Properties

Label 1274.2.m.c.589.6
Level $1274$
Weight $2$
Character 1274.589
Analytic conductor $10.173$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(491,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,2,6,0,-6,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 39 x^{10} - 140 x^{9} + 460 x^{8} - 1066 x^{7} + 2127 x^{6} - 3172 x^{5} + \cdots + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 589.6
Root \(0.500000 + 3.15681i\) of defining polynomial
Character \(\chi\) \(=\) 1274.589
Dual form 1274.2.m.c.491.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(1.14539 - 1.98388i) q^{3} +(0.500000 + 0.866025i) q^{4} -0.901839i q^{5} +(1.98388 - 1.14539i) q^{6} +1.00000i q^{8} +(-1.12385 - 1.94657i) q^{9} +(0.450919 - 0.781015i) q^{10} +(-3.75609 - 2.16858i) q^{11} +2.29079 q^{12} +(0.426876 - 3.58019i) q^{13} +(-1.78914 - 1.03296i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.53296 - 4.38722i) q^{17} -2.24770i q^{18} +(-5.34544 + 3.08619i) q^{19} +(0.781015 - 0.450919i) q^{20} +(-2.16858 - 3.75609i) q^{22} +(4.22559 - 7.31893i) q^{23} +(1.98388 + 1.14539i) q^{24} +4.18669 q^{25} +(2.15978 - 2.88710i) q^{26} +1.72335 q^{27} +(1.09643 - 1.89907i) q^{29} +(-1.03296 - 1.78914i) q^{30} -0.873062i q^{31} +(-0.866025 + 0.500000i) q^{32} +(-8.60441 + 4.96776i) q^{33} -5.06592i q^{34} +(1.12385 - 1.94657i) q^{36} +(0.124973 + 0.0721531i) q^{37} -6.17238 q^{38} +(-6.61373 - 4.94760i) q^{39} +0.901839 q^{40} +(3.46110 + 1.99827i) q^{41} +(3.85426 + 6.67577i) q^{43} -4.33716i q^{44} +(-1.75549 + 1.01353i) q^{45} +(7.31893 - 4.22559i) q^{46} +2.92115i q^{47} +(1.14539 + 1.98388i) q^{48} +(3.62578 + 2.09334i) q^{50} -11.6049 q^{51} +(3.31398 - 1.42041i) q^{52} +1.69699 q^{53} +(1.49246 + 0.861675i) q^{54} +(-1.95571 + 3.38739i) q^{55} +14.1396i q^{57} +(1.89907 - 1.09643i) q^{58} +(7.40394 - 4.27467i) q^{59} -2.06592i q^{60} +(4.16720 + 7.21780i) q^{61} +(0.436531 - 0.756094i) q^{62} -1.00000 q^{64} +(-3.22876 - 0.384973i) q^{65} -9.93552 q^{66} +(-8.99180 - 5.19142i) q^{67} +(2.53296 - 4.38722i) q^{68} +(-9.67992 - 16.7661i) q^{69} +(-2.83932 + 1.63928i) q^{71} +(1.94657 - 1.12385i) q^{72} -0.539023i q^{73} +(0.0721531 + 0.124973i) q^{74} +(4.79540 - 8.30588i) q^{75} +(-5.34544 - 3.08619i) q^{76} +(-3.25386 - 7.59161i) q^{78} +6.53349 q^{79} +(0.781015 + 0.450919i) q^{80} +(5.34547 - 9.25862i) q^{81} +(1.99827 + 3.46110i) q^{82} +13.2348i q^{83} +(-3.95656 + 2.28432i) q^{85} +7.70851i q^{86} +(-2.51168 - 4.35037i) q^{87} +(2.16858 - 3.75609i) q^{88} +(6.74790 + 3.89590i) q^{89} -2.02707 q^{90} +8.45117 q^{92} +(-1.73205 - 1.00000i) q^{93} +(-1.46057 + 2.52979i) q^{94} +(2.78325 + 4.82072i) q^{95} +2.29079i q^{96} +(-10.1378 + 5.85305i) q^{97} +9.74866i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{3} + 6 q^{4} - 6 q^{6} - 6 q^{9} + 2 q^{10} - 18 q^{11} + 4 q^{12} + 8 q^{13} - 6 q^{15} - 6 q^{16} - 4 q^{17} - 12 q^{19} - 2 q^{22} - 6 q^{23} - 6 q^{24} - 24 q^{25} + 14 q^{26} - 40 q^{27}+ \cdots - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 1.14539 1.98388i 0.661293 1.14539i −0.318983 0.947760i \(-0.603341\pi\)
