Properties

Label 2366.2.d.r.337.11
Level $2366$
Weight $2$
Character 2366.337
Analytic conductor $18.893$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,2,Mod(337,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,4,-12,0,0,0,0,12,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8926051182\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 39 x^{10} - 140 x^{9} + 460 x^{8} - 1066 x^{7} + 2127 x^{6} - 3172 x^{5} + \cdots + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.11
Root \(0.500000 + 3.15681i\) of defining polynomial
Character \(\chi\) \(=\) 2366.337
Dual form 2366.2.d.r.337.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +2.29079 q^{3} -1.00000 q^{4} -0.901839i q^{5} +2.29079i q^{6} -1.00000i q^{7} -1.00000i q^{8} +2.24770 q^{9} +0.901839 q^{10} -4.33716i q^{11} -2.29079 q^{12} +1.00000 q^{14} -2.06592i q^{15} +1.00000 q^{16} -5.06592 q^{17} +2.24770i q^{18} -6.17238i q^{19} +0.901839i q^{20} -2.29079i q^{21} +4.33716 q^{22} -8.45117 q^{23} -2.29079i q^{24} +4.18669 q^{25} -1.72335 q^{27} +1.00000i q^{28} -2.19286 q^{29} +2.06592 q^{30} -0.873062i q^{31} +1.00000i q^{32} -9.93552i q^{33} -5.06592i q^{34} -0.901839 q^{35} -2.24770 q^{36} +0.144306i q^{37} +6.17238 q^{38} -0.901839 q^{40} -3.99654i q^{41} +2.29079 q^{42} -7.70851 q^{43} +4.33716i q^{44} -2.02707i q^{45} -8.45117i q^{46} +2.92115i q^{47} +2.29079 q^{48} -1.00000 q^{49} +4.18669i q^{50} -11.6049 q^{51} +1.69699 q^{53} -1.72335i q^{54} -3.91142 q^{55} -1.00000 q^{56} -14.1396i q^{57} -2.19286i q^{58} +8.54933i q^{59} +2.06592i q^{60} +8.33440 q^{61} +0.873062 q^{62} -2.24770i q^{63} -1.00000 q^{64} +9.93552 q^{66} -10.3828i q^{67} +5.06592 q^{68} -19.3598 q^{69} -0.901839i q^{70} +3.27856i q^{71} -2.24770i q^{72} -0.539023i q^{73} -0.144306 q^{74} +9.59081 q^{75} +6.17238i q^{76} -4.33716 q^{77} +6.53349 q^{79} -0.901839i q^{80} -10.6909 q^{81} +3.99654 q^{82} +13.2348i q^{83} +2.29079i q^{84} +4.56864i q^{85} -7.70851i q^{86} -5.02337 q^{87} -4.33716 q^{88} -7.79180i q^{89} +2.02707 q^{90} +8.45117 q^{92} -2.00000i q^{93} -2.92115 q^{94} -5.56649 q^{95} +2.29079i q^{96} -11.7061i q^{97} -1.00000i q^{98} -9.74866i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} - 12 q^{4} + 12 q^{9} + 4 q^{10} - 4 q^{12} + 12 q^{14} + 12 q^{16} - 8 q^{17} + 4 q^{22} + 12 q^{23} - 24 q^{25} + 40 q^{27} + 20 q^{29} - 28 q^{30} - 4 q^{35} - 12 q^{36} + 8 q^{38} - 4 q^{40}+ \cdots - 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2366\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(2199\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.29079 1.32259 0.661293 0.750128i \(-0.270008\pi\)
0.661293 + 0.750128i \(0.270008\pi\)
\(4\) −1.00000 −0.500000
\(5\) − 0.901839i − 0.403315i −0.979456 0.201657i \(-0.935367\pi\)
0.979456 0.201657i \(-0.0646327\pi\)
\(6\) 2.29079i 0.935210i
\(7\) − 1.00000i − 0.377964i
\(8\) − 1.00000i − 0.353553i
\(9\) 2.24770 0.749235
\(10\) 0.901839 0.285186
\(11\) − 4.33716i − 1.30770i −0.756622 0.653852i \(-0.773152\pi\)
0.756622 0.653852i \(-0.226848\pi\)
\(12\) −2.29079 −0.661293
\(13\) 0 0
\(14\) 1.00000 0.267261
\(15\) − 2.06592i − 0.533418i
\(16\) 1.00000 0.250000
\(17\) −5.06592 −1.22867 −0.614333 0.789047i \(-0.710575\pi\)
−0.614333 + 0.789047i \(0.710575\pi\)
\(18\) 2.24770i 0.529789i
\(19\) − 6.17238i − 1.41604i −0.706192 0.708021i \(-0.749588\pi\)
0.706192 0.708021i \(-0.250412\pi\)
\(20\) 0.901839i 0.201657i
\(21\) − 2.29079i − 0.499891i
\(22\) 4.33716 0.924686
\(23\) −8.45117 −1.76219 −0.881096 0.472938i \(-0.843193\pi\)
−0.881096 + 0.472938i \(0.843193\pi\)
\(24\) − 2.29079i − 0.467605i
\(25\) 4.18669 0.837337
\(26\) 0 0
\(27\) −1.72335 −0.331659
\(28\) 1.00000i 0.188982i
\(29\) −2.19286 −0.407203 −0.203602 0.979054i \(-0.565265\pi\)
−0.203602 + 0.979054i \(0.565265\pi\)
\(30\) 2.06592 0.377184
\(31\) − 0.873062i − 0.156807i −0.996922 0.0784033i \(-0.975018\pi\)
0.996922 0.0784033i \(-0.0249822\pi\)
\(32\) 1.00000i 0.176777i
\(33\) − 9.93552i − 1.72955i
\(34\) − 5.06592i − 0.868798i
\(35\) −0.901839 −0.152439
\(36\) −2.24770 −0.374617
\(37\) 0.144306i 0.0237238i 0.999930 + 0.0118619i \(0.00377585\pi\)
−0.999930 + 0.0118619i \(0.996224\pi\)
\(38\) 6.17238 1.00129
\(39\) 0 0
\(40\) −0.901839 −0.142593
\(41\) − 3.99654i − 0.624154i −0.950057 0.312077i \(-0.898975\pi\)
0.950057 0.312077i \(-0.101025\pi\)
\(42\) 2.29079 0.353476
\(43\) −7.70851 −1.17554 −0.587768 0.809029i \(-0.699993\pi\)
−0.587768 + 0.809029i \(0.699993\pi\)
\(44\) 4.33716i 0.653852i
\(45\) − 2.02707i − 0.302177i
\(46\) − 8.45117i − 1.24606i
\(47\) 2.92115i 0.426093i 0.977042 + 0.213047i \(0.0683387\pi\)
−0.977042 + 0.213047i \(0.931661\pi\)
\(48\) 2.29079 0.330647
\(49\) −1.00000 −0.142857
\(50\) 4.18669i 0.592087i
\(51\) −11.6049 −1.62502
\(52\) 0 0
\(53\) 1.69699 0.233099 0.116549 0.993185i \(-0.462817\pi\)
0.116549 + 0.993185i \(0.462817\pi\)
\(54\) − 1.72335i − 0.234518i
\(55\) −3.91142 −0.527416
\(56\) −1.00000 −0.133631
\(57\) − 14.1396i − 1.87284i
\(58\) − 2.19286i − 0.287936i
\(59\) 8.54933i 1.11303i 0.830838 + 0.556514i \(0.187861\pi\)
−0.830838 + 0.556514i \(0.812139\pi\)
\(60\) 2.06592i 0.266709i
\(61\) 8.33440 1.06711 0.533555 0.845765i \(-0.320856\pi\)
0.533555 + 0.845765i \(0.320856\pi\)
\(62\) 0.873062 0.110879
\(63\) − 2.24770i − 0.283184i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 9.93552 1.22298
