Properties

Label 182.2.m.b.43.1
Level $182$
Weight $2$
Character 182.43
Analytic conductor $1.453$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [182,2,Mod(43,182)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(182, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("182.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 182.m (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.45327731679\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 39 x^{10} - 140 x^{9} + 460 x^{8} - 1066 x^{7} + 2127 x^{6} - 3172 x^{5} + \cdots + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 43.1
Root \(0.500000 + 2.47866i\) of defining polynomial
Character \(\chi\) \(=\) 182.43
Dual form 182.2.m.b.127.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-1.67234 + 2.89658i) q^{3} +(0.500000 + 0.866025i) q^{4} +1.56356i q^{5} +(2.89658 - 1.67234i) q^{6} +(-0.866025 + 0.500000i) q^{7} -1.00000i q^{8} +(-4.09347 - 7.09010i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(-1.67234 + 2.89658i) q^{3} +(0.500000 + 0.866025i) q^{4} +1.56356i q^{5} +(2.89658 - 1.67234i) q^{6} +(-0.866025 + 0.500000i) q^{7} -1.00000i q^{8} +(-4.09347 - 7.09010i) q^{9} +(0.781779 - 1.35408i) q^{10} +(-2.48215 - 1.43307i) q^{11} -3.34469 q^{12} +(2.99598 + 2.00602i) q^{13} +1.00000 q^{14} +(-4.52898 - 2.61481i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.11481 - 1.93090i) q^{17} +8.18694i q^{18} +(-6.26657 + 3.61801i) q^{19} +(-1.35408 + 0.781779i) q^{20} -3.34469i q^{21} +(1.43307 + 2.48215i) q^{22} +(-0.833676 + 1.44397i) q^{23} +(2.89658 + 1.67234i) q^{24} +2.55529 q^{25} +(-1.59158 - 3.23525i) q^{26} +17.3487 q^{27} +(-0.866025 - 0.500000i) q^{28} +(-2.41379 + 4.18080i) q^{29} +(2.61481 + 4.52898i) q^{30} -0.597963i q^{31} +(0.866025 - 0.500000i) q^{32} +(8.30201 - 4.79317i) q^{33} +2.22961i q^{34} +(-0.781779 - 1.35408i) q^{35} +(4.09347 - 7.09010i) q^{36} +(0.0333971 + 0.0192818i) q^{37} +7.23602 q^{38} +(-10.8209 + 5.32335i) q^{39} +1.56356 q^{40} +(-6.88896 - 3.97734i) q^{41} +(-1.67234 + 2.89658i) q^{42} +(5.04571 + 8.73942i) q^{43} -2.86614i q^{44} +(11.0858 - 6.40037i) q^{45} +(1.44397 - 0.833676i) q^{46} +7.02636i q^{47} +(-1.67234 - 2.89658i) q^{48} +(0.500000 - 0.866025i) q^{49} +(-2.21294 - 1.27764i) q^{50} +7.45736 q^{51} +(-0.239275 + 3.59760i) q^{52} -5.98404 q^{53} +(-15.0244 - 8.67434i) q^{54} +(2.24069 - 3.88098i) q^{55} +(0.500000 + 0.866025i) q^{56} -24.2022i q^{57} +(4.18080 - 2.41379i) q^{58} +(0.776138 - 0.448103i) q^{59} -5.22961i q^{60} +(7.12846 + 12.3469i) q^{61} +(-0.298982 + 0.517851i) q^{62} +(7.09010 + 4.09347i) q^{63} -1.00000 q^{64} +(-3.13653 + 4.68438i) q^{65} -9.58634 q^{66} +(-1.42103 - 0.820432i) q^{67} +(1.11481 - 1.93090i) q^{68} +(-2.78838 - 4.82962i) q^{69} +1.56356i q^{70} +(-1.98724 + 1.14733i) q^{71} +(-7.09010 + 4.09347i) q^{72} +11.2277i q^{73} +(-0.0192818 - 0.0333971i) q^{74} +(-4.27332 + 7.40161i) q^{75} +(-6.26657 - 3.61801i) q^{76} +2.86614 q^{77} +(12.0329 + 0.800299i) q^{78} +4.26098 q^{79} +(-1.35408 - 0.781779i) q^{80} +(-16.7326 + 28.9816i) q^{81} +(3.97734 + 6.88896i) q^{82} -4.94829i q^{83} +(2.89658 - 1.67234i) q^{84} +(3.01907 - 1.74306i) q^{85} -10.0914i q^{86} +(-8.07337 - 13.9835i) q^{87} +(-1.43307 + 2.48215i) q^{88} +(2.09682 + 1.21060i) q^{89} -12.8007 q^{90} +(-3.59760 - 0.239275i) q^{91} -1.66735 q^{92} +(1.73205 + 1.00000i) q^{93} +(3.51318 - 6.08501i) q^{94} +(-5.65696 - 9.79815i) q^{95} +3.34469i q^{96} +(-4.23338 + 2.44414i) q^{97} +(-0.866025 + 0.500000i) q^{98} +23.4649i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} + 6 q^{4} + 6 q^{6} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 2 q^{3} + 6 q^{4} + 6 q^{6} - 6 q^{9} - 2 q^{10} - 18 q^{11} - 4 q^{12} - 8 q^{13} + 12 q^{14} - 6 q^{15} - 6 q^{16} + 4 q^{17} + 12 q^{19} - 2 q^{22} - 6 q^{23} + 6 q^{24} - 24 q^{25} - 14 q^{26} + 40 q^{27} - 10 q^{29} + 14 q^{30} + 12 q^{33} + 2 q^{35} + 6 q^{36} - 6 q^{37} + 8 q^{38} - 54 q^{39} - 4 q^{40} - 24 q^{41} - 2 q^{42} + 26 q^{43} + 72 q^{45} - 6 q^{46} - 2 q^{48} + 6 q^{49} - 12 q^{50} - 36 q^{51} - 4 q^{52} + 36 q^{53} - 36 q^{54} - 6 q^{55} + 6 q^{56} + 24 q^{58} + 6 q^{59} - 28 q^{61} - 2 q^{62} - 12 q^{64} - 34 q^{65} - 42 q^{67} - 4 q^{68} + 32 q^{69} + 48 q^{71} - 48 q^{75} + 12 q^{76} - 4 q^{77} - 8 q^{78} + 44 q^{79} - 34 q^{81} + 6 q^{82} + 6 q^{84} + 54 q^{85} + 2 q^{87} + 2 q^{88} + 12 q^{89} + 12 q^{90} - 16 q^{91} - 12 q^{92} + 8 q^{94} + 32 q^{95} + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/182\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(157\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) −1.67234 + 2.89658i −0.965528 + 1.67234i −0.257339 + 0.966321i \(0.582846\pi\)
−0.708189 + 0.706023i \(0.750488\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.56356i 0.699244i 0.936891 + 0.349622i \(0.113690\pi\)
−0.936891 + 0.349622i \(0.886310\pi\)
\(6\) 2.89658 1.67234i 1.18253 0.682732i
\(7\) −0.866025 + 0.500000i −0.327327 + 0.188982i
\(8\) 1.00000i 0.353553i
\(9\) −4.09347 7.09010i −1.36449 2.36337i
\(10\) 0.781779 1.35408i 0.247220 0.428198i
\(11\) −2.48215 1.43307i −0.748396 0.432087i 0.0767180 0.997053i \(-0.475556\pi\)
−0.825114 + 0.564966i \(0.808889\pi\)
\(12\) −3.34469 −0.965528
\(13\) 2.99598 + 2.00602i 0.830935 + 0.556370i
\(14\) 1.00000 0.267261
\(15\) −4.52898 2.61481i −1.16938 0.675140i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.11481 1.93090i −0.270380 0.468312i 0.698579 0.715533i \(-0.253816\pi\)
−0.968959 + 0.247221i \(0.920483\pi\)
\(18\) 8.18694i 1.92968i
\(19\) −6.26657 + 3.61801i −1.43765 + 0.830028i −0.997686 0.0679872i \(-0.978342\pi\)
−0.439964 + 0.898015i \(0.645009\pi\)
\(20\) −1.35408 + 0.781779i −0.302782 + 0.174811i
\(21\) 3.34469i 0.729871i
\(22\) 1.43307 + 2.48215i 0.305531 + 0.529196i