0.980276 0.197633i \(-0.0633254\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0.901839i 0.403315i −0.979456 0.201657i \(-0.935367\pi\)
0.979456 0.201657i \(-0.0646327\pi\)
\(6\) 1.98388 1.14539i 0.809915 0.467605i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) −1.12385 1.94657i −0.374617 0.648856i
\(10\) 0.450919 0.781015i 0.142593 0.246979i
\(11\) −3.75609 2.16858i −1.13251 0.653852i −0.187941 0.982180i \(-0.560181\pi\)
−0.944564 + 0.328328i \(0.893515\pi\)
\(12\) 2.29079 0.661293
\(13\) 0.426876 3.58019i 0.118394 0.992967i
\(14\) 0 0
\(15\) −1.78914 1.03296i −0.461954 0.266709i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.53296 4.38722i −0.614333 1.06406i −0.990501 0.137505i \(-0.956092\pi\)
0.376168 0.926551i \(-0.377242\pi\)
\(18\) 2.24770i 0.529789i
\(19\) −5.34544 + 3.08619i −1.22633 + 0.708021i −0.966260 0.257570i \(-0.917078\pi\)
−0.260068 + 0.965590i \(0.583745\pi\)
\(20\) 0.781015 0.450919i 0.174640 0.100829i
\(21\) 0 0
\(22\) −2.16858 3.75609i −0.462343 0.800802i
\(23\) 4.22559 7.31893i 0.881096 1.52610i 0.0309711 0.999520i \(-0.490140\pi\)
0.850124 0.526582i \(-0.176527\pi\)
\(24\) 1.98388 + 1.14539i 0.404958 + 0.233802i
\(25\) 4.18669 0.837337
\(26\) 2.15978 2.88710i 0.423568 0.566207i
\(27\) 1.72335 0.331659
\(28\) 0 0
\(29\) 1.09643 1.89907i 0.203602 0.352649i −0.746085 0.665851i \(-0.768069\pi\)
0.949686 + 0.313203i \(0.101402\pi\)
\(30\) −1.03296 1.78914i −0.188592 0.326651i
\(31\) 0.873062i 0.156807i −0.996922 0.0784033i \(-0.975018\pi\)
0.996922 0.0784033i \(-0.0249822\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) −8.60441 + 4.96776i −1.49784 + 0.864776i
\(34\) 5.06592i 0.868798i
\(35\) 0 0
\(36\) 1.12385 1.94657i 0.187309 0.324428i
\(37\) 0.124973 + 0.0721531i 0.0205454 + 0.0118619i 0.510238 0.860034i \(-0.329557\pi\)
−0.489692 + 0.871895i \(0.662891\pi\)
\(38\) −6.17238 −1.00129
\(39\) −6.61373 4.94760i −1.05904 0.792250i
\(40\) 0.901839 0.142593
\(41\) 3.46110 + 1.99827i 0.540533 + 0.312077i 0.745295 0.666735i \(-0.232309\pi\)
−0.204762 + 0.978812i \(0.565642\pi\)
\(42\) 0 0
\(43\) 3.85426 + 6.67577i 0.587768 + 1.01804i 0.994524 + 0.104508i \(0.0333267\pi\)
−0.406756 + 0.913537i \(0.633340\pi\)
\(44\) 4.33716i 0.653852i
\(45\) −1.75549 + 1.01353i −0.261693 + 0.151089i
\(46\) 7.31893 4.22559i 1.07912 0.623029i
\(47\) 2.92115i 0.426093i 0.977042 + 0.213047i \(0.0683387\pi\)
−0.977042 + 0.213047i \(0.931661\pi\)
\(48\) 1.14539 + 1.98388i 0.165323 + 0.286348i
\(49\) 0 0
\(50\) 3.62578 + 2.09334i 0.512762 + 0.296043i
\(51\) −11.6049 −1.62502
\(52\) 3.31398 1.42041i 0.459566 0.196976i
\(53\) 1.69699 0.233099 0.116549 0.993185i \(-0.462817\pi\)
0.116549 + 0.993185i \(0.462817\pi\)