\(67\) − 10.3828i − 1.26847i −0.773142 0.634233i \(-0.781316\pi\)
0.773142 0.634233i \(-0.218684\pi\)
\(68\) 5.06592 0.614333
\(69\) −19.3598 −2.33065
\(70\) − 0.901839i − 0.107790i
\(71\) 3.27856i 0.389093i 0.980893 + 0.194547i \(0.0623236\pi\)
−0.980893 + 0.194547i \(0.937676\pi\)
\(72\) − 2.24770i − 0.264894i
\(73\) − 0.539023i − 0.0630879i −0.999502 0.0315439i \(-0.989958\pi\)
0.999502 0.0315439i \(-0.0100424\pi\)
\(74\) −0.144306 −0.0167753
\(75\) 9.59081 1.10745
\(76\) 6.17238i 0.708021i
\(77\) −4.33716 −0.494266
\(78\) 0 0
\(79\) 6.53349 0.735075 0.367537 0.930009i \(-0.380201\pi\)
0.367537 + 0.930009i \(0.380201\pi\)
\(80\) − 0.901839i − 0.100829i
\(81\) −10.6909 −1.18788
\(82\) 3.99654 0.441343
\(83\) 13.2348i 1.45271i 0.687319 + 0.726356i \(0.258788\pi\)
−0.687319 + 0.726356i \(0.741212\pi\)
\(84\) 2.29079i 0.249945i
\(85\) 4.56864i 0.495539i
\(86\) − 7.70851i − 0.831230i
\(87\) −5.02337 −0.538562
\(88\) −4.33716 −0.462343
\(89\) − 7.79180i − 0.825929i −0.910747 0.412965i \(-0.864493\pi\)
0.910747 0.412965i \(-0.135507\pi\)
\(90\) 2.02707 0.213672
\(91\) 0 0
\(92\) 8.45117 0.881096
\(93\) − 2.00000i − 0.207390i
\(94\) −2.92115 −0.301294
\(95\) −5.56649 −0.571110
\(96\) 2.29079i 0.233802i
\(97\) − 11.7061i − 1.18857i −0.804253 0.594287i \(-0.797434\pi\)
0.804253 0.594287i \(-0.202566\pi\)
\(98\) − 1.00000i − 0.101015i
\(99\) − 9.74866i − 0.979777i
\(100\) −4.18669 −0.418669
\(101\) 10.7429 1.06896 0.534479 0.845182i \(-0.320508\pi\)
0.534479 + 0.845182i \(0.320508\pi\)
\(102\) − 11.6049i − 1.14906i
\(103\) 4.81099 0.474041 0.237021 0.971505i \(-0.423829\pi\)
0.237021 + 0.971505i \(0.423829\pi\)
\(104\) 0 0
\(105\) −2.06592 −0.201613
\(106\) 1.69699i 0.164826i
\(107\) 13.6530 1.31989 0.659944 0.751315i \(-0.270580\pi\)
0.659944 + 0.751315i \(0.270580\pi\)
\(108\) 1.72335 0.165829
\(109\) − 5.11747i − 0.490165i −0.969502 0.245082i \(-0.921185\pi\)
0.969502 0.245082i \(-0.0788150\pi\)
\(110\) − 3.91142i − 0.372940i
\(111\) 0.330575i 0.0313768i
\(112\) − 1.00000i − 0.0944911i
\(113\) 17.9321 1.68691 0.843453 0.537203i \(-0.180519\pi\)
0.843453 + 0.537203i \(0.180519\pi\)
\(114\) 14.1396 1.32430
\(115\) 7.62159i 0.710717i
\(116\) 2.19286 0.203602
\(117\) 0 0
\(118\) −8.54933 −0.787030
\(119\) 5.06592i 0.464392i
\(120\) −2.06592 −0.188592
\(121\) −7.81099 −0.710090
\(122\) 8.33440i 0.754561i
\(123\) − 9.15521i − 0.825498i
\(124\) 0.873062i 0.0784033i
\(125\) − 8.28491i − 0.741025i
\(126\) 2.24770 0.200241
\(127\) 19.5136 1.73155 0.865777 0.500430i \(-0.166825\pi\)
0.865777 + 0.500430i \(0.166825\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −17.6586 −1.55475
\(130\) 0 0
\(131\) −20.6496 −1.80417 −0.902083 0.431562i \(-0.857963\pi\)
−0.902083 + 0.431562i \(0.857963\pi\)
\(132\) 9.93552i 0.864776i
\(133\) −6.17238 −0.535213
\(134\) 10.3828 0.896941
\(135\) 1.55418i 0.133763i
\(136\) 5.06592i 0.434399i
\(137\) − 3.18956i − 0.272503i −0.990674 0.136251i \(-0.956495\pi\)
0.990674 0.136251i \(-0.0435055\pi\)
\(138\) − 19.3598i − 1.64802i
\(139\) −0.595710 −0.0505275 −0.0252637 0.999681i \(-0.508043\pi\)
−0.0252637 + 0.999681i \(0.508043\pi\)
\(140\) 0.901839 0.0762193
\(141\) 6.69173i 0.563545i
\(142\) −3.27856 −0.275131
\(143\) 0 0
\(144\) 2.24770 0.187309
\(145\) 1.97760i 0.164231i
\(146\) 0.539023 0.0446099
\(147\) −2.29079 −0.188941
\(148\) − 0.144306i − 0.0118619i
\(149\) − 11.2096i − 0.918329i −0.888351 0.459165i \(-0.848149\pi\)
0.888351 0.459165i \(-0.151851\pi\)
\(150\) 9.59081i 0.783086i
\(151\) 13.0731i 1.06387i 0.846785 + 0.531935i \(0.178535\pi\)
−0.846785 + 0.531935i \(0.821465\pi\)
\(152\) −6.17238 −0.500646
\(153\) −11.3867 −0.920559
\(154\) − 4.33716i − 0.349499i
\(155\) −0.787362 −0.0632424
\(156\) 0 0
\(157\) 17.9245 1.43053 0.715266 0.698853i \(-0.246306\pi\)
0.715266 + 0.698853i \(0.246306\pi\)
\(158\) 6.53349i 0.519776i
\(159\) 3.88743 0.308293
\(160\) 0.901839 0.0712966
\(161\) 8.45117i 0.666046i
\(162\) − 10.6909i − 0.839959i
\(163\) − 20.3179i − 1.59142i −0.605678 0.795710i \(-0.707098\pi\)
0.605678 0.795710i \(-0.292902\pi\)
\(164\) 3.99654i 0.312077i
\(165\) −8.96024 −0.697553
\(166\) −13.2348 −1.02722
\(167\) − 3.23051i − 0.249984i −0.992158 0.124992i \(-0.960109\pi\)
0.992158 0.124992i \(-0.0398905\pi\)
\(168\) −2.29079 −0.176738
\(169\) 0 0
\(170\) −4.56864 −0.350399
\(171\) − 13.8737i − 1.06095i
\(172\) 7.70851 0.587768
\(173\) 9.17044 0.697216 0.348608 0.937269i \(-0.386655\pi\)
0.348608 + 0.937269i \(0.386655\pi\)
\(174\) − 5.02337i − 0.380821i
\(175\) − 4.18669i − 0.316484i
\(176\) − 4.33716i − 0.326926i
\(177\) 19.5847i 1.47208i
\(178\) 7.79180 0.584020
\(179\) 16.9549 1.26727 0.633636 0.773631i \(-0.281562\pi\)
0.633636 + 0.773631i \(0.281562\pi\)
\(180\) 2.02707i 0.151089i
\(181\) −2.65743 −0.197525 −0.0987626 0.995111i \(-0.531488\pi\)
−0.0987626 + 0.995111i \(0.531488\pi\)
\(182\) 0 0
\(183\) 19.0923 1.41135
\(184\) 8.45117i 0.623029i
\(185\) 0.130141 0.00956816
\(186\) 2.00000 0.146647
\(187\) 21.9717i 1.60673i
\(188\) − 2.92115i − 0.213047i
\(189\) 1.72335i 0.125355i
\(190\) − 5.56649i − 0.403836i
\(191\) −24.4861 −1.77175 −0.885875 0.463924i \(-0.846441\pi\)
−0.885875 + 0.463924i \(0.846441\pi\)
\(192\) −2.29079 −0.165323
\(193\) 12.2409i 0.881120i 0.897723 + 0.440560i \(0.145220\pi\)
−0.897723 + 0.440560i \(0.854780\pi\)
\(194\) 11.7061 0.840449