\(23\) −0.833676 + 1.44397i −0.173833 + 0.301088i −0.939757 0.341843i \(-0.888949\pi\)
0.765924 + 0.642932i \(0.222282\pi\)
\(24\) 2.89658 + 1.67234i 0.591263 + 0.341366i
\(25\) 2.55529 0.511058
\(26\) −1.59158 3.23525i −0.312135 0.634485i
\(27\) 17.3487 3.33876
\(28\) −0.866025 0.500000i −0.163663 0.0944911i
\(29\) −2.41379 + 4.18080i −0.448229 + 0.776356i −0.998271 0.0587816i \(-0.981278\pi\)
0.550042 + 0.835137i \(0.314612\pi\)
\(30\) 2.61481 + 4.52898i 0.477396 + 0.826874i
\(31\) 0.597963i 0.107397i −0.998557 0.0536987i \(-0.982899\pi\)
0.998557 0.0536987i \(-0.0171010\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 8.30201 4.79317i 1.44519 0.834384i
\(34\) 2.22961i 0.382375i
\(35\) −0.781779 1.35408i −0.132145 0.228881i
\(36\) 4.09347 7.09010i 0.682245 1.18168i
\(37\) 0.0333971 + 0.0192818i 0.00549045 + 0.00316991i 0.502743 0.864436i \(-0.332324\pi\)
−0.497252 + 0.867606i \(0.665658\pi\)
\(38\) 7.23602 1.17384
\(39\) −10.8209 + 5.32335i −1.73273 + 0.852418i
\(40\) 1.56356 0.247220
\(41\) −6.88896 3.97734i −1.07588 0.621157i −0.146095 0.989271i \(-0.546670\pi\)
−0.929781 + 0.368114i \(0.880004\pi\)
\(42\) −1.67234 + 2.89658i −0.258048 + 0.446953i
\(43\) 5.04571 + 8.73942i 0.769463 + 1.33275i 0.937854 + 0.347029i \(0.112809\pi\)
−0.168391 + 0.985720i \(0.553857\pi\)
\(44\) 2.86614i 0.432087i
\(45\) 11.0858 6.40037i 1.65257 0.954111i
\(46\) 1.44397 0.833676i 0.212902 0.122919i
\(47\) 7.02636i 1.02490i 0.858717 + 0.512450i \(0.171262\pi\)
−0.858717 + 0.512450i \(0.828738\pi\)
\(48\) −1.67234 2.89658i −0.241382 0.418086i
\(49\) 0.500000 0.866025i 0.0714286 0.123718i
\(50\) −2.21294 1.27764i −0.312958 0.180686i
\(51\) 7.45736 1.04424
\(52\) −0.239275 + 3.59760i −0.0331814 + 0.498898i
\(53\) −5.98404 −0.821971 −0.410985 0.911642i \(-0.634815\pi\)
−0.410985 + 0.911642i \(0.634815\pi\)
\(54\) −15.0244 8.67434i −2.04456 1.18043i
\(55\) 2.24069 3.88098i 0.302134 0.523312i
\(56\) 0.500000 + 0.866025i 0.0668153 + 0.115728i
\(57\) 24.2022i 3.20566i
\(58\) 4.18080 2.41379i 0.548966 0.316946i
\(59\) 0.776138 0.448103i 0.101044 0.0583381i −0.448626 0.893719i \(-0.648087\pi\)
0.549671 + 0.835381i \(0.314753\pi\)
\(60\) 5.22961i 0.675140i
\(61\) 7.12846 + 12.3469i 0.912706 + 1.58085i 0.810225 + 0.586119i \(0.199345\pi\)
0.102481 + 0.994735i \(0.467322\pi\)
\(62\) −0.298982 + 0.517851i −0.0379707 + 0.0657672i
\(63\) 7.09010 + 4.09347i 0.893268 + 0.515729i
\(64\) −1.00000 −0.125000
\(65\) −3.13653 + 4.68438i −0.389038 + 0.581026i
\(66\) −9.58634 −1.18000
\(67\) −1.42103 0.820432i −0.173606 0.100232i 0.410679 0.911780i \(-0.365292\pi\)
−0.584285 + 0.811548i \(0.698625\pi\)
\(68\) 1.11481 1.93090i 0.135190 0.234156i
\(69\) −2.78838 4.82962i −0.335682 0.581418i
\(70\) 1.56356i 0.186881i
\(71\) −1.98724 + 1.14733i −0.235841 + 0.136163i −0.613264 0.789878i \(-0.710144\pi\)
0.377422 + 0.926041i \(0.376810\pi\)
\(72\) −7.09010 + 4.09347i −0.835576 + 0.482420i
\(73\) 11.2277i 1.31411i 0.753844 + 0.657054i \(0.228198\pi\)
−0.753844 + 0.657054i \(0.771802\pi\)
\(74\) −0.0192818 0.0333971i −0.00224147 0.00388233i
\(75\) −4.27332 + 7.40161i −0.493441 + 0.854664i
\(76\) −6.26657 3.61801i −0.718825 0.415014i
\(77\) 2.86614 0.326627
\(78\) 12.0329 + 0.800299i 1.36245 + 0.0906160i
\(79\) 4.26098 0.479397 0.239699 0.970847i \(-0.422951\pi\)
0.239699 + 0.970847i \(0.422951\pi\)
\(80\) −1.35408 0.781779i −0.151391 0.0874055i
\(81\) −16.7326 + 28.9816i −1.85917 + 3.22018i
\(82\) 3.97734 + 6.88896i 0.439224 + 0.760759i
\(83\) 4.94829i 0.543145i −0.962418 0.271572i \(-0.912456\pi\)
0.962418 0.271572i \(-0.0875437\pi\)
\(84\) 2.89658 1.67234i 0.316043 0.182468i
\(85\) 3.01907 1.74306i 0.327465 0.189062i
\(86\) 10.0914i 1.08818i
\(87\) −8.07337 13.9835i −0.865556 1.49919i
\(88\) −1.43307 + 2.48215i −0.152766 + 0.264598i
\(89\) 2.09682 + 1.21060i 0.222263 + 0.128323i 0.606997 0.794704i \(-0.292374\pi\)
−0.384735 + 0.923027i \(0.625707\pi\)
\(90\) −12.8007 −1.34932
\(91\) −3.59760 0.239275i −0.377131 0.0250828i
\(92\) −1.66735 −0.173833
\(93\) 1.73205 + 1.00000i 0.179605 + 0.103695i
\(94\) 3.51318 6.08501i 0.362357 0.627621i
\(95\) −5.65696 9.79815i −0.580392 1.00527i
\(96\) 3.34469i 0.341366i
\(97\) −4.23338 + 2.44414i −0.429835 + 0.248165i −0.699276 0.714852i \(-0.746494\pi\)
0.269442 + 0.963017i \(0.413161\pi\)
\(98\) −0.866025 + 0.500000i −0.0874818 + 0.0505076i
\(99\) 23.4649i 2.35831i
\(100\) 1.27764 + 2.21294i 0.127764 + 0.221294i
\(101\) 3.68373 6.38042i 0.366545 0.634875i −0.622478 0.782638i \(-0.713874\pi\)
0.989023 + 0.147763i \(0.0472072\pi\)
\(102\) −6.45826 3.72868i −0.639463 0.369194i
\(103\) −5.78525 −0.570038 −0.285019 0.958522i \(-0.592000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(104\) 2.00602 2.99598i 0.196706 0.293780i
\(105\) 5.22961 0.510358
\(106\) 5.18233 + 2.99202i 0.503352 + 0.290611i
\(107\) 0.514478 0.891102i 0.0497365 0.0861461i −0.840085 0.542454i \(-0.817495\pi\)
0.889822 + 0.456308i \(0.150829\pi\)
\(108\) 8.67434 + 15.0244i 0.834689 + 1.44572i
\(109\) 14.1535i 1.35566i −0.735220 0.677829i \(-0.762921\pi\)
0.735220 0.677829i \(-0.237079\pi\)
\(110\) −3.88098 + 2.24069i −0.370037 + 0.213641i
\(111\) −0.111703 + 0.0644917i −0.0106024 + 0.00612128i
\(112\) 1.00000i 0.0944911i
\(113\) 6.77051 + 11.7269i 0.636916 + 1.10317i 0.986106 + 0.166119i \(0.0531237\pi\)
−0.349189 + 0.937052i \(0.613543\pi\)
\(114\) −12.1011 + 20.9597i −1.13337 + 1.96306i
\(115\) −2.25773 1.30350i −0.210534 0.121552i
\(116\) −4.82757 −0.448229
\(117\) 1.95893 29.4533i 0.181103 2.72296i
\(118\) −0.896206 −0.0825025
\(119\) 1.93090 + 1.11481i 0.177005 + 0.102194i
\(120\) −2.61481 + 4.52898i −0.238698 + 0.413437i
\(121\) −1.39263 2.41210i −0.126602 0.219282i
\(122\) 14.2569i 1.29076i
\(123\) 23.0414 13.3030i 2.07758 1.19949i
