294 −0.173235
\(738\) 65.1245 2.39727
\(739\) 15.9312i 0.586038i 0.956107 + 0.293019i \(0.0946600\pi\)
−0.956107 + 0.293019i \(0.905340\pi\)
\(740\) −0.0301482 0.0522183i −0.00110827 0.00191958i
\(741\) −48.5501 72.5093i −1.78353 2.66370i
\(742\) 0 0
\(743\) 10.5962 6.11773i 0.388738 0.224438i −0.292875 0.956151i \(-0.594612\pi\)
0.681613 + 0.731713i \(0.261279\pi\)
\(744\) 1.00000 1.73205i 0.0366618 0.0635001i
\(745\) −8.00319 13.8619i −0.293214 0.507862i
\(746\) 23.6532 + 13.6562i 0.866007 + 0.499989i
\(747\) 40.5113i 1.48223i
\(748\) 5.53423 + 3.19519i 0.202351 + 0.116828i
\(749\) 0 0
\(750\) 19.7556 34.2177i 0.721373 1.24945i
\(751\) −10.4107 + 18.0318i −0.379891 + 0.657990i −0.991046 0.133521i \(-0.957372\pi\)
0.611155 + 0.791511i \(0.290705\pi\)
\(752\) 7.02636i 0.256225i
\(753\) 26.6136 46.0960i 0.969852 1.67983i
\(754\) 9.68421 + 14.4633i 0.352678 + 0.526723i
\(755\) −23.7833 −0.865563
\(756\) 0 0
\(757\) −13.5575 23.4823i −0.492757 0.853480i 0.507208 0.861824i \(-0.330678\pi\)
−0.999965 + 0.00834344i \(0.997344\pi\)
\(758\) −2.21166 −0.0803310
\(759\) −13.8424 7.99190i −0.502446 0.290087i
\(760\) 9.79815 5.65696i 0.355416 0.205200i
\(761\) 48.3727i 1.75351i 0.480937 + 0.876755i \(0.340297\pi\)
−0.480937 + 0.876755i \(0.659703\pi\)
\(762\) 32.9507i 1.19368i
\(763\) 0 0
\(764\) −1.63068 2.82443i −0.0589961 0.102184i
\(765\) 24.7170 + 14.2703i 0.893644 + 0.515945i
\(766\) −11.1693 + 19.3458i −0.403563 + 0.698991i
\(767\) −1.42639 + 2.89945i −0.0515039 + 0.104693i
\(768\) 1.67234 + 2.89658i 0.0603455 + 0.104521i
\(769\) 15.0214 8.67264i 0.541687 0.312743i −0.204075 0.978955i \(-0.565419\pi\)
0.745762 + 0.666212i \(0.232085\pi\)
\(770\) 0 0
\(771\) −52.0129 + 90.0890i −1.87320 + 3.24448i
\(772\) −19.1158 + 11.0365i −0.687993 + 0.397213i
\(773\) −12.1659 + 7.02398i −0.437576 + 0.252635i −0.702569 0.711616i \(-0.747964\pi\)
0.264993 + 0.964250i \(0.414630\pi\)
\(774\) 71.5491 41.3089i 2.57178 1.48482i
\(775\) −1.32326 + 0.763984i −0.0475329 + 0.0274431i
\(776\) −2.44414 + 4.23338i −0.0877396 + 0.151970i
\(777\) 0 0
\(778\) 10.6178 6.13022i 0.380668 0.219779i
\(779\) −28.7801 49.8487i −1.03116 1.78601i
\(780\) 18.8141 1.25131i 0.673652 0.0448042i
\(781\) −3.28841 + 5.69569i −0.117669 + 0.203808i
\(782\) −3.21949 1.85877i −0.115129 0.0664696i
\(783\) 41.8760 + 72.5314i 1.49653 + 2.59206i
\(784\) 0 0
\(785\) 3.55582i 0.126913i
\(786\) 49.4756i 1.76474i
\(787\) −6.71670 + 3.87789i −0.239424 + 0.138232i −0.614912 0.788596i \(-0.710809\pi\)
0.375488 + 0.926827i \(0.377475\pi\)
\(788\) −4.56660 2.63653i −0.162678 0.0939224i
\(789\) 94.9044 3.37869
\(790\) −3.33114 5.76971i −0.118517 0.205277i
\(791\) 0 0
\(792\) 23.4649 0.833789
\(793\) −42.7134 + 28.5997i −1.51680 + 1.01560i
\(794\) −1.46759 + 2.54193i −0.0520827 + 0.0902099i
\(795\) 31.2942i 1.10989i