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 5.45751i 0.388832i 0.980919 + 0.194416i \(0.0622811\pi\)
−0.980919 + 0.194416i \(0.937719\pi\)
\(198\) 9.74866 0.692807
\(199\) 12.8166 0.908548 0.454274 0.890862i \(-0.349899\pi\)
0.454274 + 0.890862i \(0.349899\pi\)
\(200\) − 4.18669i − 0.296043i
\(201\) − 23.7849i − 1.67766i
\(202\) 10.7429i 0.755867i
\(203\) 2.19286i 0.153908i
\(204\) 11.6049 0.812509
\(205\) −3.60423 −0.251730
\(206\) 4.81099i 0.335198i
\(207\) −18.9957 −1.32029
\(208\) 0 0
\(209\) −26.7706 −1.85176
\(210\) − 2.06592i − 0.142562i
\(211\) −19.3110 −1.32943 −0.664713 0.747098i \(-0.731446\pi\)
−0.664713 + 0.747098i \(0.731446\pi\)
\(212\) −1.69699 −0.116549
\(213\) 7.51048i 0.514610i
\(214\) 13.6530i 0.933302i
\(215\) 6.95183i 0.474111i
\(216\) 1.72335i 0.117259i
\(217\) −0.873062 −0.0592673
\(218\) 5.11747 0.346599
\(219\) − 1.23479i − 0.0834391i
\(220\) 3.91142 0.263708
\(221\) 0 0
\(222\) −0.330575 −0.0221867
\(223\) − 10.6357i − 0.712220i −0.934444 0.356110i \(-0.884103\pi\)
0.934444 0.356110i \(-0.115897\pi\)
\(224\) 1.00000 0.0668153
\(225\) 9.41043 0.627362
\(226\) 17.9321i 1.19282i
\(227\) − 22.7217i − 1.50809i −0.656821 0.754047i \(-0.728099\pi\)
0.656821 0.754047i \(-0.271901\pi\)
\(228\) 14.1396i 0.936418i
\(229\) − 20.3094i − 1.34208i −0.741420 0.671042i \(-0.765847\pi\)
0.741420 0.671042i \(-0.234153\pi\)
\(230\) −7.62159 −0.502553
\(231\) −9.93552 −0.653709
\(232\) 2.19286i 0.143968i
\(233\) 10.6446 0.697352 0.348676 0.937243i \(-0.386631\pi\)
0.348676 + 0.937243i \(0.386631\pi\)
\(234\) 0 0
\(235\) 2.63441 0.171850
\(236\) − 8.54933i − 0.556514i
\(237\) 14.9668 0.972200
\(238\) −5.06592 −0.328375
\(239\) 0.311564i 0.0201534i 0.999949 + 0.0100767i \(0.00320757\pi\)
−0.999949 + 0.0100767i \(0.996792\pi\)
\(240\) − 2.06592i − 0.133355i
\(241\) 25.2995i 1.62969i 0.579682 + 0.814843i \(0.303177\pi\)
−0.579682 + 0.814843i \(0.696823\pi\)
\(242\) − 7.81099i − 0.502110i
\(243\) −19.3206 −1.23942
\(244\) −8.33440 −0.533555
\(245\) 0.901839i 0.0576164i
\(246\) 9.15521 0.583715
\(247\) 0 0
\(248\) −0.873062 −0.0554395
\(249\) 30.3182i 1.92134i
\(250\) 8.28491 0.523984
\(251\) −8.04030 −0.507499 −0.253750 0.967270i \(-0.581664\pi\)
−0.253750 + 0.967270i \(0.581664\pi\)
\(252\) 2.24770i 0.141592i
\(253\) 36.6541i 2.30442i
\(254\) 19.5136i 1.22439i
\(255\) 10.4658i 0.655393i
\(256\) 1.00000 0.0625000
\(257\) 16.9327 1.05623 0.528116 0.849172i \(-0.322899\pi\)
0.528116 + 0.849172i \(0.322899\pi\)
\(258\) − 17.6586i − 1.09937i
\(259\) 0.144306 0.00896676
\(260\) 0 0
\(261\) −4.92890 −0.305091
\(262\) − 20.6496i − 1.27574i
\(263\) 10.3209 0.636414 0.318207 0.948021i \(-0.396919\pi\)
0.318207 + 0.948021i \(0.396919\pi\)
\(264\) −9.93552 −0.611489
\(265\) − 1.53041i − 0.0940122i
\(266\) − 6.17238i − 0.378453i
\(267\) − 17.8494i − 1.09236i
\(268\) 10.3828i 0.634233i
\(269\) −6.13999 −0.374362 −0.187181 0.982325i \(-0.559935\pi\)
−0.187181 + 0.982325i \(0.559935\pi\)
\(270\) −1.55418 −0.0945846
\(271\) 10.6772i 0.648594i 0.945955 + 0.324297i \(0.105128\pi\)
−0.945955 + 0.324297i \(0.894872\pi\)
\(272\) −5.06592 −0.307167
\(273\) 0 0
\(274\) 3.18956 0.192689
\(275\) − 18.1583i − 1.09499i
\(276\) 19.3598 1.16532
\(277\) −21.9090 −1.31638 −0.658191 0.752851i \(-0.728678\pi\)
−0.658191 + 0.752851i \(0.728678\pi\)
\(278\) − 0.595710i − 0.0357283i
\(279\) − 1.96239i − 0.117485i
\(280\) 0.901839i 0.0538952i
\(281\) 25.7719i 1.53743i 0.639594 + 0.768713i \(0.279102\pi\)
−0.639594 + 0.768713i \(0.720898\pi\)
\(282\) −6.69173 −0.398487
\(283\) 11.3269 0.673314 0.336657 0.941627i \(-0.390704\pi\)
0.336657 + 0.941627i \(0.390704\pi\)
\(284\) − 3.27856i − 0.194547i
\(285\) −12.7516 −0.755342
\(286\) 0 0
\(287\) −3.99654 −0.235908
\(288\) 2.24770i 0.132447i
\(289\) 8.66355 0.509621
\(290\) −1.97760 −0.116129
\(291\) − 26.8162i − 1.57199i
\(292\) 0.539023i 0.0315439i
\(293\) − 23.7459i − 1.38725i −0.720335 0.693626i \(-0.756012\pi\)
0.720335 0.693626i \(-0.243988\pi\)
\(294\) − 2.29079i − 0.133601i
\(295\) 7.71012 0.448901
\(296\) 0.144306 0.00838763
\(297\) 7.47445i 0.433712i
\(298\) 11.2096 0.649357
\(299\) 0 0
\(300\) −9.59081 −0.553725
\(301\) 7.70851i 0.444311i
\(302\) −13.0731 −0.752270
\(303\) 24.6097 1.41379
\(304\) − 6.17238i − 0.354010i
\(305\) − 7.51629i − 0.430381i
\(306\) − 11.3867i − 0.650934i
\(307\) 6.68810i 0.381710i 0.981618 + 0.190855i \(0.0611261\pi\)
−0.981618 + 0.190855i \(0.938874\pi\)
\(308\) 4.33716 0.247133
\(309\) 11.0210 0.626960
\(310\) − 0.787362i − 0.0447191i
\(311\) 9.18724 0.520961 0.260480 0.965479i \(-0.416119\pi\)
0.260480 + 0.965479i \(0.416119\pi\)
\(312\) 0 0
\(313\) −17.1631 −0.970118 −0.485059 0.874481i \(-0.661202\pi\)
−0.485059 + 0.874481i \(0.661202\pi\)
\(314\) 17.9245i 1.01154i
\(315\) −2.02707 −0.114212
\(316\) −6.53349 −0.367537
\(317\) 3.76247i 0.211322i 0.994402 + 0.105661i \(0.0336958\pi\)
−0.994402 + 0.105661i \(0.966304\pi\)
\(318\) 3.88743i 0.217996i
\(319\) 9.51078i 0.532502i
\(320\) 0.901839i 0.0504143i
\(321\) 31.2762 1.74567
\(322\) −8.45117 −0.470965
\(323\) 31.2688i 1.73984i
\(324\) 10.6909 0.593941
\(325\) 0 0
\(326\) 20.3179 1.12530
\(327\) − 11.7230i − 0.648285i
\(328\) −3.99654 −0.220672
\(329\) 2.92115 0.161048
\(330\) − 8.96024i − 0.493245i
\(331\) 32.2257i 1.77129i 0.464367 + 0.885643i \(0.346282\pi\)
−0.464367 + 0.885643i \(0.653718\pi\)
\(332\) − 13.2348i − 0.726356i