\(124\) 0.517851 0.298982i 0.0465044 0.0268493i
\(125\) 11.8131i 1.05660i
\(126\) −4.09347 7.09010i −0.364675 0.631636i
\(127\) 4.92583 8.53178i 0.437096 0.757073i −0.560368 0.828244i \(-0.689340\pi\)
0.997464 + 0.0711707i \(0.0226735\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −33.7526 −2.97175
\(130\) 5.05850 2.48853i 0.443660 0.218259i
\(131\) 14.7923 1.29241 0.646204 0.763165i \(-0.276355\pi\)
0.646204 + 0.763165i \(0.276355\pi\)
\(132\) 8.30201 + 4.79317i 0.722597 + 0.417192i
\(133\) 3.61801 6.26657i 0.313721 0.543381i
\(134\) 0.820432 + 1.42103i 0.0708746 + 0.122758i
\(135\) 27.1257i 2.33461i
\(136\) −1.93090 + 1.11481i −0.165573 + 0.0955938i
\(137\) 0.397503 0.229499i 0.0339610 0.0196074i −0.482923 0.875663i \(-0.660425\pi\)
0.516884 + 0.856055i \(0.327092\pi\)
\(138\) 5.57677i 0.474726i
\(139\) −7.65731 13.2628i −0.649485 1.12494i −0.983246 0.182283i \(-0.941651\pi\)
0.333762 0.942658i \(-0.391682\pi\)
\(140\) 0.781779 1.35408i 0.0660724 0.114441i
\(141\) −20.3525 11.7505i −1.71399 0.989570i
\(142\) 2.29466 0.192564
\(143\) −4.56170 9.27268i −0.381468 0.775421i
\(144\) 8.18694 0.682245
\(145\) −6.53693 3.77410i −0.542862 0.313422i
\(146\) 5.61387 9.72351i 0.464607 0.804723i
\(147\) 1.67234 + 2.89658i 0.137933 + 0.238906i
\(148\) 0.0385636i 0.00316991i
\(149\) 8.86563 5.11858i 0.726301 0.419330i −0.0907665 0.995872i \(-0.528932\pi\)
0.817067 + 0.576542i \(0.195598\pi\)
\(150\) 7.40161 4.27332i 0.604339 0.348915i
\(151\) 15.2110i 1.23785i −0.785448 0.618927i \(-0.787568\pi\)
0.785448 0.618927i \(-0.212432\pi\)
\(152\) 3.61801 + 6.26657i 0.293459 + 0.508286i
\(153\) −9.12684 + 15.8082i −0.737862 + 1.27801i
\(154\) −2.48215 1.43307i −0.200017 0.115480i
\(155\) 0.934950 0.0750970
\(156\) −10.0206 6.70951i −0.802291 0.537191i
\(157\) −2.27419 −0.181500 −0.0907500 0.995874i \(-0.528926\pi\)
−0.0907500 + 0.995874i \(0.528926\pi\)
\(158\) −3.69011 2.13049i −0.293570 0.169493i
\(159\) 10.0074 17.3333i 0.793636 1.37462i
\(160\) 0.781779 + 1.35408i 0.0618050 + 0.107049i
\(161\) 1.66735i 0.131406i
\(162\) 28.9816 16.7326i 2.27701 1.31463i
\(163\) 0.00848066 0.00489631i 0.000664256 0.000383509i −0.499668 0.866217i \(-0.666545\pi\)
0.500332 + 0.865834i \(0.333211\pi\)
\(164\) 7.95469i 0.621157i
\(165\) 7.49440 + 12.9807i 0.583438 + 1.01054i
\(166\) −2.47414 + 4.28534i −0.192031 + 0.332607i
\(167\) 21.6080 + 12.4754i 1.67208 + 0.965376i 0.966472 + 0.256773i \(0.0826593\pi\)
0.705608 + 0.708603i \(0.250674\pi\)
\(168\) −3.34469 −0.258048
\(169\) 4.95177 + 12.0200i 0.380906 + 0.924614i
\(170\) −3.48613 −0.267374
\(171\) 51.3040 + 29.6204i 3.92332 + 2.26513i
\(172\) −5.04571 + 8.73942i −0.384731 + 0.666374i
\(173\) −1.60275 2.77604i −0.121855 0.211058i 0.798644 0.601803i \(-0.205551\pi\)
−0.920499 + 0.390745i \(0.872218\pi\)
\(174\) 16.1467i 1.22408i
\(175\) −2.21294 + 1.27764i −0.167283 + 0.0965808i
\(176\) 2.48215 1.43307i 0.187099 0.108022i
\(177\) 2.99753i 0.225308i
\(178\) −1.21060 2.09682i −0.0907383 0.157163i
\(179\) −7.89998 + 13.6832i −0.590472 + 1.02273i 0.403697 + 0.914893i \(0.367725\pi\)
−0.994169 + 0.107835i \(0.965608\pi\)
\(180\) 11.0858 + 6.40037i 0.826285 + 0.477056i
\(181\) 9.11907 0.677815 0.338908 0.940820i \(-0.389943\pi\)
0.338908 + 0.940820i \(0.389943\pi\)
\(182\) 2.99598 + 2.00602i 0.222077 + 0.148696i
\(183\) −47.6850 −3.52497
\(184\) 1.44397 + 0.833676i 0.106451 + 0.0614594i
\(185\) −0.0301482 + 0.0522183i −0.00221654 + 0.00383916i
\(186\) −1.00000 1.73205i −0.0733236 0.127000i
\(187\) 6.39038i 0.467311i
\(188\) −6.08501 + 3.51318i −0.443795 + 0.256225i
\(189\) −15.0244 + 8.67434i −1.09286 + 0.630966i
\(190\) 11.3139i 0.820799i
\(191\) 1.63068 + 2.82443i 0.117992 + 0.204368i 0.918972 0.394323i \(-0.129021\pi\)
−0.800980 + 0.598691i \(0.795688\pi\)
\(192\) 1.67234 2.89658i 0.120691 0.209043i
\(193\) 19.1158 + 11.0365i 1.37599 + 0.794426i 0.991674 0.128777i \(-0.0411051\pi\)
0.384313 + 0.923203i \(0.374438\pi\)
\(194\) 4.88829 0.350959
\(195\) −8.32336 16.9191i −0.596048 1.21160i
\(196\) 1.00000 0.0714286
\(197\) −4.56660 2.63653i −0.325357 0.187845i 0.328421 0.944531i \(-0.393484\pi\)
−0.653778 + 0.756687i \(0.726817\pi\)
\(198\) 11.7324 20.3212i 0.833789 1.44416i
\(199\) 4.43381 + 7.67958i 0.314304 + 0.544391i 0.979289 0.202466i \(-0.0648954\pi\)
−0.664985 + 0.746857i \(0.731562\pi\)
\(200\) 2.55529i 0.180686i
\(201\) 4.75290 2.74409i 0.335244 0.193553i
\(202\) −6.38042 + 3.68373i −0.448924 + 0.259187i
\(203\) 4.82757i 0.338829i
\(204\) 3.72868 + 6.45826i 0.261060 + 0.452169i
\(205\) 6.21881 10.7713i 0.434340 0.752300i
\(206\) 5.01017 + 2.89263i 0.349075 + 0.201539i
\(207\) 13.6505 0.948775
\(208\) −3.23525 + 1.59158i −0.224324 + 0.110356i
\(209\) 20.7394 1.43458
\(210\) −4.52898 2.61481i −0.312529 0.180439i
\(211\) −3.28453 + 5.68898i −0.226117 + 0.391646i −0.956654 0.291227i \(-0.905936\pi\)
0.730537 + 0.682873i \(0.239270\pi\)
\(212\) −2.99202 5.18233i −0.205493 0.355924i
\(213\) 7.67493i 0.525877i
\(214\) −0.891102 + 0.514478i −0.0609145 + 0.0351690i
\(215\) −13.6646 + 7.88925i −0.931917 + 0.538043i
\(216\) 17.3487i 1.18043i
\(217\) 0.298982 + 0.517851i 0.0202962 + 0.0351540i
\(218\) −7.07674 + 12.2573i −0.479297 + 0.830167i
\(219\) −32.5221 18.7766i −2.19764 1.26881i
\(220\) 4.48137 0.302134
\(221\) 0.533490 8.02126i 0.0358864 0.539568i
\(222\) 0.128983 0.00865679
\(223\) −14.6463 8.45606i −0.980790 0.566260i −0.0782817 0.996931i \(-0.524943\pi\)
−0.902509 + 0.430672i \(0.858277\pi\)
\(224\) −0.500000 + 0.866025i −0.0334077 + 0.0578638i
\(225\) −10.4600 18.1172i −0.697333 1.20782i
\(226\) 13.5410i 0.900736i
\(227\) −13.9709 + 8.06611i −0.927282 + 0.535367i −0.885951 0.463779i \(-0.846493\pi\)
−0.0413312 + 0.999146i \(0.513160\pi\)
\(228\) 20.9597 12.1011i 1.38809 0.801415i