\(796\) 4.43381 7.67958i 0.157152 0.272195i
\(797\) 16.9246 29.3143i 0.599500 1.03836i −0.393395 0.919370i \(-0.628699\pi\)
0.992895 0.118995i \(-0.0379673\pi\)
\(798\) 0 0
\(799\) 13.5672 + 7.83303i 0.479973 + 0.277113i
\(800\) 2.55529i 0.0903431i
\(801\) 17.1665 + 9.91111i 0.606550 + 0.350192i
\(802\) −10.9251 18.9229i −0.385779 0.668190i
\(803\) −16.0901 + 27.8689i −0.567808 + 0.983473i
\(804\) −4.75290 + 2.74409i −0.167622 + 0.0967766i
\(805\) 0 0
\(806\) −1.93456 0.951708i −0.0681420 0.0335225i
\(807\) 35.7909 + 61.9917i 1.25990 + 2.18221i
\(808\) 7.36747i 0.259187i
\(809\) −32.8340 −1.15438 −0.577191 0.816609i \(-0.695851\pi\)
−0.577191 + 0.816609i \(0.695851\pi\)
\(810\) 52.3246 1.83850
\(811\) 12.2083i 0.428690i 0.976758 + 0.214345i \(0.0687617\pi\)
−0.976758 + 0.214345i \(0.931238\pi\)
\(812\) 0 0
\(813\) −16.6454 9.61023i −0.583780 0.337045i
\(814\) −0.0957207 + 0.0552644i −0.00335501 + 0.00193701i
\(815\) −0.00765566 0.0132600i −0.000268166 0.000464477i
\(816\) 7.45736 0.261060
\(817\) −63.2386 36.5108i −2.21244 1.27735i
\(818\) −7.38191 −0.258102
\(819\) 0 0
\(820\) 12.4376 0.434340
\(821\) −41.1248 23.7434i −1.43526 0.828650i −0.437749 0.899097i \(-0.644224\pi\)
−0.997516 + 0.0704470i \(0.977557\pi\)
\(822\) 1.53520 0.0535463
\(823\) 11.0229 + 19.0923i 0.384235 + 0.665515i 0.991663 0.128860i \(-0.0411317\pi\)
−0.607427 + 0.794375i \(0.707798\pi\)
\(824\) 5.01017 2.89263i 0.174538 0.100769i
\(825\) −21.2140 12.2479i −0.738578 0.426418i
\(826\) 0 0
\(827\) 45.9092i 1.59642i −0.602380 0.798209i \(-0.705781\pi\)
0.602380 0.798209i \(-0.294219\pi\)
\(828\) −13.6505 −0.474388
\(829\) 26.7766 0.929991 0.464996 0.885313i \(-0.346056\pi\)
0.464996 + 0.885313i \(0.346056\pi\)
\(830\) 7.73693i 0.268553i
\(831\) −44.4877 77.0550i −1.54326 2.67301i
\(832\) 2.99598 2.00602i 0.103867 0.0695462i
\(833\) 0 0
\(834\) −44.3601 + 25.6113i −1.53606 + 0.886847i
\(835\) −19.5060 + 33.7854i −0.675033 + 1.16919i
\(836\) −10.3697 17.9609i −0.358644 0.621190i
\(837\) −8.98404 5.18694i −0.310534 0.179287i
\(838\) 8.58273i 0.296486i
\(839\) 24.5960 + 14.2005i 0.849147 + 0.490255i 0.860363 0.509682i \(-0.170237\pi\)
−0.0112158 + 0.999937i \(0.503570\pi\)
\(840\) 0 0
\(841\) 2.84726 4.93160i 0.0981814 0.170055i
\(842\) 3.74763 6.49108i 0.129152 0.223697i
\(843\) 22.3807i 0.770834i
\(844\) 3.28453 5.68898i 0.113058 0.195823i
\(845\) −2.69187 20.1472i −0.0926031 0.693085i
\(846\) 57.5244 1.97773
\(847\) 0 0
\(848\) 2.99202 + 5.18233i 0.102746 + 0.177962i
\(849\) −66.6725 −2.28819
\(850\) −4.93401 2.84865i −0.169235 0.0977079i
\(851\) 0.0556847 0.0321496i 0.00190885 0.00110207i
\(852\) 7.67493i 0.262939i
\(853\) 21.3316i 0.730379i 0.930933 + 0.365189i \(0.118996\pi\)
−0.930933 + 0.365189i \(0.881004\pi\)
\(854\) 0 0
\(855\) −46.3132 80.2168i −1.58388 2.74336i