\(333\) 0.324358i 0.0177747i
\(334\) 3.23051 0.176765
\(335\) −9.36365 −0.511591
\(336\) − 2.29079i − 0.124973i
\(337\) −3.01703 −0.164348 −0.0821740 0.996618i \(-0.526186\pi\)
−0.0821740 + 0.996618i \(0.526186\pi\)
\(338\) 0 0
\(339\) 41.0785 2.23108
\(340\) − 4.56864i − 0.247769i
\(341\) −3.78662 −0.205057
\(342\) 13.8737 0.750203
\(343\) 1.00000i 0.0539949i
\(344\) 7.70851i 0.415615i
\(345\) 17.4594i 0.939985i
\(346\) 9.17044i 0.493006i
\(347\) 0.468540 0.0251526 0.0125763 0.999921i \(-0.495997\pi\)
0.0125763 + 0.999921i \(0.495997\pi\)
\(348\) 5.02337 0.269281
\(349\) − 32.2212i − 1.72476i −0.506262 0.862380i \(-0.668973\pi\)
0.506262 0.862380i \(-0.331027\pi\)
\(350\) 4.18669 0.223788
\(351\) 0 0
\(352\) 4.33716 0.231172
\(353\) − 13.1154i − 0.698063i −0.937111 0.349031i \(-0.886511\pi\)
0.937111 0.349031i \(-0.113489\pi\)
\(354\) −19.5847 −1.04091
\(355\) 2.95673 0.156927
\(356\) 7.79180i 0.412965i
\(357\) 11.6049i 0.614199i
\(358\) 16.9549i 0.896097i
\(359\) − 4.37981i − 0.231157i −0.993298 0.115579i \(-0.963128\pi\)
0.993298 0.115579i \(-0.0368722\pi\)
\(360\) −2.02707 −0.106836
\(361\) −19.0983 −1.00517
\(362\) − 2.65743i − 0.139671i
\(363\) −17.8933 −0.939156
\(364\) 0 0
\(365\) −0.486112 −0.0254443
\(366\) 19.0923i 0.997972i
\(367\) 25.8188 1.34773 0.673865 0.738854i \(-0.264633\pi\)
0.673865 + 0.738854i \(0.264633\pi\)
\(368\) −8.45117 −0.440548
\(369\) − 8.98303i − 0.467638i
\(370\) 0.130141i 0.00676571i
\(371\) − 1.69699i − 0.0881031i
\(372\) 2.00000i 0.103695i
\(373\) 30.6285 1.58588 0.792942 0.609297i \(-0.208548\pi\)
0.792942 + 0.609297i \(0.208548\pi\)
\(374\) −21.9717 −1.13613
\(375\) − 18.9790i − 0.980069i
\(376\) 2.92115 0.150647
\(377\) 0 0
\(378\) −1.72335 −0.0886395
\(379\) − 38.1523i − 1.95975i −0.199604 0.979877i \(-0.563966\pi\)
0.199604 0.979877i \(-0.436034\pi\)
\(380\) 5.56649 0.285555
\(381\) 44.7016 2.29013
\(382\) − 24.4861i − 1.25282i
\(383\) 31.9602i 1.63309i 0.577283 + 0.816544i \(0.304113\pi\)
−0.577283 + 0.816544i \(0.695887\pi\)
\(384\) − 2.29079i − 0.116901i
\(385\) 3.91142i 0.199345i
\(386\) −12.2409 −0.623046
\(387\) −17.3265 −0.880753
\(388\) 11.7061i 0.594287i
\(389\) 5.24585 0.265975 0.132988 0.991118i \(-0.457543\pi\)
0.132988 + 0.991118i \(0.457543\pi\)
\(390\) 0 0
\(391\) 42.8130 2.16514
\(392\) 1.00000i 0.0505076i
\(393\) −47.3039 −2.38617
\(394\) −5.45751 −0.274946
\(395\) − 5.89215i − 0.296466i
\(396\) 9.74866i 0.489889i
\(397\) − 24.5296i − 1.23110i −0.788096 0.615552i \(-0.788933\pi\)
0.788096 0.615552i \(-0.211067\pi\)
\(398\) 12.8166i 0.642440i
\(399\) −14.1396 −0.707866
\(400\) 4.18669 0.209334
\(401\) 4.27143i 0.213305i 0.994296 + 0.106652i \(0.0340132\pi\)
−0.994296 + 0.106652i \(0.965987\pi\)
\(402\) 23.7849 1.18628
\(403\) 0 0
\(404\) −10.7429 −0.534479
\(405\) 9.64150i 0.479090i
\(406\) −2.19286 −0.108830
\(407\) 0.625880 0.0310237
\(408\) 11.6049i 0.574530i
\(409\) 1.61647i 0.0799293i 0.999201 + 0.0399646i \(0.0127245\pi\)
−0.999201 + 0.0399646i \(0.987275\pi\)
\(410\) − 3.60423i − 0.178000i
\(411\) − 7.30661i − 0.360408i
\(412\) −4.81099 −0.237021
\(413\) 8.54933 0.420685
\(414\) − 18.9957i − 0.933589i
\(415\) 11.9357 0.585900
\(416\) 0 0
\(417\) −1.36464 −0.0668269
\(418\) − 26.7706i − 1.30939i
\(419\) −26.0312 −1.27171 −0.635854 0.771810i \(-0.719352\pi\)
−0.635854 + 0.771810i \(0.719352\pi\)
\(420\) 2.06592 0.100807
\(421\) − 37.5391i − 1.82954i −0.403971 0.914772i \(-0.632370\pi\)
0.403971 0.914772i \(-0.367630\pi\)
\(422\) − 19.3110i − 0.940047i
\(423\) 6.56588i 0.319244i
\(424\) − 1.69699i − 0.0824129i
\(425\) −21.2094 −1.02881
\(426\) −7.51048 −0.363884
\(427\) − 8.33440i − 0.403330i
\(428\) −13.6530 −0.659944
\(429\) 0 0
\(430\) −6.95183 −0.335247
\(431\) 21.5538i 1.03821i 0.854710 + 0.519106i \(0.173735\pi\)
−0.854710 + 0.519106i \(0.826265\pi\)
\(432\) −1.72335 −0.0829147
\(433\) −3.19917 −0.153742 −0.0768710 0.997041i \(-0.524493\pi\)
−0.0768710 + 0.997041i \(0.524493\pi\)
\(434\) − 0.873062i − 0.0419083i
\(435\) 4.53027i 0.217210i
\(436\) 5.11747i 0.245082i
\(437\) 52.1638i 2.49534i
\(438\) 1.23479 0.0590004
\(439\) −26.6227 −1.27063 −0.635317 0.772252i \(-0.719130\pi\)
−0.635317 + 0.772252i \(0.719130\pi\)
\(440\) 3.91142i 0.186470i
\(441\) −2.24770 −0.107034
\(442\) 0 0
\(443\) 9.09867 0.432291 0.216145 0.976361i \(-0.430652\pi\)
0.216145 + 0.976361i \(0.430652\pi\)
\(444\) − 0.330575i − 0.0156884i
\(445\) −7.02695 −0.333109
\(446\) 10.6357 0.503615
\(447\) − 25.6789i − 1.21457i
\(448\) 1.00000i 0.0472456i
\(449\) − 7.02693i − 0.331621i −0.986158 0.165811i \(-0.946976\pi\)
0.986158 0.165811i \(-0.0530240\pi\)
\(450\) 9.41043i 0.443612i
\(451\) −17.3336 −0.816209
\(452\) −17.9321 −0.843453
\(453\) 29.9476i 1.40706i
\(454\) 22.7217 1.06638
\(455\) 0 0
\(456\) −14.1396 −0.662148
\(457\) − 19.1511i − 0.895851i −0.894071 0.447926i \(-0.852163\pi\)
0.894071 0.447926i \(-0.147837\pi\)
\(458\) 20.3094 0.948996
\(459\) 8.73035 0.407498
\(460\) − 7.62159i − 0.355359i
\(461\) 3.25656i 0.151673i 0.997120 + 0.0758365i \(0.0241627\pi\)
−0.997120 + 0.0758365i \(0.975837\pi\)
\(462\) − 9.93552i − 0.462242i
\(463\) − 21.2761i − 0.988786i −0.869238 0.494393i \(-0.835390\pi\)
0.869238 0.494393i \(-0.164610\pi\)
\(464\) −2.19286 −0.101801
\(465\) −1.80368 −0.0836435
\(466\) 10.6446i 0.493102i
\(467\) −3.33171 −0.154173 −0.0770866 0.997024i \(-0.524562\pi\)