\(229\) 6.91184i 0.456747i −0.973574 0.228374i \(-0.926659\pi\)
0.973574 0.228374i \(-0.0733408\pi\)
\(230\) 1.30350 + 2.25773i 0.0859502 + 0.148870i
\(231\) −4.79317 + 8.30201i −0.315367 + 0.546232i
\(232\) 4.18080 + 2.41379i 0.274483 + 0.158473i
\(233\) 7.47405 0.489641 0.244821 0.969568i \(-0.421271\pi\)
0.244821 + 0.969568i \(0.421271\pi\)
\(234\) −16.4232 + 24.5279i −1.07362 + 1.60344i
\(235\) −10.9861 −0.716656
\(236\) 0.776138 + 0.448103i 0.0505222 + 0.0291690i
\(237\) −7.12582 + 12.3423i −0.462872 + 0.801717i
\(238\) −1.11481 1.93090i −0.0722621 0.125162i
\(239\) 19.8696i 1.28526i −0.766179 0.642628i \(-0.777844\pi\)
0.766179 0.642628i \(-0.222156\pi\)
\(240\) 4.52898 2.61481i 0.292344 0.168785i
\(241\) −9.21842 + 5.32226i −0.593811 + 0.342837i −0.766603 0.642121i \(-0.778054\pi\)
0.172792 + 0.984958i \(0.444721\pi\)
\(242\) 2.78525i 0.179043i
\(243\) −29.9422 51.8613i −1.92079 3.32691i
\(244\) −7.12846 + 12.3469i −0.456353 + 0.790427i
\(245\) 1.35408 + 0.781779i 0.0865090 + 0.0499460i
\(246\) −26.6060 −1.69633
\(247\) −26.0323 1.73140i −1.65640 0.110166i
\(248\) −0.597963 −0.0379707
\(249\) 14.3331 + 8.27524i 0.908325 + 0.524422i
\(250\) 5.90656 10.2305i 0.373564 0.647032i
\(251\) 7.95696 + 13.7819i 0.502239 + 0.869904i 0.999997 + 0.00258749i \(0.000823625\pi\)
−0.497757 + 0.867316i \(0.665843\pi\)
\(252\) 8.18694i 0.515729i
\(253\) 4.13861 2.38943i 0.260192 0.150222i
\(254\) −8.53178 + 4.92583i −0.535332 + 0.309074i
\(255\) 11.6600i 0.730178i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −15.5509 + 26.9350i −0.970039 + 1.68016i −0.274619 + 0.961553i \(0.588552\pi\)
−0.695420 + 0.718603i \(0.744782\pi\)
\(258\) 29.2306 + 16.8763i 1.81982 + 1.05067i
\(259\) −0.0385636 −0.00239623
\(260\) −5.62506 0.374120i −0.348851 0.0232019i
\(261\) 39.5230 2.44642
\(262\) −12.8105 7.39614i −0.791435 0.456935i
\(263\) 14.1873 24.5732i 0.874829 1.51525i 0.0178837 0.999840i \(-0.494307\pi\)
0.856945 0.515408i \(-0.172360\pi\)
\(264\) −4.79317 8.30201i −0.294999 0.510954i
\(265\) 9.35639i 0.574758i
\(266\) −6.26657 + 3.61801i −0.384228 + 0.221834i
\(267\) −7.01321 + 4.04908i −0.429202 + 0.247800i
\(268\) 1.64086i 0.100232i
\(269\) 10.7008 + 18.5344i 0.652441 + 1.13006i 0.982529 + 0.186111i \(0.0595883\pi\)
−0.330088 + 0.943950i \(0.607078\pi\)
\(270\) 13.5628 23.4915i 0.825408 1.42965i
\(271\) 4.97667 + 2.87328i 0.302311 + 0.174539i 0.643481 0.765462i \(-0.277490\pi\)
−0.341170 + 0.940002i \(0.610823\pi\)
\(272\) 2.22961 0.135190
\(273\) 6.70951 10.0206i 0.406078 0.606475i
\(274\) −0.458997 −0.0277290
\(275\) −6.34260 3.66190i −0.382473 0.220821i
\(276\) 2.78838 4.82962i 0.167841 0.290709i
\(277\) 13.3010 + 23.0380i 0.799180 + 1.38422i 0.920151 + 0.391564i \(0.128066\pi\)
−0.120971 + 0.992656i \(0.538601\pi\)
\(278\) 15.3146i 0.918510i
\(279\) −4.23962 + 2.44774i −0.253819 + 0.146543i
\(280\) −1.35408 + 0.781779i −0.0809218 + 0.0467202i
\(281\) 6.69143i 0.399177i −0.979880 0.199589i \(-0.936039\pi\)
0.979880 0.199589i \(-0.0639606\pi\)
\(282\) 11.7505 + 20.3525i 0.699732 + 1.21197i
\(283\) 9.96692 17.2632i 0.592472 1.02619i −0.401426 0.915891i \(-0.631485\pi\)
0.993898 0.110300i \(-0.0351812\pi\)
\(284\) −1.98724 1.14733i −0.117921 0.0680816i
\(285\) 37.8416 2.24154
\(286\) −0.685794 + 10.3112i −0.0405519 + 0.609716i
\(287\) 7.95469 0.469550
\(288\) −7.09010 4.09347i −0.417788 0.241210i
\(289\) 6.01442 10.4173i 0.353789 0.612781i
\(290\) 3.77410 + 6.53693i 0.221623 + 0.383861i
\(291\) 16.3498i 0.958442i
\(292\) −9.72351 + 5.61387i −0.569025 + 0.328527i
\(293\) −7.67375 + 4.43044i −0.448305 + 0.258829i −0.707114 0.707099i \(-0.750003\pi\)
0.258809 + 0.965929i \(0.416670\pi\)
\(294\) 3.34469i 0.195066i
\(295\) 0.700635 + 1.21354i 0.0407926 + 0.0706548i
\(296\) 0.0192818 0.0333971i 0.00112073 0.00194117i
\(297\) −43.0620 24.8619i −2.49871 1.44263i
\(298\) −10.2372 −0.593022
\(299\) −5.39430 + 2.65373i −0.311961 + 0.153469i
\(300\) −8.54664 −0.493441
\(301\) −8.73942 5.04571i −0.503732 0.290830i
\(302\) −7.60551 + 13.1731i −0.437648 + 0.758028i
\(303\) 12.3209 + 21.3405i 0.707820 + 1.22598i
\(304\) 7.23602i 0.415014i
\(305\) −19.3050 + 11.1458i −1.10540 + 0.638205i
\(306\) 15.8082 9.12684i 0.903692 0.521747i
\(307\) 8.34636i 0.476352i 0.971222 + 0.238176i \(0.0765495\pi\)
−0.971222 + 0.238176i \(0.923450\pi\)
\(308\) 1.43307 + 2.48215i 0.0816567 + 0.141434i
\(309\) 9.67493 16.7575i 0.550387 0.953299i
\(310\) −0.809690 0.467475i −0.0459873 0.0265508i
\(311\) −6.68896 −0.379296 −0.189648 0.981852i \(-0.560735\pi\)
−0.189648 + 0.981852i \(0.560735\pi\)
\(312\) 5.32335 + 10.8209i 0.301375 + 0.612613i
\(313\) −21.3788 −1.20840 −0.604199 0.796833i \(-0.706507\pi\)
−0.604199 + 0.796833i \(0.706507\pi\)
\(314\) 1.96950 + 1.13709i 0.111146 + 0.0641699i
\(315\) −6.40037 + 11.0858i −0.360620 + 0.624612i
\(316\) 2.13049 + 3.69011i 0.119849 + 0.207585i
\(317\) 31.6776i 1.77919i 0.456748 + 0.889596i \(0.349014\pi\)
−0.456748 + 0.889596i \(0.650986\pi\)
\(318\) −17.3333 + 10.0074i −0.972002 + 0.561185i
\(319\) 11.9828 6.91825i 0.670906 0.387348i
\(320\) 1.56356i 0.0874055i
\(321\) 1.72077 + 2.98046i 0.0960439 + 0.166353i
\(322\) −0.833676 + 1.44397i −0.0464589 + 0.0804692i
\(323\) 13.9720 + 8.06675i 0.777424 + 0.448846i
\(324\) −33.4651 −1.85917
\(325\) 7.65559 + 5.12596i 0.424656 + 0.284337i
\(326\) −0.00979262 −0.000542363
\(327\) 40.9967 + 23.6695i 2.26713 + 1.30893i
\(328\) −3.97734 + 6.88896i −0.219612 + 0.380379i
\(329\) −3.51318 6.08501i −0.193688 0.335477i
\(330\) 14.9888i 0.825106i
\(331\) −21.3644 + 12.3347i −1.17429 + 0.677979i −0.954688 0.297609i \(-0.903811\pi\)
−0.219606 + 0.975589i \(0.570477\pi\)
\(332\) 4.28534 2.47414i 0.235189 0.135786i
\(333\) 0.315718i 0.0173012i
\(334\) −12.4754 21.6080i −0.682624 1.18234i
\(335\) 1.28279 2.22186i 0.0700865 0.121393i
