L(s) = 1 | + i·2-s + 2.29·3-s − 4-s − 0.901i·5-s + 2.29i·6-s − i·7-s − i·8-s + 2.24·9-s + 0.901·10-s − 4.33i·11-s − 2.29·12-s + 14-s − 2.06i·15-s + 16-s − 5.06·17-s + 2.24i·18-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.32·3-s − 0.5·4-s − 0.403i·5-s + 0.935i·6-s − 0.377i·7-s − 0.353i·8-s + 0.749·9-s + 0.285·10-s − 1.30i·11-s − 0.661·12-s + 0.267·14-s − 0.533i·15-s + 0.250·16-s − 1.22·17-s + 0.529i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.277 + 0.960i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.277 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.802009454\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.802009454\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 7 | \( 1 + iT \) |
| 13 | \( 1 \) |
good | 3 | \( 1 - 2.29T + 3T^{2} \) |
| 5 | \( 1 + 0.901iT - 5T^{2} \) |
| 11 | \( 1 + 4.33iT - 11T^{2} \) |
| 17 | \( 1 + 5.06T + 17T^{2} \) |
| 19 | \( 1 + 6.17iT - 19T^{2} \) |
| 23 | \( 1 + 8.45T + 23T^{2} \) |
| 29 | \( 1 + 2.19T + 29T^{2} \) |
| 31 | \( 1 + 0.873iT - 31T^{2} \) |
| 37 | \( 1 - 0.144iT - 37T^{2} \) |
| 41 | \( 1 + 3.99iT - 41T^{2} \) |
| 43 | \( 1 + 7.70T + 43T^{2} \) |
| 47 | \( 1 - 2.92iT - 47T^{2} \) |
| 53 | \( 1 - 1.69T + 53T^{2} \) |
| 59 | \( 1 - 8.54iT - 59T^{2} \) |
| 61 | \( 1 - 8.33T + 61T^{2} \) |
| 67 | \( 1 + 10.3iT - 67T^{2} \) |
| 71 | \( 1 - 3.27iT - 71T^{2} \) |
| 73 | \( 1 + 0.539iT - 73T^{2} \) |
| 79 | \( 1 - 6.53T + 79T^{2} \) |
| 83 | \( 1 - 13.2iT - 83T^{2} \) |
| 89 | \( 1 + 7.79iT - 89T^{2} \) |
| 97 | \( 1 + 11.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.677580036279094379572152197728, −8.262506688539268757451372263619, −7.41373251781858175852442979535, −6.63728410534566326958610460167, −5.78658954526863524494073466650, −4.73842181503288225688424182255, −3.95030430144242701740695217635, −3.11309832183322939681853298628, −2.08087394599024347551972004234, −0.46719885489695889837129210044,
1.93346090683207713893598457385, 2.17252033881166163690728478797, 3.31313531443117739378816761918, 3.99528079608259682224393142995, 4.86219205563426570051327898426, 6.06397312731594066871460429688, 7.00621831222969653245523302573, 7.889528872503139906907900670267, 8.443627767749740391317340287120, 9.159275905567354539837501498114