−0.0770866 + 0.997024i \(0.524562\pi\)
\(468\) 0 0
\(469\) −10.3828 −0.479435
\(470\) 2.63441i 0.121516i
\(471\) 41.0612 1.89200
\(472\) 8.54933 0.393515
\(473\) 33.4331i 1.53725i
\(474\) 14.9668i 0.687449i
\(475\) − 25.8418i − 1.18570i
\(476\) − 5.06592i − 0.232196i
\(477\) 3.81432 0.174646
\(478\) −0.311564 −0.0142506
\(479\) − 0.185216i − 0.00846273i −0.999991 0.00423136i \(-0.998653\pi\)
0.999991 0.00423136i \(-0.00134689\pi\)
\(480\) 2.06592 0.0942959
\(481\) 0 0
\(482\) −25.2995 −1.15236
\(483\) 19.3598i 0.880903i
\(484\) 7.81099 0.355045
\(485\) −10.5570 −0.479369
\(486\) − 19.3206i − 0.876401i
\(487\) 31.2308i 1.41520i 0.706613 + 0.707601i \(0.250222\pi\)
−0.706613 + 0.707601i \(0.749778\pi\)
\(488\) − 8.33440i − 0.377281i
\(489\) − 46.5440i − 2.10479i
\(490\) −0.901839 −0.0407409
\(491\) −26.8472 −1.21160 −0.605799 0.795618i \(-0.707146\pi\)
−0.605799 + 0.795618i \(0.707146\pi\)
\(492\) 9.15521i 0.412749i
\(493\) 11.1088 0.500317
\(494\) 0 0
\(495\) −8.79172 −0.395158
\(496\) − 0.873062i − 0.0392017i
\(497\) 3.27856 0.147063
\(498\) −30.3182 −1.35859
\(499\) 15.2869i 0.684337i 0.939639 + 0.342168i \(0.111161\pi\)
−0.939639 + 0.342168i \(0.888839\pi\)
\(500\) 8.28491i 0.370512i
\(501\) − 7.40040i − 0.330625i
\(502\) − 8.04030i − 0.358856i
\(503\) −26.1102 −1.16419 −0.582097 0.813119i \(-0.697768\pi\)
−0.582097 + 0.813119i \(0.697768\pi\)
\(504\) −2.24770 −0.100121
\(505\) − 9.68836i − 0.431126i
\(506\) −36.6541 −1.62947
\(507\) 0 0
\(508\) −19.5136 −0.865777
\(509\) 17.0271i 0.754715i 0.926068 + 0.377357i \(0.123167\pi\)
−0.926068 + 0.377357i \(0.876833\pi\)
\(510\) −10.4658 −0.463433
\(511\) −0.539023 −0.0238450
\(512\) 1.00000i 0.0441942i
\(513\) 10.6372i 0.469643i
\(514\) 16.9327i 0.746868i
\(515\) − 4.33874i − 0.191188i
\(516\) 17.6586 0.777375
\(517\) 12.6695 0.557204
\(518\) 0.144306i 0.00634045i
\(519\) 21.0075 0.922128
\(520\) 0 0
\(521\) −18.7760 −0.822593 −0.411297 0.911502i \(-0.634924\pi\)
−0.411297 + 0.911502i \(0.634924\pi\)
\(522\) − 4.92890i − 0.215732i
\(523\) −3.03247 −0.132601 −0.0663004 0.997800i \(-0.521120\pi\)
−0.0663004 + 0.997800i \(0.521120\pi\)
\(524\) 20.6496 0.902083
\(525\) − 9.59081i − 0.418577i
\(526\) 10.3209i 0.450013i
\(527\) 4.42286i 0.192663i
\(528\) − 9.93552i − 0.432388i
\(529\) 48.4223 2.10532
\(530\) 1.53041 0.0664766
\(531\) 19.2164i 0.833919i
\(532\) 6.17238 0.267607
\(533\) 0 0
\(534\) 17.8494 0.772417
\(535\) − 12.3128i − 0.532330i
\(536\) −10.3828 −0.448470
\(537\) 38.8402 1.67608
\(538\) − 6.13999i − 0.264714i
\(539\) 4.33716i 0.186815i
\(540\) − 1.55418i − 0.0668814i
\(541\) − 6.11845i − 0.263053i −0.991313 0.131526i \(-0.958012\pi\)
0.991313 0.131526i \(-0.0419878\pi\)
\(542\) −10.6772 −0.458625
\(543\) −6.08760 −0.261244
\(544\) − 5.06592i − 0.217200i
\(545\) −4.61513 −0.197691
\(546\) 0 0
\(547\) −37.4754 −1.60233 −0.801166 0.598442i \(-0.795786\pi\)
−0.801166 + 0.598442i \(0.795786\pi\)
\(548\) 3.18956i 0.136251i
\(549\) 18.7333 0.799516
\(550\) 18.1583 0.774275
\(551\) 13.5352i 0.576617i
\(552\) 19.3598i 0.824009i
\(553\) − 6.53349i − 0.277832i
\(554\) − 21.9090i − 0.930823i
\(555\) 0.298125 0.0126547
\(556\) 0.595710 0.0252637
\(557\) − 8.89051i − 0.376703i −0.982102 0.188352i \(-0.939686\pi\)
0.982102 0.188352i \(-0.0603144\pi\)
\(558\) 1.96239 0.0830744
\(559\) 0 0
\(560\) −0.901839 −0.0381096
\(561\) 50.3325i 2.12504i
\(562\) −25.7719 −1.08712
\(563\) −17.7920 −0.749841 −0.374921 0.927057i \(-0.622330\pi\)
−0.374921 + 0.927057i \(0.622330\pi\)
\(564\) − 6.69173i − 0.281773i
\(565\) − 16.1718i − 0.680354i
\(566\) 11.3269i 0.476105i
\(567\) 10.6909i 0.448977i
\(568\) 3.27856 0.137565
\(569\) −11.1737 −0.468425 −0.234212 0.972185i \(-0.575251\pi\)
−0.234212 + 0.972185i \(0.575251\pi\)
\(570\) − 12.7516i − 0.534108i
\(571\) −16.7239 −0.699873 −0.349936 0.936773i \(-0.613797\pi\)
−0.349936 + 0.936773i \(0.613797\pi\)
\(572\) 0 0
\(573\) −56.0924 −2.34329
\(574\) − 3.99654i − 0.166812i
\(575\) −35.3824 −1.47555
\(576\) −2.24770 −0.0936543
\(577\) − 0.798887i − 0.0332581i −0.999862 0.0166291i \(-0.994707\pi\)
0.999862 0.0166291i \(-0.00529344\pi\)
\(578\) 8.66355i 0.360356i
\(579\) 28.0413i 1.16536i
\(580\) − 1.97760i − 0.0821155i
\(581\) 13.2348 0.549074
\(582\) 26.8162 1.11157
\(583\) − 7.36010i − 0.304824i
\(584\) −0.539023 −0.0223049
\(585\) 0 0
\(586\) 23.7459 0.980935
\(587\) 8.02425i 0.331196i 0.986193 + 0.165598i \(0.0529555\pi\)
−0.986193 + 0.165598i \(0.947045\pi\)
\(588\) 2.29079 0.0944705
\(589\) −5.38887 −0.222045
\(590\) 7.71012i 0.317421i
\(591\) 12.5020i 0.514263i
\(592\) 0.144306i 0.00593095i
\(593\) 4.93120i 0.202500i 0.994861 + 0.101250i \(0.0322842\pi\)
−0.994861 + 0.101250i \(0.967716\pi\)
\(594\) −7.47445 −0.306680
\(595\) 4.56864 0.187296
\(596\) 11.2096i 0.459165i
\(597\) 29.3602 1.20163
\(598\) 0 0
\(599\) −17.8249 −0.728306 −0.364153 0.931339i \(-0.618642\pi\)
−0.364153 + 0.931339i \(0.618642\pi\)
\(600\) − 9.59081i − 0.391543i
\(601\) −0.161833 −0.00660131 −0.00330065 0.999995i \(-0.501051\pi\)
−0.00330065 + 0.999995i \(0.501051\pi\)
\(602\) −7.70851 −0.314175
\(603\) − 23.3375i − 0.950378i
\(604\) − 13.0731i − 0.531935i
\(605\) 7.04426i 0.286390i
\(606\) 24.6097i 0.999700i
\(607\) 6.18846 0.251182 0.125591 0.992082i \(-0.459917\pi\)
0.125591 + 0.992082i \(0.459917\pi\)
\(608\) 6.17238 0.250323
\(609\) 5.02337i 0.203557i