\(336\) 2.89658 + 1.67234i 0.158022 + 0.0912338i
\(337\) 28.0871 1.53000 0.765002 0.644028i \(-0.222738\pi\)
0.765002 + 0.644028i \(0.222738\pi\)
\(338\) 1.72163 12.8855i 0.0936444 0.700879i
\(339\) −45.2905 −2.45984
\(340\) 3.01907 + 1.74306i 0.163732 + 0.0945309i
\(341\) −0.856923 + 1.48423i −0.0464050 + 0.0803757i
\(342\) −29.6204 51.3040i −1.60169 2.77420i
\(343\) 1.00000i 0.0539949i
\(344\) 8.73942 5.04571i 0.471198 0.272046i
\(345\) 7.55139 4.35980i 0.406553 0.234724i
\(346\) 3.20550i 0.172329i
\(347\) 5.05398 + 8.75374i 0.271312 + 0.469926i 0.969198 0.246283i \(-0.0792093\pi\)
−0.697886 + 0.716209i \(0.745876\pi\)
\(348\) 8.07337 13.9835i 0.432778 0.749593i
\(349\) −15.0596 8.69465i −0.806121 0.465414i 0.0394863 0.999220i \(-0.487428\pi\)
−0.845607 + 0.533806i \(0.820761\pi\)
\(350\) 2.55529 0.136586
\(351\) 51.9763 + 34.8018i 2.77429 + 1.85758i
\(352\) −2.86614 −0.152766
\(353\) 2.88091 + 1.66329i 0.153335 + 0.0885282i 0.574704 0.818361i \(-0.305117\pi\)
−0.421369 + 0.906889i \(0.638450\pi\)
\(354\) 1.49877 2.59594i 0.0796585 0.137973i
\(355\) −1.79392 3.10716i −0.0952113 0.164911i
\(356\) 2.42120i 0.128323i
\(357\) −6.45826 + 3.72868i −0.341807 + 0.197343i
\(358\) 13.6832 7.89998i 0.723177 0.417527i
\(359\) 8.02414i 0.423498i −0.977324 0.211749i \(-0.932084\pi\)
0.977324 0.211749i \(-0.0679159\pi\)
\(360\) −6.40037 11.0858i −0.337329 0.584271i
\(361\) 16.6800 28.8905i 0.877893 1.52055i
\(362\) −7.89735 4.55954i −0.415075 0.239644i
\(363\) 9.31579 0.488952
\(364\) −1.59158 3.23525i −0.0834216 0.169573i
\(365\) −17.5552 −0.918882
\(366\) 41.2964 + 23.8425i 2.15860 + 1.24627i
\(367\) −0.519540 + 0.899869i −0.0271198 + 0.0469728i −0.879267 0.476330i \(-0.841967\pi\)
0.852147 + 0.523302i \(0.175300\pi\)
\(368\) −0.833676 1.44397i −0.0434583 0.0752721i
\(369\) 65.1245i 3.39025i
\(370\) 0.0522183 0.0301482i 0.00271470 0.00156733i
\(371\) 5.18233 2.99202i 0.269053 0.155338i
\(372\) 2.00000i 0.103695i
\(373\) −13.6562 23.6532i −0.707092 1.22472i −0.965931 0.258798i \(-0.916673\pi\)
0.258840 0.965920i \(-0.416660\pi\)
\(374\) 3.19519 5.53423i 0.165219 0.286168i
\(375\) −34.2177 19.7556i −1.76700 1.02018i
\(376\) 7.02636 0.362357
\(377\) −15.6184 + 7.68349i −0.804390 + 0.395720i
\(378\) 17.3487 0.892320
\(379\) −1.91535 1.10583i −0.0983850 0.0568026i 0.450000 0.893028i \(-0.351424\pi\)
−0.548385 + 0.836226i \(0.684757\pi\)
\(380\) 5.65696 9.79815i 0.290196 0.502634i
\(381\) 16.4754 + 28.5361i 0.844058 + 1.46195i
\(382\) 3.26137i 0.166866i
\(383\) 19.3458 11.1693i 0.988522 0.570724i 0.0836900 0.996492i \(-0.473329\pi\)
0.904832 + 0.425768i \(0.139996\pi\)
\(384\) −2.89658 + 1.67234i −0.147816 + 0.0853414i
\(385\) 4.48137i 0.228392i
\(386\) −11.0365 19.1158i −0.561744 0.972969i
\(387\) 41.3089 71.5491i 2.09985 3.63704i
\(388\) −4.23338 2.44414i −0.214917 0.124083i
\(389\) −12.2604 −0.621629 −0.310814 0.950471i \(-0.600602\pi\)
−0.310814 + 0.950471i \(0.600602\pi\)
\(390\) −1.25131 + 18.8141i −0.0633627 + 0.952687i
\(391\) 3.71755 0.188004
\(392\) −0.866025 0.500000i −0.0437409 0.0252538i
\(393\) −24.7378 + 42.8471i −1.24786 + 2.16135i
\(394\) 2.63653 + 4.56660i 0.132826 + 0.230062i
\(395\) 6.66228i 0.335216i
\(396\) −20.3212 + 11.7324i −1.02118 + 0.589578i
\(397\) 2.54193 1.46759i 0.127576 0.0736561i −0.434854 0.900501i \(-0.643200\pi\)
0.562430 + 0.826845i \(0.309867\pi\)
\(398\) 8.86762i 0.444493i
\(399\) 12.1011 + 20.9597i 0.605813 + 1.04930i
\(400\) −1.27764 + 2.21294i −0.0638822 + 0.110647i
\(401\) 18.9229 + 10.9251i 0.944963 + 0.545575i 0.891513 0.452996i \(-0.149645\pi\)
0.0534502 + 0.998571i \(0.482978\pi\)
\(402\) −5.48818 −0.273726
\(403\) 1.19953 1.79148i 0.0597526 0.0892402i
\(404\) 7.36747 0.366545
\(405\) −45.3145 26.1623i −2.25169 1.30002i
\(406\) −2.41379 + 4.18080i −0.119794 + 0.207490i
\(407\) −0.0552644 0.0957207i −0.00273935 0.00474470i
\(408\) 7.45736i 0.369194i
\(409\) −6.39292 + 3.69095i −0.316109 + 0.182506i −0.649657 0.760227i \(-0.725088\pi\)
0.333548 + 0.942733i \(0.391754\pi\)
\(410\) −10.7713 + 6.21881i −0.531956 + 0.307125i
\(411\) 1.53520i 0.0757260i
\(412\) −2.89263 5.01017i −0.142509 0.246834i
\(413\) −0.448103 + 0.776138i −0.0220497 + 0.0381912i
\(414\) −11.8217 6.82525i −0.581004 0.335443i
\(415\) 7.73693 0.379791
\(416\) 3.59760 + 0.239275i 0.176387 + 0.0117314i
\(417\) 51.2226 2.50838
\(418\) −17.9609 10.3697i −0.878495 0.507199i
\(419\) 4.29137 7.43287i 0.209647 0.363119i −0.741956 0.670448i \(-0.766102\pi\)
0.951603 + 0.307329i \(0.0994352\pi\)
\(420\) 2.61481 + 4.52898i 0.127589 + 0.220991i
\(421\) 7.49525i 0.365296i 0.983178 + 0.182648i \(0.0584669\pi\)
−0.983178 + 0.182648i \(0.941533\pi\)
\(422\) 5.68898 3.28453i 0.276935 0.159889i
\(423\) 49.8176 28.7622i 2.42221 1.39847i
\(424\) 5.98404i 0.290611i
\(425\) −2.84865 4.93401i −0.138180 0.239334i
\(426\) −3.83746 + 6.64668i −0.185926 + 0.322033i
\(427\) −12.3469 7.12846i −0.597507 0.344971i
\(428\) 1.02896 0.0497365
\(429\) 34.4878 + 2.29377i 1.66509 + 0.110744i
\(430\) 15.7785 0.760907
\(431\) −14.2713 8.23956i −0.687426 0.396886i 0.115221 0.993340i \(-0.463242\pi\)
−0.802647 + 0.596454i \(0.796576\pi\)
\(432\) −8.67434 + 15.0244i −0.417344 + 0.722862i
\(433\) −12.7805 22.1365i −0.614192 1.06381i −0.990526 0.137328i \(-0.956149\pi\)
0.376333 0.926484i \(-0.377185\pi\)
\(434\) 0.597963i 0.0287031i
\(435\) 21.8640 12.6232i 1.04830 0.605235i
\(436\) 12.2573 7.07674i 0.587017 0.338914i
\(437\) 12.0650i 0.577146i
\(438\) 18.7766 + 32.5221i 0.897183 + 1.55397i
\(439\) 4.60420 7.97470i 0.219746 0.380612i −0.734984 0.678084i \(-0.762810\pi\)
0.954730 + 0.297473i \(0.0961437\pi\)
\(440\) −3.88098 2.24069i −0.185019 0.106821i
\(441\) −8.18694 −0.389854
\(442\) −4.47264 + 6.67987i −0.212742 + 0.317729i