\(856\) 0.891102 + 0.514478i 0.0304572 + 0.0175845i
\(857\) −20.5412 + 35.5784i −0.701673 + 1.21533i 0.266206 + 0.963916i \(0.414230\pi\)
−0.967879 + 0.251417i \(0.919103\pi\)
\(858\) −2.29377 34.4878i −0.0783079 1.17740i
\(859\) 14.4309 + 24.9951i 0.492376 + 0.852820i 0.999961 0.00878126i \(-0.00279520\pi\)
−0.507586 + 0.861601i \(0.669462\pi\)
\(860\) 13.6646 7.88925i 0.465958 0.269021i
\(861\) 0 0
\(862\) 8.23956 14.2713i 0.280641 0.486084i
\(863\) −19.6875 + 11.3666i −0.670171 + 0.386923i −0.796141 0.605111i \(-0.793129\pi\)
0.125970 + 0.992034i \(0.459796\pi\)
\(864\) 15.0244 8.67434i 0.511140 0.295107i
\(865\) −4.34050 + 2.50599i −0.147581 + 0.0852062i
\(866\) 22.1365 12.7805i 0.752229 0.434300i
\(867\) −20.1163 + 34.8425i −0.683187 + 1.18331i
\(868\) 0 0
\(869\) −10.5764 + 6.10627i −0.358779 + 0.207141i
\(870\) 12.6232 + 21.8640i 0.427966 + 0.741258i
\(871\) 3.29161 + 4.91599i 0.111532 + 0.166572i
\(872\) 7.07674 12.2573i 0.239649 0.415084i
\(873\) 34.6584 + 20.0100i 1.17301 + 0.677238i
\(874\) 6.03249 + 10.4486i 0.204052 + 0.353428i
\(875\) 0 0
\(876\) 37.5533i 1.26881i
\(877\) 29.4178i 0.993368i −0.867932 0.496684i \(-0.834551\pi\)
0.867932 0.496684i \(-0.165449\pi\)
\(878\) −7.97470 + 4.60420i −0.269133 + 0.155384i
\(879\) −25.6663 14.8184i −0.865703 0.499814i
\(880\) 4.48137 0.151067
\(881\) −2.11104 3.65644i −0.0711229 0.123188i 0.828271 0.560328i \(-0.189325\pi\)
−0.899394 + 0.437140i \(0.855992\pi\)
\(882\) 0 0
\(883\) 37.1982 1.25182 0.625910 0.779895i \(-0.284728\pi\)
0.625910 + 0.779895i \(0.284728\pi\)
\(884\) −0.533490 8.02126i −0.0179432 0.269784i
\(885\) −2.34341 + 4.05890i −0.0787727 + 0.136438i
\(886\) 6.20759i 0.208548i
\(887\) −28.0947 + 48.6614i −0.943327 + 1.63389i −0.184260 + 0.982878i \(0.558989\pi\)
−0.759067 + 0.651013i \(0.774344\pi\)
\(888\) −0.0644917 + 0.111703i −0.00216420 + 0.00374850i
\(889\) 0 0
\(890\) 3.27850 + 1.89284i 0.109896 + 0.0634482i
\(891\) 95.9157i 3.21330i
\(892\) 14.6463 + 8.45606i 0.490395 + 0.283130i
\(893\) −25.4214 44.0312i −0.850696 1.47345i
\(894\) −17.1200 + 29.6528i −0.572580 + 0.991737i
\(895\) 21.3944 12.3521i 0.715136 0.412884i
\(896\) 0 0
\(897\) 1.33438 + 20.0630i 0.0445536 + 0.669884i
\(898\) 2.60944 + 4.51968i 0.0870781 + 0.150824i
\(899\) 2.88671i 0.0962772i
\(900\) −20.9200 −0.697333
\(901\) 13.3421 0.444489
\(902\) 22.7992i 0.759132i
\(903\) 0 0
\(904\) 11.7269 + 6.77051i 0.390030 + 0.225184i
\(905\) −12.3480 + 7.12910i −0.410460 + 0.236979i
\(906\) 25.4380 + 44.0600i 0.845123 + 1.46380i
\(907\) 0.653612 0.0217028 0.0108514 0.999941i \(-0.496546\pi\)
0.0108514 + 0.999941i \(0.496546\pi\)
\(908\) −13.9709 8.06611i −0.463641 0.267683i
\(909\) 60.3170 2.00059
\(910\) 0 0
\(911\) 39.7806 1.31799 0.658995 0.752147i \(-0.270982\pi\)
0.658995 + 0.752147i \(0.270982\pi\)