\(610\) 7.51629 0.304326
\(611\) 0 0
\(612\) 11.3867 0.460280
\(613\) 37.2124i 1.50299i 0.659736 + 0.751497i \(0.270668\pi\)
−0.659736 + 0.751497i \(0.729332\pi\)
\(614\) −6.68810 −0.269910
\(615\) −8.25652 −0.332935
\(616\) 4.33716i 0.174749i
\(617\) 6.68036i 0.268941i 0.990918 + 0.134471i \(0.0429334\pi\)
−0.990918 + 0.134471i \(0.957067\pi\)
\(618\) 11.0210i 0.443328i
\(619\) 23.7344i 0.953965i 0.878913 + 0.476982i \(0.158269\pi\)
−0.878913 + 0.476982i \(0.841731\pi\)
\(620\) 0.787362 0.0316212
\(621\) 14.5643 0.584446
\(622\) 9.18724i 0.368375i
\(623\) −7.79180 −0.312172
\(624\) 0 0
\(625\) 13.4618 0.538471
\(626\) − 17.1631i − 0.685977i
\(627\) −61.3258 −2.44912
\(628\) −17.9245 −0.715266
\(629\) − 0.731044i − 0.0291486i
\(630\) − 2.02707i − 0.0807603i
\(631\) − 23.0187i − 0.916359i −0.888860 0.458180i \(-0.848502\pi\)
0.888860 0.458180i \(-0.151498\pi\)
\(632\) − 6.53349i − 0.259888i
\(633\) −44.2375 −1.75828
\(634\) −3.76247 −0.149427
\(635\) − 17.5981i − 0.698361i
\(636\) −3.88743 −0.154147
\(637\) 0 0
\(638\) −9.51078 −0.376536
\(639\) 7.36923i 0.291522i
\(640\) −0.901839 −0.0356483
\(641\) −12.6508 −0.499676 −0.249838 0.968288i \(-0.580377\pi\)
−0.249838 + 0.968288i \(0.580377\pi\)
\(642\) 31.2762i 1.23437i
\(643\) 15.2388i 0.600958i 0.953788 + 0.300479i \(0.0971465\pi\)
−0.953788 + 0.300479i \(0.902854\pi\)
\(644\) − 8.45117i − 0.333023i
\(645\) 15.9252i 0.627053i
\(646\) −31.2688 −1.23025
\(647\) 29.3642 1.15443 0.577213 0.816594i \(-0.304140\pi\)
0.577213 + 0.816594i \(0.304140\pi\)
\(648\) 10.6909i 0.419980i
\(649\) 37.0799 1.45551
\(650\) 0 0
\(651\) −2.00000 −0.0783862
\(652\) 20.3179i 0.795710i
\(653\) −29.0211 −1.13568 −0.567842 0.823137i \(-0.692222\pi\)
−0.567842 + 0.823137i \(0.692222\pi\)
\(654\) 11.7230 0.458407
\(655\) 18.6226i 0.727647i
\(656\) − 3.99654i − 0.156038i
\(657\) − 1.21156i − 0.0472676i
\(658\) 2.92115i 0.113878i
\(659\) 7.97303 0.310585 0.155293 0.987869i \(-0.450368\pi\)
0.155293 + 0.987869i \(0.450368\pi\)
\(660\) 8.96024 0.348777
\(661\) 3.93370i 0.153003i 0.997069 + 0.0765015i \(0.0243750\pi\)
−0.997069 + 0.0765015i \(0.975625\pi\)
\(662\) −32.2257 −1.25249
\(663\) 0 0
\(664\) 13.2348 0.513611
\(665\) 5.56649i 0.215859i
\(666\) −0.324358 −0.0125686
\(667\) 18.5322 0.717570
\(668\) 3.23051i 0.124992i
\(669\) − 24.3641i − 0.941972i
\(670\) − 9.36365i − 0.361749i
\(671\) − 36.1477i − 1.39547i
\(672\) 2.29079 0.0883690
\(673\) −36.3199 −1.40003 −0.700014 0.714129i \(-0.746823\pi\)
−0.700014 + 0.714129i \(0.746823\pi\)
\(674\) − 3.01703i − 0.116212i
\(675\) −7.21513 −0.277710
\(676\) 0 0
\(677\) −21.1068 −0.811201 −0.405600 0.914051i \(-0.632938\pi\)
−0.405600 + 0.914051i \(0.632938\pi\)
\(678\) 41.0785i 1.57761i
\(679\) −11.7061 −0.449239
\(680\) 4.56864 0.175199
\(681\) − 52.0506i − 1.99458i
\(682\) − 3.78662i − 0.144997i
\(683\) 26.4258i 1.01115i 0.862782 + 0.505577i \(0.168720\pi\)
−0.862782 + 0.505577i \(0.831280\pi\)
\(684\) 13.8737i 0.530474i
\(685\) −2.87647 −0.109904
\(686\) −1.00000 −0.0381802
\(687\) − 46.5245i − 1.77502i
\(688\) −7.70851 −0.293884
\(689\) 0 0
\(690\) −17.4594 −0.664670
\(691\) 0.779759i 0.0296634i 0.999890 + 0.0148317i \(0.00472125\pi\)
−0.999890 + 0.0148317i \(0.995279\pi\)
\(692\) −9.17044 −0.348608
\(693\) −9.74866 −0.370321
\(694\) 0.468540i 0.0177855i
\(695\) 0.537234i 0.0203785i
\(696\) 5.02337i 0.190410i
\(697\) 20.2461i 0.766877i
\(698\) 32.2212 1.21959
\(699\) 24.3845 0.922308
\(700\) 4.18669i 0.158242i
\(701\) 21.5491 0.813899 0.406950 0.913451i \(-0.366592\pi\)
0.406950 + 0.913451i \(0.366592\pi\)
\(702\) 0 0
\(703\) 0.890713 0.0335939
\(704\) 4.33716i 0.163463i
\(705\) 6.03486 0.227286
\(706\) 13.1154 0.493605
\(707\) − 10.7429i − 0.404028i
\(708\) − 19.5847i − 0.736038i
\(709\) 4.53742i 0.170406i 0.996364 + 0.0852031i \(0.0271539\pi\)
−0.996364 + 0.0852031i \(0.972846\pi\)
\(710\) 2.95673i 0.110964i
\(711\) 14.6853 0.550743
\(712\) −7.79180 −0.292010
\(713\) 7.37840i 0.276323i
\(714\) −11.6049 −0.434304
\(715\) 0 0
\(716\) −16.9549 −0.633636
\(717\) 0.713727i 0.0266546i
\(718\) 4.37981 0.163453
\(719\) 14.6007 0.544515 0.272258 0.962224i \(-0.412230\pi\)
0.272258 + 0.962224i \(0.412230\pi\)
\(720\) − 2.02707i − 0.0755443i
\(721\) − 4.81099i − 0.179171i
\(722\) − 19.0983i − 0.710764i
\(723\) 57.9558i 2.15540i
\(724\) 2.65743 0.0987626
\(725\) −9.18081 −0.340967
\(726\) − 17.8933i − 0.664083i
\(727\) 30.6315 1.13606 0.568030 0.823008i \(-0.307706\pi\)
0.568030 + 0.823008i \(0.307706\pi\)
\(728\) 0 0
\(729\) −12.1866 −0.451355
\(730\) − 0.486112i − 0.0179918i
\(731\) 39.0507 1.44434
\(732\) −19.0923 −0.705673
\(733\) − 17.7195i − 0.654484i −0.944941 0.327242i \(-0.893881\pi\)
0.944941 0.327242i \(-0.106119\pi\)
\(734\) 25.8188i 0.952989i
\(735\) 2.06592i 0.0762026i
\(736\) − 8.45117i − 0.311514i
\(737\) −45.0321 −1.65878
\(738\) 8.98303 0.330670
\(739\) − 10.4502i − 0.384417i −0.981354 0.192208i \(-0.938435\pi\)
0.981354 0.192208i \(-0.0615649\pi\)
\(740\) −0.130141 −0.00478408
\(741\) 0 0
\(742\) 1.69699 0.0622983
\(743\) 48.5094i 1.77964i 0.456316 + 0.889818i \(0.349169\pi\)
−0.456316 + 0.889818i \(0.650831\pi\)
\(744\) −2.00000 −0.0733236
\(745\) −10.1093 −0.370376
\(746\) 30.6285i 1.12139i
\(747\) 29.7480i 1.08842i
\(748\) − 21.9717i − 0.803366i
\(749\) − 13.6530i − 0.498871i
\(750\) 18.9790 0.693014