\(443\) −6.20759 −0.294931 −0.147466 0.989067i \(-0.547112\pi\)
−0.147466 + 0.989067i \(0.547112\pi\)
\(444\) −0.111703 0.0644917i −0.00530118 0.00306064i
\(445\) −1.89284 + 3.27850i −0.0897294 + 0.155416i
\(446\) 8.45606 + 14.6463i 0.400406 + 0.693523i
\(447\) 34.2401i 1.61950i
\(448\) 0.866025 0.500000i 0.0409159 0.0236228i
\(449\) 4.51968 2.60944i 0.213297 0.123147i −0.389546 0.921007i \(-0.627368\pi\)
0.602843 + 0.797860i \(0.294035\pi\)
\(450\) 20.9200i 0.986177i
\(451\) 11.3996 + 19.7447i 0.536787 + 0.929743i
\(452\) −6.77051 + 11.7269i −0.318458 + 0.551586i
\(453\) 44.0600 + 25.4380i 2.07012 + 1.19518i
\(454\) 16.1322 0.757123
\(455\) 0.374120 5.62506i 0.0175390 0.263707i
\(456\) −24.2022 −1.13337
\(457\) −29.3870 16.9666i −1.37467 0.793664i −0.383155 0.923684i \(-0.625162\pi\)
−0.991511 + 0.130021i \(0.958496\pi\)
\(458\) −3.45592 + 5.98583i −0.161484 + 0.279699i
\(459\) −19.3404 33.4986i −0.902733 1.56358i
\(460\) 2.60700i 0.121552i
\(461\) 0.731583 0.422380i 0.0340732 0.0196722i −0.482867 0.875694i \(-0.660404\pi\)
0.516940 + 0.856022i \(0.327071\pi\)
\(462\) 8.30201 4.79317i 0.386245 0.222998i
\(463\) 6.50221i 0.302183i −0.988520 0.151092i \(-0.951721\pi\)
0.988520 0.151092i \(-0.0482789\pi\)
\(464\) −2.41379 4.18080i −0.112057 0.194089i
\(465\) −1.56356 + 2.70816i −0.0725082 + 0.125588i
\(466\) −6.47272 3.73702i −0.299843 0.173114i
\(467\) 9.52759 0.440884 0.220442 0.975400i \(-0.429250\pi\)
0.220442 + 0.975400i \(0.429250\pi\)
\(468\) 26.4868 13.0302i 1.22435 0.602321i
\(469\) 1.64086 0.0757681
\(470\) 9.51426 + 5.49306i 0.438860 + 0.253376i
\(471\) 3.80322 6.58738i 0.175243 0.303530i
\(472\) −0.448103 0.776138i −0.0206256 0.0357246i
\(473\) 28.9234i 1.32990i
\(474\) 12.3423 7.12582i 0.566900 0.327300i
\(475\) −16.0129 + 9.24505i −0.734722 + 0.424192i
\(476\) 2.22961i 0.102194i
\(477\) 24.4955 + 42.4274i 1.12157 + 1.94262i
\(478\) −9.93478 + 17.2075i −0.454406 + 0.787055i
\(479\) −2.46123 1.42099i −0.112457 0.0649268i 0.442717 0.896662i \(-0.354015\pi\)
−0.555173 + 0.831735i \(0.687348\pi\)
\(480\) −5.22961 −0.238698
\(481\) 0.0613773 + 0.124763i 0.00279856 + 0.00568871i
\(482\) 10.6445 0.484844
\(483\) 4.82962 + 2.78838i 0.219755 + 0.126876i
\(484\) 1.39263 2.41210i 0.0633011 0.109641i
\(485\) −3.82156 6.61913i −0.173528 0.300559i
\(486\) 59.8843i 2.71641i
\(487\) −4.55853 + 2.63187i −0.206567 + 0.119261i −0.599715 0.800214i \(-0.704719\pi\)
0.393148 + 0.919475i \(0.371386\pi\)
\(488\) 12.3469 7.12846i 0.558916 0.322690i
\(489\) 0.0327533i 0.00148115i
\(490\) −0.781779 1.35408i −0.0353172 0.0611711i
\(491\) 11.4457 19.8245i 0.516536 0.894666i −0.483280 0.875466i \(-0.660555\pi\)
0.999816 0.0192004i \(-0.00611205\pi\)
\(492\) 23.0414 + 13.3030i 1.03879 + 0.599745i
\(493\) 10.7636 0.484769
\(494\) 21.6789 + 14.5156i 0.975382 + 0.653087i
\(495\) −36.6887 −1.64903
\(496\) 0.517851 + 0.298982i 0.0232522 + 0.0134247i
\(497\) 1.14733 1.98724i 0.0514648 0.0891397i
\(498\) −8.27524 14.3331i −0.370822 0.642283i
\(499\) 6.79877i 0.304355i 0.988353 + 0.152177i \(0.0486285\pi\)
−0.988353 + 0.152177i \(0.951372\pi\)
\(500\) −10.2305 + 5.90656i −0.457520 + 0.264150i
\(501\) −72.2721 + 41.7263i −3.22888 + 1.86419i
\(502\) 15.9139i 0.710273i
\(503\) −5.40300 9.35827i −0.240908 0.417265i 0.720065 0.693906i \(-0.244112\pi\)
−0.960973 + 0.276642i \(0.910779\pi\)
\(504\) 4.09347 7.09010i 0.182338 0.315818i
\(505\) 9.97615 + 5.75973i 0.443933 + 0.256305i
\(506\) −4.77886 −0.212446
\(507\) −43.0980 5.75832i −1.91405 0.255736i
\(508\) 9.85165 0.437096
\(509\) −23.6593 13.6597i −1.04868 0.605455i −0.126400 0.991979i \(-0.540342\pi\)
−0.922279 + 0.386524i \(0.873676\pi\)
\(510\) 5.83000 10.0979i 0.258157 0.447141i
\(511\) −5.61387 9.72351i −0.248343 0.430143i
\(512\) 1.00000i 0.0441942i
\(513\) −108.717 + 62.7677i −4.79996 + 2.77126i
\(514\) 26.9350 15.5509i 1.18805 0.685921i
\(515\) 9.04557i 0.398595i
\(516\) −16.8763 29.2306i −0.742938 1.28681i
\(517\) 10.0693 17.4405i 0.442846 0.767031i
\(518\) 0.0333971 + 0.0192818i 0.00146738 + 0.000847194i
\(519\) 10.7214 0.470616
\(520\) 4.68438 + 3.13653i 0.205424 + 0.137546i
\(521\) −3.63580 −0.159287 −0.0796437 0.996823i \(-0.525378\pi\)
−0.0796437 + 0.996823i \(0.525378\pi\)
\(522\) −34.2280 19.7615i −1.49812 0.864938i
\(523\) 3.59223 6.22193i 0.157077 0.272066i −0.776736 0.629826i \(-0.783126\pi\)
0.933813 + 0.357760i \(0.116459\pi\)
\(524\) 7.39614 + 12.8105i 0.323102 + 0.559629i
\(525\) 8.54664i 0.373006i
\(526\) −24.5732 + 14.1873i −1.07144 + 0.618597i
\(527\) −1.15461 + 0.666613i −0.0502955 + 0.0290381i
\(528\) 9.58634i 0.417192i
\(529\) 10.1100 + 17.5110i 0.439564 + 0.761347i
\(530\) −4.67819 + 8.10287i −0.203208 + 0.351966i
\(531\) −6.35419 3.66859i −0.275748 0.159203i
\(532\) 7.23602 0.313721
\(533\) −12.6606 25.7354i −0.548389 1.11473i
\(534\) 8.09816 0.350442
\(535\) 1.39329 + 0.804416i 0.0602371 + 0.0347779i
\(536\) −0.820432 + 1.42103i −0.0354373 + 0.0613792i
\(537\) −26.4230 45.7659i −1.14023 1.97494i
\(538\) 21.4017i 0.922691i
\(539\) −2.48215 + 1.43307i −0.106914 + 0.0617267i
\(540\) −23.4915 + 13.5628i −1.01091 + 0.583651i
\(541\) 0.445063i 0.0191347i 0.999954 + 0.00956737i \(0.00304543\pi\)
−0.999954 + 0.00956737i \(0.996955\pi\)
\(542\) −2.87328 4.97667i −0.123418 0.213766i
\(543\) −15.2502 + 26.4142i −0.654450 + 1.13354i
\(544\) −1.93090 1.11481i −0.0827867 0.0477969i
\(545\) 22.1298 0.947935
\(546\) −10.8209 + 5.32335i −0.463092 + 0.227818i
\(547\) −5.67129 −0.242487 −0.121243 0.992623i \(-0.538688\pi\)
−0.121243 + 0.992623i \(0.538688\pi\)
\(548\) 0.397503 + 0.229499i 0.0169805 + 0.00980370i
\(549\) 58.3603 101.083i 2.49076 4.31412i
\(550\) 3.66190 + 6.34260i 0.156144 + 0.270450i
\(551\) 34.9324i 1.48817i
\(552\) −4.82962 + 2.78838i −0.205562 + 0.118682i
\(553\) −3.69011 + 2.13049i −0.156920 + 0.0905976i