\(912\) −20.9597 12.1011i −0.694046 0.400708i
\(913\) −14.1825 −0.469371
\(914\) 16.9666 + 29.3870i 0.561205 + 0.972036i
\(915\) −64.5693 + 37.2791i −2.13460 + 1.23241i
\(916\) −5.98583 3.45592i −0.197777 0.114187i
\(917\) 0 0
\(918\) 38.6808i 1.27666i
\(919\) 34.6056 1.14153 0.570767 0.821112i \(-0.306646\pi\)
0.570767 + 0.821112i \(0.306646\pi\)
\(920\) −2.60700 −0.0859502
\(921\) 27.9160i 0.919863i
\(922\) −0.422380 0.731583i −0.0139103 0.0240934i
\(923\) 8.25528 0.549054i 0.271726 0.0180723i
\(924\) 0 0
\(925\) 0.0853392 0.0492706i 0.00280593 0.00162001i
\(926\) −3.25111 + 5.63108i −0.106838 + 0.185049i
\(927\) −23.6817 41.0180i −0.777810 1.34721i
\(928\) 4.18080 + 2.41379i 0.137242 + 0.0792365i
\(929\) 19.2707i 0.632252i 0.948717 + 0.316126i \(0.102382\pi\)
−0.948717 + 0.316126i \(0.897618\pi\)
\(930\) −2.70816 1.56356i −0.0888041 0.0512711i
\(931\) 0 0
\(932\) 3.73702 6.47272i 0.122410 0.212021i
\(933\) 11.1862 19.3751i 0.366221 0.634314i
\(934\) 9.52759i 0.311752i
\(935\) 4.99586 8.65308i 0.163382 0.282986i
\(936\) −16.4232 24.5279i −0.536808 0.801719i
\(937\) 50.9507 1.66449 0.832244 0.554410i \(-0.187056\pi\)
0.832244 + 0.554410i \(0.187056\pi\)
\(938\) 0 0
\(939\) 35.7526 + 61.9254i 1.16674 + 2.02086i
\(940\) 10.9861 0.358328
\(941\) 21.0456 + 12.1507i 0.686068 + 0.396102i 0.802138 0.597139i \(-0.203696\pi\)
−0.116069 + 0.993241i \(0.537029\pi\)
\(942\) 6.58738 3.80322i 0.214628 0.123916i
\(943\) 13.2633i 0.431911i
\(944\) 0.896206i 0.0291690i
\(945\) 0 0
\(946\) −14.4617 25.0484i −0.470190 0.814393i
\(947\) −22.2278 12.8332i −0.722307 0.417024i 0.0932940 0.995639i \(-0.470260\pi\)
−0.815601 + 0.578614i \(0.803594\pi\)
\(948\) −7.12582 + 12.3423i −0.231436 + 0.400859i
\(949\) 40.3930 2.68651i 1.31121 0.0872080i
\(950\) 9.24505 + 16.0129i 0.299949 + 0.519527i
\(951\) 91.7569 52.9759i 2.97542 1.71786i
\(952\) 0 0
\(953\) 2.40492 4.16544i 0.0779029 0.134932i −0.824442 0.565946i \(-0.808511\pi\)
0.902345 + 0.431015i \(0.141844\pi\)
\(954\) 42.4274 24.4955i 1.37364 0.793070i
\(955\) −4.41616 + 2.54967i −0.142903 + 0.0825053i
\(956\) −17.2075 + 9.93478i −0.556532 + 0.321314i
\(957\) 40.0786 23.1394i 1.29556 0.747990i
\(958\) −1.42099 + 2.46123i −0.0459102 + 0.0795188i
\(959\) 0 0
\(960\) 4.52898 2.61481i 0.146172 0.0843925i
\(961\) −15.3212 26.5371i −0.494233 0.856037i
\(962\) 0.124763 + 0.0613773i 0.00402252 + 0.00197888i
\(963\) 4.21200 7.29540i 0.135730 0.235091i
\(964\) −9.21842 5.32226i −0.296905 0.171418i
\(965\) 17.2562 + 29.8887i 0.555498 + 0.962150i
\(966\) 0 0
\(967\) 58.2044i 1.87173i −0.352362 0.935864i \(-0.614622\pi\)
0.352362 0.935864i \(-0.385378\pi\)
\(968\) 2.78525i 0.0895213i
\(969\) −46.7321 + 26.9808i −1.50125 + 0.866747i
\(970\) 6.61913 + 3.82156i 0.212528 + 0.122703i