\(751\) −31.4555 −1.14783 −0.573914 0.818915i \(-0.694576\pi\)
−0.573914 + 0.818915i \(0.694576\pi\)
\(752\) 2.92115i 0.106523i
\(753\) −18.4186 −0.671212
\(754\) 0 0
\(755\) 11.7898 0.429075
\(756\) − 1.72335i − 0.0626776i
\(757\) 48.6884 1.76961 0.884805 0.465962i \(-0.154292\pi\)
0.884805 + 0.465962i \(0.154292\pi\)
\(758\) 38.1523 1.38575
\(759\) 83.9668i 3.04780i
\(760\) 5.56649i 0.201918i
\(761\) 46.5749i 1.68834i 0.536077 + 0.844169i \(0.319906\pi\)
−0.536077 + 0.844169i \(0.680094\pi\)
\(762\) 44.7016i 1.61937i
\(763\) −5.11747 −0.185265
\(764\) 24.4861 0.885875
\(765\) 10.2690i 0.371275i
\(766\) −31.9602 −1.15477
\(767\) 0 0
\(768\) 2.29079 0.0826616
\(769\) − 27.8362i − 1.00380i −0.864926 0.501899i \(-0.832635\pi\)
0.864926 0.501899i \(-0.167365\pi\)
\(770\) −3.91142 −0.140958
\(771\) 38.7891 1.39696
\(772\) − 12.2409i − 0.440560i
\(773\) − 28.4724i − 1.02408i −0.858961 0.512040i \(-0.828890\pi\)
0.858961 0.512040i \(-0.171110\pi\)
\(774\) − 17.3265i − 0.622786i
\(775\) − 3.65524i − 0.131300i
\(776\) −11.7061 −0.420224
\(777\) 0.330575 0.0118593
\(778\) 5.24585i 0.188073i
\(779\) −24.6681 −0.883828
\(780\) 0 0
\(781\) 14.2196 0.508819
\(782\) 42.8130i 1.53099i
\(783\) 3.77906 0.135053
\(784\) −1.00000 −0.0357143
\(785\) − 16.1650i − 0.576954i
\(786\) − 47.3039i − 1.68727i
\(787\) − 15.1319i − 0.539393i −0.962945 0.269697i \(-0.913077\pi\)
0.962945 0.269697i \(-0.0869234\pi\)
\(788\) − 5.45751i − 0.194416i
\(789\) 23.6430 0.841713
\(790\) 5.89215 0.209633
\(791\) − 17.9321i − 0.637590i
\(792\) −9.74866 −0.346404
\(793\) 0 0
\(794\) 24.5296 0.870522
\(795\) − 3.50584i − 0.124339i
\(796\) −12.8166 −0.454274
\(797\) −13.9447 −0.493946 −0.246973 0.969022i \(-0.579436\pi\)
−0.246973 + 0.969022i \(0.579436\pi\)
\(798\) − 14.1396i − 0.500537i
\(799\) − 14.7983i − 0.523527i
\(800\) 4.18669i 0.148022i
\(801\) − 17.5137i − 0.618815i
\(802\) −4.27143 −0.150829
\(803\) −2.33783 −0.0825003
\(804\) 23.7849i 0.838828i
\(805\) 7.62159 0.268626
\(806\) 0 0
\(807\) −14.0654 −0.495125
\(808\) − 10.7429i − 0.377934i
\(809\) −21.7429 −0.764440 −0.382220 0.924071i \(-0.624840\pi\)
−0.382220 + 0.924071i \(0.624840\pi\)
\(810\) −9.64150 −0.338768
\(811\) − 21.1256i − 0.741819i −0.928669 0.370910i \(-0.879046\pi\)
0.928669 0.370910i \(-0.120954\pi\)
\(812\) − 2.19286i − 0.0769542i
\(813\) 24.4592i 0.857822i
\(814\) 0.625880i 0.0219371i
\(815\) −18.3235 −0.641843
\(816\) −11.6049 −0.406254
\(817\) 47.5799i 1.66461i
\(818\) −1.61647 −0.0565185
\(819\) 0 0
\(820\) 3.60423 0.125865
\(821\) − 16.2736i − 0.567951i −0.958831 0.283976i \(-0.908347\pi\)
0.958831 0.283976i \(-0.0916535\pi\)
\(822\) 7.30661 0.254847
\(823\) −18.6543 −0.650246 −0.325123 0.945672i \(-0.605406\pi\)
−0.325123 + 0.945672i \(0.605406\pi\)
\(824\) − 4.81099i − 0.167599i
\(825\) − 41.5969i − 1.44822i
\(826\) 8.54933i 0.297469i
\(827\) − 47.3361i − 1.64604i −0.568015 0.823018i \(-0.692288\pi\)
0.568015 0.823018i \(-0.307712\pi\)
\(828\) 18.9957 0.660147
\(829\) −0.921975 −0.0320215 −0.0160108 0.999872i \(-0.505097\pi\)
−0.0160108 + 0.999872i \(0.505097\pi\)
\(830\) 11.9357i 0.414294i
\(831\) −50.1888 −1.74103
\(832\) 0 0
\(833\) 5.06592 0.175524
\(834\) − 1.36464i − 0.0472538i
\(835\) −2.91339 −0.100822
\(836\) 26.7706 0.925881
\(837\) 1.50459i 0.0520063i
\(838\) − 26.0312i − 0.899233i
\(839\) 16.6155i 0.573631i 0.957986 + 0.286815i \(0.0925966\pi\)
−0.957986 + 0.286815i \(0.907403\pi\)
\(840\) 2.06592i 0.0712810i
\(841\) −24.1914 −0.834185
\(842\) 37.5391 1.29368
\(843\) 59.0380i 2.03338i
\(844\) 19.3110 0.664713
\(845\) 0 0
\(846\) −6.56588 −0.225740
\(847\) 7.81099i 0.268389i
\(848\) 1.69699 0.0582747
\(849\) 25.9475 0.890515
\(850\) − 21.2094i − 0.727477i
\(851\) − 1.21956i − 0.0418059i
\(852\) − 7.51048i − 0.257305i
\(853\) 26.3277i 0.901445i 0.892664 + 0.450722i \(0.148834\pi\)
−0.892664 + 0.450722i \(0.851166\pi\)
\(854\) 8.33440 0.285197
\(855\) −12.5118 −0.427895
\(856\) − 13.6530i − 0.466651i
\(857\) 14.1058 0.481845 0.240923 0.970544i \(-0.422550\pi\)
0.240923 + 0.970544i \(0.422550\pi\)
\(858\) 0 0
\(859\) 23.4719 0.800850 0.400425 0.916329i \(-0.368862\pi\)
0.400425 + 0.916329i \(0.368862\pi\)
\(860\) − 6.95183i − 0.237056i
\(861\) −9.15521 −0.312009
\(862\) −21.5538 −0.734127
\(863\) − 11.9484i − 0.406727i −0.979103 0.203364i \(-0.934813\pi\)
0.979103 0.203364i \(-0.0651874\pi\)
\(864\) − 1.72335i − 0.0586295i
\(865\) − 8.27026i − 0.281197i
\(866\) − 3.19917i − 0.108712i
\(867\) 19.8463 0.674017
\(868\) 0.873062 0.0296337
\(869\) − 28.3368i − 0.961260i
\(870\) −4.53027 −0.153591
\(871\) 0 0
\(872\) −5.11747 −0.173299
\(873\) − 26.3118i − 0.890521i
\(874\) −52.1638 −1.76447
\(875\) −8.28491 −0.280081
\(876\) 1.23479i 0.0417196i
\(877\) 32.7341i 1.10535i 0.833396 + 0.552677i \(0.186394\pi\)
−0.833396 + 0.552677i \(0.813606\pi\)
\(878\) − 26.6227i − 0.898474i
\(879\) − 54.3969i − 1.83476i
\(880\) −3.91142 −0.131854
\(881\) 10.5908 0.356813 0.178407 0.983957i \(-0.442906\pi\)
0.178407 + 0.983957i \(0.442906\pi\)
\(882\) − 2.24770i − 0.0756841i
\(883\) −38.6713 −1.30139 −0.650696 0.759338i \(-0.725523\pi\)
−0.650696 + 0.759338i \(0.725523\pi\)
\(884\) 0 0
\(885\) 17.6622 0.593710
\(886\) 9.09867i 0.305676i
\(887\) 4.72164 0.158537 0.0792685 0.996853i \(-0.474742\pi\)
0.0792685 + 0.996853i \(0.474742\pi\)
\(888\) 0.330575 0.0110934
\(889\) − 19.5136i − 0.654466i