\(554\) 26.6020i 1.13021i
\(555\) −0.100836 0.174654i −0.00428027 0.00741364i
\(556\) 7.65731 13.2628i 0.324742 0.562470i
\(557\) 22.9561 + 13.2537i 0.972683 + 0.561579i 0.900053 0.435780i \(-0.143528\pi\)
0.0726298 + 0.997359i \(0.476861\pi\)
\(558\) 4.89549 0.207242
\(559\) −2.41462 + 36.3049i −0.102128 + 1.53553i
\(560\) 1.56356 0.0660724
\(561\) −18.5103 10.6869i −0.781504 0.451202i
\(562\) −3.34571 + 5.79495i −0.141130 + 0.244445i
\(563\) −5.76880 9.99186i −0.243126 0.421107i 0.718477 0.695551i \(-0.244840\pi\)
−0.961603 + 0.274444i \(0.911506\pi\)
\(564\) 23.5010i 0.989570i
\(565\) −18.3356 + 10.5861i −0.771386 + 0.445360i
\(566\) −17.2632 + 9.96692i −0.725627 + 0.418941i
\(567\) 33.4651i 1.40540i
\(568\) 1.14733 + 1.98724i 0.0481409 + 0.0833826i
\(569\) −16.0791 + 27.8497i −0.674069 + 1.16752i 0.302671 + 0.953095i \(0.402122\pi\)
−0.976740 + 0.214427i \(0.931212\pi\)
\(570\) −32.7717 18.9208i −1.37266 0.792504i
\(571\) −11.5540 −0.483521 −0.241761 0.970336i \(-0.577725\pi\)
−0.241761 + 0.970336i \(0.577725\pi\)
\(572\) 5.74953 8.58689i 0.240400 0.359036i
\(573\) −10.9083 −0.455699
\(574\) −6.88896 3.97734i −0.287540 0.166011i
\(575\) −2.13028 + 3.68976i −0.0888389 + 0.153873i
\(576\) 4.09347 + 7.09010i 0.170561 + 0.295421i
\(577\) 9.14050i 0.380524i −0.981733 0.190262i \(-0.939066\pi\)
0.981733 0.190262i \(-0.0609337\pi\)
\(578\) −10.4173 + 6.01442i −0.433301 + 0.250167i
\(579\) −63.9364 + 36.9137i −2.65711 + 1.53408i
\(580\) 7.54819i 0.313422i
\(581\) 2.47414 + 4.28534i 0.102645 + 0.177786i
\(582\) −8.17490 + 14.1593i −0.338860 + 0.586923i
\(583\) 14.8533 + 8.57554i 0.615160 + 0.355163i
\(584\) 11.2277 0.464607
\(585\) 46.0520 + 3.06289i 1.90402 + 0.126635i
\(586\) 8.86088 0.366040
\(587\) 37.0629 + 21.3983i 1.52975 + 0.883201i 0.999372 + 0.0354398i \(0.0112832\pi\)
0.530378 + 0.847761i \(0.322050\pi\)
\(588\) −1.67234 + 2.89658i −0.0689663 + 0.119453i
\(589\) 2.16344 + 3.74718i 0.0891428 + 0.154400i
\(590\) 1.40127i 0.0576894i
\(591\) 15.2738 8.81836i 0.628282 0.362739i
\(592\) −0.0333971 + 0.0192818i −0.00137261 + 0.000792478i
\(593\) 14.2439i 0.584927i 0.956277 + 0.292463i \(0.0944750\pi\)
−0.956277 + 0.292463i \(0.905525\pi\)
\(594\) 24.8619 + 43.0620i 1.02009 + 1.76686i
\(595\) −1.74306 + 3.01907i −0.0714586 + 0.123770i
\(596\) 8.86563 + 5.11858i 0.363150 + 0.209665i
\(597\) −29.6594 −1.21388
\(598\) 5.99847 + 0.398955i 0.245296 + 0.0163145i
\(599\) 3.74735 0.153113 0.0765563 0.997065i \(-0.475608\pi\)
0.0765563 + 0.997065i \(0.475608\pi\)
\(600\) 7.40161 + 4.27332i 0.302169 + 0.174458i
\(601\) −5.33462 + 9.23984i −0.217604 + 0.376901i −0.954075 0.299568i \(-0.903157\pi\)
0.736471 + 0.676469i \(0.236491\pi\)
\(602\) 5.04571 + 8.73942i 0.205648 + 0.356192i
\(603\) 13.4337i 0.547061i
\(604\) 13.1731 7.60551i 0.536007 0.309464i
\(605\) 3.77145 2.17745i 0.153331 0.0885259i
\(606\) 24.6419i 1.00101i
\(607\) −4.82628 8.35936i −0.195893 0.339296i 0.751300 0.659961i \(-0.229427\pi\)
−0.947193 + 0.320665i \(0.896094\pi\)
\(608\) −3.61801 + 6.26657i −0.146730 + 0.254143i
\(609\) 13.9835 + 8.07337i 0.566639 + 0.327149i
\(610\) 22.2915 0.902558
\(611\) −14.0950 + 21.0508i −0.570223 + 0.851625i
\(612\) −18.2537 −0.737862
\(613\) −3.45968 1.99745i −0.139735 0.0806761i 0.428503 0.903541i \(-0.359041\pi\)
−0.568238 + 0.822864i \(0.692375\pi\)
\(614\) 4.17318 7.22816i 0.168416 0.291705i
\(615\) 20.8000 + 36.0266i 0.838736 + 1.45273i
\(616\) 2.86614i 0.115480i
\(617\) 2.80199 1.61773i 0.112804 0.0651273i −0.442537 0.896750i \(-0.645921\pi\)
0.555340 + 0.831623i \(0.312588\pi\)
\(618\) −16.7575 + 9.67493i −0.674084 + 0.389183i
\(619\) 39.2679i 1.57831i 0.614193 + 0.789156i \(0.289482\pi\)
−0.614193 + 0.789156i \(0.710518\pi\)
\(620\) 0.467475 + 0.809690i 0.0187742 + 0.0325179i
\(621\) −14.4632 + 25.0510i −0.580387 + 1.00526i
\(622\) 5.79281 + 3.34448i 0.232270 + 0.134101i
\(623\) −2.42120 −0.0970033
\(624\) 0.800299 12.0329i 0.0320376 0.481700i
\(625\) −5.69406 −0.227763
\(626\) 18.5145 + 10.6894i 0.739990 + 0.427233i
\(627\) −34.6834 + 60.0735i −1.38512 + 2.39910i
\(628\) −1.13709 1.96950i −0.0453750 0.0785918i
\(629\) 0.0859819i 0.00342832i
\(630\) 11.0858 6.40037i 0.441668 0.254997i
\(631\) 25.4983 14.7215i 1.01507 0.586052i 0.102400 0.994743i \(-0.467348\pi\)
0.912673 + 0.408691i \(0.134015\pi\)
\(632\) 4.26098i 0.169493i
\(633\) −10.9857 19.0279i −0.436644 0.756290i
\(634\) 15.8388 27.4336i 0.629040 1.08953i
\(635\) 13.3399 + 7.70181i 0.529379 + 0.305637i
\(636\) 20.0147 0.793636
\(637\) 3.23525 1.59158i 0.128185 0.0630608i
\(638\) −13.8365 −0.547792
\(639\) 16.2694 + 9.39313i 0.643606 + 0.371586i
\(640\) −0.781779 + 1.35408i −0.0309025 + 0.0535247i
\(641\) 2.04559 + 3.54307i 0.0807961 + 0.139943i 0.903592 0.428394i \(-0.140920\pi\)
−0.822796 + 0.568337i \(0.807587\pi\)
\(642\) 3.44154i 0.135827i
\(643\) 19.2672 11.1239i 0.759825 0.438685i −0.0694080 0.997588i \(-0.522111\pi\)
0.829233 + 0.558903i \(0.188778\pi\)
\(644\) 1.44397 0.833676i 0.0569003 0.0328514i
\(645\) 52.7742i 2.07798i
\(646\) −8.06675 13.9720i −0.317382 0.549722i
\(647\) −24.9292 + 43.1786i −0.980066 + 1.69752i −0.317980 + 0.948097i \(0.603004\pi\)
−0.662086 + 0.749427i \(0.730329\pi\)
\(648\) 28.9816 + 16.7326i 1.13851 + 0.657317i
\(649\) −2.56865 −0.100828
\(650\) −4.06695 8.26700i −0.159519 0.324259i
\(651\) −2.00000 −0.0783862
\(652\) 0.00848066 + 0.00489631i 0.000332128 + 0.000191754i
\(653\) −3.70177 + 6.41165i −0.144861 + 0.250907i −0.929321 0.369272i \(-0.879607\pi\)
0.784460 + 0.620180i \(0.212940\pi\)
\(654\) −23.6695 40.9967i −0.925550 1.60310i
\(655\) 23.1286i 0.903709i
\(656\) 6.88896 3.97734i 0.268969 0.155289i
\(657\) 79.6058 45.9604i 3.10572 1.79309i
\(658\) 7.02636i 0.273916i