\(971\) 36.1337 1.15959 0.579793 0.814764i \(-0.303133\pi\)
0.579793 + 0.814764i \(0.303133\pi\)
\(972\) −29.9422 51.8613i −0.960395 1.66345i
\(973\) 0 0
\(974\) 5.26374 0.168661
\(975\) 2.04499 + 30.7474i 0.0654922 + 0.984706i
\(976\) −7.12846 + 12.3469i −0.228177 + 0.395213i
\(977\) 16.7194i 0.534901i 0.963572 + 0.267451i \(0.0861812\pi\)
−0.963572 + 0.267451i \(0.913819\pi\)
\(978\) −0.0163766 + 0.0283652i −0.000523667 + 0.000907018i
\(979\) 3.46975 6.00978i 0.110894 0.192073i
\(980\) 0 0
\(981\) −100.349 57.9368i −3.20391 1.84978i
\(982\) 22.8913i 0.730492i
\(983\) 40.2497 + 23.2382i 1.28377 + 0.741183i 0.977535 0.210774i \(-0.0675984\pi\)
0.306232 + 0.951957i \(0.400932\pi\)
\(984\) −13.3030 23.0414i −0.424083 0.734534i
\(985\) −4.12236 + 7.14014i −0.131349 + 0.227504i
\(986\) 9.32157 5.38181i 0.296859 0.171392i
\(987\) 0 0
\(988\) −11.5167 + 23.4103i −0.366396 + 0.744782i
\(989\) 8.41296 + 14.5717i 0.267517 + 0.463352i
\(990\) 36.6887i 1.16604i
\(991\) 35.3510 1.12296 0.561480 0.827490i \(-0.310232\pi\)
0.561480 + 0.827490i \(0.310232\pi\)
\(992\) −0.597963 −0.0189853
\(993\) 82.5118i 2.61843i
\(994\) 0 0
\(995\) −12.0075 6.93251i −0.380662 0.219775i
\(996\) −14.3331 + 8.27524i −0.454163 + 0.262211i
\(997\) 0.743899 + 1.28847i 0.0235595 + 0.0408063i 0.877565 0.479458i \(-0.159167\pi\)
−0.854005 + 0.520264i \(0.825833\pi\)
\(998\) −6.79877 −0.215211
\(999\) 0.579396 + 0.334514i 0.0183313 + 0.0105836i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.v.d.361.4 12
7.2 even 3 1274.2.o.e.569.3 12
7.3 odd 6 182.2.m.b.127.1 yes 12
7.4 even 3 1274.2.m.c.491.3 12
7.5 odd 6 1274.2.o.d.569.1 12
7.6 odd 2 1274.2.v.e.361.6 12
13.4 even 6 1274.2.o.e.459.6 12
21.17 even 6 1638.2.bj.g.127.6 12
28.3 even 6 1456.2.cc.d.673.6 12
91.3 odd 6 2366.2.d.r.337.6 12
91.4 even 6 1274.2.m.c.589.3 12
91.10 odd 6 2366.2.d.r.337.12 12
91.17 odd 6 182.2.m.b.43.1 12
91.24 even 12 2366.2.a.bh.1.6 6
91.30 even 6 inner 1274.2.v.d.667.4 12
91.69 odd 6 1274.2.o.d.459.4 12
91.80 even 12 2366.2.a.bf.1.6 6
91.82 odd 6 1274.2.v.e.667.6 12
273.17 even 6 1638.2.bj.g.1135.4 12
364.199 even 6 1456.2.cc.d.225.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.m.b.43.1 12 91.17 odd 6
182.2.m.b.127.1 yes 12 7.3 odd 6
1274.2.m.c.491.3 12 7.4 even 3
1274.2.m.c.589.3 12 91.4 even 6
1274.2.o.d.459.4 12 91.69 odd 6
1274.2.o.d.569.1 12 7.5 odd 6
1274.2.o.e.459.6 12 13.4 even 6
1274.2.o.e.569.3 12 7.2 even 3
1274.2.v.d.361.4 12 1.1 even 1 trivial
1274.2.v.d.667.4 12 91.30 even 6 inner
1274.2.v.e.361.6 12 7.6 odd 2
1274.2.v.e.667.6 12 91.82 odd 6
1456.2.cc.d.225.6 12 364.199 even 6
1456.2.cc.d.673.6 12 28.3 even 6
1638.2.bj.g.127.6 12 21.17 even 6
1638.2.bj.g.1135.4 12 273.17 even 6
2366.2.a.bf.1.6 6 91.80 even 12
2366.2.a.bh.1.6 6 91.24 even 12
2366.2.d.r.337.6 12 91.3 odd 6
2366.2.d.r.337.12 12 91.10 odd 6