\(890\) − 7.02695i − 0.235544i
\(891\) 46.3684i 1.55340i
\(892\) 10.6357i 0.356110i
\(893\) 18.0304 0.603366
\(894\) 25.6789 0.858831
\(895\) − 15.2906i − 0.511109i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 7.02693 0.234492
\(899\) 1.91450i 0.0638522i
\(900\) −9.41043 −0.313681
\(901\) −8.59679 −0.286401
\(902\) − 17.3336i − 0.577147i
\(903\) 17.6586i 0.587640i
\(904\) − 17.9321i − 0.596411i
\(905\) 2.39657i 0.0796648i
\(906\) −29.9476 −0.994943
\(907\) 41.9309 1.39229 0.696146 0.717900i \(-0.254896\pi\)
0.696146 + 0.717900i \(0.254896\pi\)
\(908\) 22.7217i 0.754047i
\(909\) 24.1468 0.800900
\(910\) 0 0
\(911\) −54.1425 −1.79382 −0.896910 0.442213i \(-0.854194\pi\)
−0.896910 + 0.442213i \(0.854194\pi\)
\(912\) − 14.1396i − 0.468209i
\(913\) 57.4017 1.89972
\(914\) 19.1511 0.633462
\(915\) − 17.2182i − 0.569216i
\(916\) 20.3094i 0.671042i
\(917\) 20.6496i 0.681911i
\(918\) 8.73035i 0.288145i
\(919\) −25.8233 −0.851832 −0.425916 0.904763i \(-0.640048\pi\)
−0.425916 + 0.904763i \(0.640048\pi\)
\(920\) 7.62159 0.251277
\(921\) 15.3210i 0.504845i
\(922\) −3.25656 −0.107249
\(923\) 0 0
\(924\) 9.93552 0.326855
\(925\) 0.604165i 0.0198648i
\(926\) 21.2761 0.699178
\(927\) 10.8137 0.355168
\(928\) − 2.19286i − 0.0719841i
\(929\) − 16.0322i − 0.525999i −0.964796 0.263000i \(-0.915288\pi\)
0.964796 0.263000i \(-0.0847118\pi\)
\(930\) − 1.80368i − 0.0591449i
\(931\) 6.17238i 0.202292i
\(932\) −10.6446 −0.348676
\(933\) 21.0460 0.689016
\(934\) − 3.33171i − 0.109017i
\(935\) 19.8150 0.648018
\(936\) 0 0
\(937\) 47.0232 1.53618 0.768091 0.640340i \(-0.221207\pi\)
0.768091 + 0.640340i \(0.221207\pi\)
\(938\) − 10.3828i − 0.339012i
\(939\) −39.3171 −1.28307
\(940\) −2.63441 −0.0859248
\(941\) 52.8569i 1.72308i 0.507686 + 0.861542i \(0.330501\pi\)
−0.507686 + 0.861542i \(0.669499\pi\)
\(942\) 41.0612i 1.33785i
\(943\) 33.7754i 1.09988i
\(944\) 8.54933i 0.278257i
\(945\) 1.55418 0.0505576
\(946\) −33.4331 −1.08700
\(947\) − 38.5704i − 1.25337i −0.779273 0.626684i \(-0.784412\pi\)
0.779273 0.626684i \(-0.215588\pi\)
\(948\) −14.9668 −0.486100
\(949\) 0 0
\(950\) 25.8418 0.838419
\(951\) 8.61903i 0.279491i
\(952\) 5.06592 0.164187
\(953\) −27.3009 −0.884364 −0.442182 0.896925i \(-0.645796\pi\)
−0.442182 + 0.896925i \(0.645796\pi\)
\(954\) 3.81432i 0.123493i
\(955\) 22.0825i 0.714572i
\(956\) − 0.311564i − 0.0100767i
\(957\) 21.7872i 0.704279i
\(958\) 0.185216 0.00598405
\(959\) −3.18956 −0.102996
\(960\) 2.06592i 0.0666773i
\(961\) 30.2378 0.975412
\(962\) 0 0
\(963\) 30.6880 0.988906
\(964\) − 25.2995i − 0.814843i
\(965\) 11.0393 0.355369
\(966\) −19.3598 −0.622892
\(967\) 25.2494i 0.811966i 0.913881 + 0.405983i \(0.133071\pi\)
−0.913881 + 0.405983i \(0.866929\pi\)
\(968\) 7.81099i 0.251055i
\(969\) 71.6301i 2.30109i
\(970\) − 10.5570i − 0.338965i
\(971\) −6.57364 −0.210958 −0.105479 0.994422i \(-0.533638\pi\)
−0.105479 + 0.994422i \(0.533638\pi\)
\(972\) 19.3206 0.619709
\(973\) 0.595710i 0.0190976i
\(974\) −31.2308 −1.00070
\(975\) 0 0
\(976\) 8.33440 0.266778
\(977\) 13.9457i 0.446163i 0.974800 + 0.223081i \(0.0716116\pi\)
−0.974800 + 0.223081i \(0.928388\pi\)
\(978\) 46.5440 1.48831
\(979\) −33.7943 −1.08007
\(980\) − 0.901839i − 0.0288082i
\(981\) − 11.5026i − 0.367249i
\(982\) − 26.8472i − 0.856729i
\(983\) − 47.1390i − 1.50350i −0.659449 0.751750i \(-0.729210\pi\)
0.659449 0.751750i \(-0.270790\pi\)
\(984\) −9.15521 −0.291857
\(985\) 4.92180 0.156821
\(986\) 11.1088i 0.353778i
\(987\) 6.69173 0.213000
\(988\) 0 0
\(989\) 65.1459 2.07152
\(990\) − 8.79172i − 0.279419i
\(991\) 9.41609 0.299112 0.149556 0.988753i \(-0.452216\pi\)
0.149556 + 0.988753i \(0.452216\pi\)
\(992\) 0.873062 0.0277198
\(993\) 73.8223i 2.34268i
\(994\) 3.27856i 0.103990i
\(995\) − 11.5585i − 0.366430i
\(996\) − 30.3182i − 0.960669i
\(997\) 40.5215 1.28333 0.641664 0.766986i \(-0.278245\pi\)
0.641664 + 0.766986i \(0.278245\pi\)
\(998\) −15.2869 −0.483899
\(999\) − 0.248690i − 0.00786821i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2366.2.d.r.337.11 12
13.5 odd 4 2366.2.a.bh.1.5 6
13.8 odd 4 2366.2.a.bf.1.5 6
13.9 even 3 182.2.m.b.127.4 yes 12
13.10 even 6 182.2.m.b.43.4 12
13.12 even 2 inner 2366.2.d.r.337.5 12
39.23 odd 6 1638.2.bj.g.1135.2 12
39.35 odd 6 1638.2.bj.g.127.2 12
52.23 odd 6 1456.2.cc.d.225.5 12
52.35 odd 6 1456.2.cc.d.673.5 12
91.9 even 3 1274.2.v.e.361.3 12
91.10 odd 6 1274.2.v.d.667.1 12
91.23 even 6 1274.2.o.d.459.1 12
91.48 odd 6 1274.2.m.c.491.6 12
91.61 odd 6 1274.2.v.d.361.1 12
91.62 odd 6 1274.2.m.c.589.6 12
91.74 even 3 1274.2.o.d.569.4 12
91.75 odd 6 1274.2.o.e.459.3 12
91.87 odd 6 1274.2.o.e.569.6 12
91.88 even 6 1274.2.v.e.667.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.m.b.43.4 12 13.10 even 6
182.2.m.b.127.4 yes 12 13.9 even 3
1274.2.m.c.491.6 12 91.48 odd 6
1274.2.m.c.589.6 12 91.62 odd 6
1274.2.o.d.459.1 12 91.23 even 6
1274.2.o.d.569.4 12 91.74 even 3
1274.2.o.e.459.3 12 91.75 odd 6
1274.2.o.e.569.6 12 91.87 odd 6
1274.2.v.d.361.1 12 91.61 odd 6
1274.2.v.d.667.1 12 91.10 odd 6
1274.2.v.e.361.3 12 91.9 even 3
1274.2.v.e.667.3 12 91.88 even 6
1456.2.cc.d.225.5 12 52.23 odd 6
1456.2.cc.d.673.5 12 52.35 odd 6
1638.2.bj.g.127.2 12 39.35 odd 6
1638.2.bj.g.1135.2 12 39.23 odd 6
2366.2.a.bf.1.5 6 13.8 odd 4
2366.2.a.bh.1.5 6 13.5 odd 4
2366.2.d.r.337.5 12 13.12 even 2 inner
2366.2.d.r.337.11 12 1.1 even 1 trivial