\(659\) −15.0410 26.0518i −0.585914 1.01483i −0.994761 0.102230i \(-0.967402\pi\)
0.408847 0.912603i \(-0.365931\pi\)
\(660\) −7.49440 + 12.9807i −0.291719 + 0.505272i
\(661\) 23.0639 + 13.3160i 0.897082 + 0.517931i 0.876252 0.481852i \(-0.160036\pi\)
0.0208300 + 0.999783i \(0.493369\pi\)
\(662\) 24.6695 0.958807
\(663\) 22.3421 + 14.9596i 0.867694 + 0.580983i
\(664\) −4.94829 −0.192031
\(665\) 9.79815 + 5.65696i 0.379956 + 0.219368i
\(666\) −0.157859 + 0.273420i −0.00611691 + 0.0105948i
\(667\) −4.02463 6.97087i −0.155834 0.269913i
\(668\) 24.9508i 0.965376i
\(669\) 48.9874 28.2829i 1.89396 1.09348i
\(670\) −2.22186 + 1.28279i −0.0858380 + 0.0495586i
\(671\) 40.8623i 1.57747i
\(672\) −1.67234 2.89658i −0.0645121 0.111738i
\(673\) −1.84652 + 3.19827i −0.0711783 + 0.123284i −0.899418 0.437090i \(-0.856009\pi\)
0.828240 + 0.560374i \(0.189343\pi\)
\(674\) −24.3242 14.0436i −0.936932 0.540938i
\(675\) 44.3309 1.70630
\(676\) −7.93372 + 10.2984i −0.305143 + 0.396090i
\(677\) −35.6533 −1.37027 −0.685134 0.728417i \(-0.740256\pi\)
−0.685134 + 0.728417i \(0.740256\pi\)
\(678\) 39.2227 + 22.6453i 1.50634 + 0.869686i
\(679\) 2.44414 4.23338i 0.0937976 0.162462i
\(680\) −1.74306 3.01907i −0.0668434 0.115776i
\(681\) 53.9572i 2.06765i
\(682\) 1.48423 0.856923i 0.0568342 0.0328133i
\(683\) −26.2105 + 15.1326i −1.00292 + 0.579034i −0.909110 0.416557i \(-0.863237\pi\)
−0.0938062 + 0.995590i \(0.529903\pi\)
\(684\) 59.2408i 2.26513i
\(685\) 0.358834 + 0.621519i 0.0137104 + 0.0237470i
\(686\) 0.500000 0.866025i 0.0190901 0.0330650i
\(687\) 20.0207 + 11.5590i 0.763838 + 0.441002i
\(688\) −10.0914 −0.384731
\(689\) −17.9280 12.0041i −0.683004 0.457320i
\(690\) −8.71960 −0.331949
\(691\) 3.03377 + 1.75155i 0.115410 + 0.0666320i 0.556594 0.830785i \(-0.312108\pi\)
−0.441184 + 0.897417i \(0.645441\pi\)
\(692\) 1.60275 2.77604i 0.0609273 0.105529i
\(693\) −11.7324 20.3212i −0.445679 0.771938i
\(694\) 10.1080i 0.383693i
\(695\) 20.7372 11.9726i 0.786608 0.454148i
\(696\) −13.9835 + 8.07337i −0.530042 + 0.306020i
\(697\) 17.7359i 0.671794i
\(698\) 8.69465 + 15.0596i 0.329097 + 0.570013i
\(699\) −12.4992 + 21.6492i −0.472762 + 0.818849i
\(700\) −2.21294 1.27764i −0.0836414 0.0482904i
\(701\) −45.2243 −1.70810 −0.854048 0.520194i \(-0.825860\pi\)
−0.854048 + 0.520194i \(0.825860\pi\)
\(702\) −27.6119 56.1274i −1.04214 2.11839i
\(703\) −0.279047 −0.0105245
\(704\) 2.48215 + 1.43307i 0.0935495 + 0.0540108i
\(705\) 18.3726 31.8222i 0.691951 1.19849i
\(706\) −1.66329 2.88091i −0.0625989 0.108424i
\(707\) 7.36747i 0.277082i
\(708\) −2.59594 + 1.49877i −0.0975613 + 0.0563270i
\(709\) 2.59657 1.49913i 0.0975161 0.0563009i −0.450449 0.892802i \(-0.648736\pi\)
0.547965 + 0.836501i \(0.315403\pi\)
\(710\) 3.58784i 0.134649i
\(711\) −17.4422 30.2107i −0.654133 1.13299i
\(712\) 1.21060 2.09682i 0.0453692 0.0785817i
\(713\) 0.863440 + 0.498507i 0.0323361 + 0.0186692i
\(714\) 7.45736 0.279085
\(715\) 14.4984 7.13248i 0.542208 0.266740i
\(716\) −15.8000 −0.590472
\(717\) 57.5539 + 33.2287i 2.14939 + 1.24095i
\(718\) −4.01207 + 6.94911i −0.149729 + 0.259339i
\(719\) −10.0397 17.3892i −0.374417 0.648509i 0.615823 0.787885i \(-0.288824\pi\)
−0.990240 + 0.139376i \(0.955490\pi\)
\(720\) 12.8007i 0.477056i
\(721\) 5.01017 2.89263i 0.186589 0.107727i
\(722\) −28.8905 + 16.6800i −1.07519 + 0.620764i
\(723\) 35.6026i 1.32407i
\(724\) 4.55954 + 7.89735i 0.169454 + 0.293503i
\(725\) −6.16792 + 10.6832i −0.229071 + 0.396762i
\(726\) −8.06771 4.65790i −0.299421 0.172871i
\(727\) −32.5895 −1.20868 −0.604338 0.796728i \(-0.706562\pi\)
−0.604338 + 0.796728i \(0.706562\pi\)
\(728\) −0.239275 + 3.59760i −0.00886811 + 0.133336i
\(729\) 99.8990 3.69996
\(730\) 15.2033 + 8.77761i 0.562698 + 0.324874i
\(731\) 11.2500 19.4855i 0.416095 0.720698i
\(732\) −23.8425 41.2964i −0.881244 1.52636i
\(733\) 18.5190i 0.684017i −0.939697 0.342008i \(-0.888893\pi\)
0.939697 0.342008i \(-0.111107\pi\)
\(734\) 0.899869 0.519540i 0.0332148 0.0191766i
\(735\) −4.52898 + 2.61481i −0.167054 + 0.0964486i
\(736\) 1.66735i 0.0614594i
\(737\) 2.35147 + 4.07287i 0.0866176 + 0.150026i
\(738\) 32.5623 56.3995i 1.19863 2.07609i
\(739\) 13.7968 + 7.96559i 0.507524 + 0.293019i 0.731815 0.681503i \(-0.238673\pi\)
−0.224291 + 0.974522i \(0.572007\pi\)
\(740\) −0.0602965 −0.00221654
\(741\) 48.5501 72.5093i 1.78353 2.66370i
\(742\) −5.98404 −0.219681
\(743\) 10.5962 + 6.11773i 0.388738 + 0.224438i 0.681613 0.731713i \(-0.261279\pi\)
−0.292875 + 0.956151i \(0.594612\pi\)
\(744\) 1.00000 1.73205i 0.0366618 0.0635001i
\(745\) 8.00319 + 13.8619i 0.293214 + 0.507862i
\(746\) 27.3124i 0.999979i
\(747\) −35.0838 + 20.2556i −1.28365 + 0.741115i
\(748\) −5.53423 + 3.19519i −0.202351 + 0.116828i
\(749\) 1.02896i 0.0375972i
\(750\) 19.7556 + 34.2177i 0.721373 + 1.24945i
\(751\) −10.4107 + 18.0318i −0.379891 + 0.657990i −0.991046 0.133521i \(-0.957372\pi\)
0.611155 + 0.791511i \(0.290705\pi\)
\(752\) −6.08501 3.51318i −0.221897 0.128113i
\(753\) −53.2271 −1.93970
\(754\) 17.3677 + 1.15512i 0.632494 + 0.0420669i
\(755\) 23.7833 0.865563
\(756\) −15.0244 8.67434i −0.546432 0.315483i
\(757\) −13.5575 + 23.4823i −0.492757 + 0.853480i −0.999965 0.00834344i \(-0.997344\pi\)
0.507208 + 0.861824i \(0.330678\pi\)
\(758\) 1.10583 + 1.91535i 0.0401655 + 0.0695687i
\(759\) 15.9838i 0.580175i
\(760\) −9.79815 + 5.65696i −0.355416 + 0.205200i
\(761\) 41.8920 24.1864i 1.51858 0.876755i 0.518824 0.854881i \(-0.326370\pi\)
0.999761 0.0218739i \(-0.00696324\pi\)
\(762\) 32.9507i 1.19368i
\(763\) 7.07674 + 12.2573i 0.256195 + 0.443743i
\(764\) −1.63068 + 2.82443i −0.0589961 + 0.102184i
\(765\) −24.7170 14.2703i −0.893644 0.515945i
\(766\) −22.3386 −0.807125
\(767\) 3.22419 + 0.214439i 0.116419 + 0.00774296i
\(768\) 3.34469 0.120691
\(769\) −15.0214 8.67264i −0.541687 0.312743i