\(54\) 1.49246 + 0.861675i 0.203099 + 0.117259i
\(55\) −1.95571 + 3.38739i −0.263708 + 0.456756i
\(56\) 0 0
\(57\) 14.1396i 1.87284i
\(58\) 1.89907 1.09643i 0.249360 0.143968i
\(59\) 7.40394 4.27467i 0.963911 0.556514i 0.0665363 0.997784i \(-0.478805\pi\)
0.897374 + 0.441270i \(0.145472\pi\)
\(60\) 2.06592i 0.266709i
\(61\) 4.16720 + 7.21780i 0.533555 + 0.924145i 0.999232 + 0.0391900i \(0.0124777\pi\)
−0.465676 + 0.884955i \(0.654189\pi\)
\(62\) 0.436531 0.756094i 0.0554395 0.0960241i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −3.22876 0.384973i −0.400478 0.0477501i
\(66\) −9.93552 −1.22298
\(67\) −8.99180 5.19142i −1.09852 0.634233i −0.162691 0.986677i \(-0.552017\pi\)
−0.935833 + 0.352444i \(0.885351\pi\)
\(68\) 2.53296 4.38722i 0.307167 0.532028i
\(69\) −9.67992 16.7661i −1.16532 2.01840i
\(70\) 0 0
\(71\) −2.83932 + 1.63928i −0.336965 + 0.194547i −0.658929 0.752205i \(-0.728990\pi\)
0.321964 + 0.946752i \(0.395657\pi\)
\(72\) 1.94657 1.12385i 0.229405 0.132447i
\(73\) 0.539023i 0.0630879i −0.999502 0.0315439i \(-0.989958\pi\)
0.999502 0.0315439i \(-0.0100424\pi\)
\(74\) 0.0721531 + 0.124973i 0.00838763 + 0.0145278i
\(75\) 4.79540 8.30588i 0.553725 0.959081i
\(76\) −5.34544 3.08619i −0.613164 0.354010i
\(77\) 0 0
\(78\) −3.25386 7.59161i −0.368427 0.859581i
\(79\) 6.53349 0.735075 0.367537 0.930009i \(-0.380201\pi\)
0.367537 + 0.930009i \(0.380201\pi\)
\(80\) 0.781015 + 0.450919i 0.0873202 + 0.0504143i
\(81\) 5.34547 9.25862i 0.593941 1.02874i
\(82\) 1.99827 + 3.46110i 0.220672 + 0.382215i
\(83\) 13.2348i 1.45271i 0.687319 + 0.726356i \(0.258788\pi\)
−0.687319 + 0.726356i \(0.741212\pi\)
\(84\) 0 0
\(85\) −3.95656 + 2.28432i −0.429149 + 0.247769i
\(86\) 7.70851i 0.831230i
\(87\) −2.51168 4.35037i −0.269281 0.466408i
\(88\) 2.16858 3.75609i 0.231172 0.400401i
\(89\) 6.74790 + 3.89590i 0.715276 + 0.412965i 0.813011 0.582248i \(-0.197827\pi\)
−0.0977357 + 0.995212i \(0.531160\pi\)
\(90\) −2.02707 −0.213672
\(91\) 0 0
\(92\) 8.45117 0.881096
\(93\) −1.73205 1.00000i −0.179605 0.103695i
\(94\) −1.46057 + 2.52979i −0.150647 + 0.260928i
\(95\) 2.78325 + 4.82072i 0.285555 + 0.494596i
\(96\) 2.29079i 0.233802i
\(97\) −10.1378 + 5.85305i −1.02934 + 0.594287i −0.916794 0.399360i \(-0.869232\pi\)
−0.112541 + 0.993647i \(0.535899\pi\)
\(98\) 0 0
\(99\) 9.74866i 0.979777i
\(100\) 2.09334 + 3.62578i 0.209334 + 0.362578i
\(101\) 5.37145 9.30362i 0.534479 0.925745i −0.464709 0.885463i \(-0.653841\pi\)
0.999188 0.0402814i \(-0.0128254\pi\)
\(102\) −10.0502 5.80247i −0.995116 0.574530i
\(103\) −4.81099 −0.474041 −0.237021 0.971505i \(-0.576171\pi\)
−0.237021 + 0.971505i \(0.576171\pi\)
\(104\) 3.58019 + 0.426876i 0.351067 + 0.0418586i
\(105\) 0 0
\(106\) 1.46963 + 0.848493i 0.142743 + 0.0824129i
\(107\) −6.82652 + 11.8239i −0.659944 + 1.14306i 0.320686 + 0.947186i \(0.396087\pi\)
−0.980630 + 0.195871i \(0.937247\pi\)
\(108\) 0.861675 + 1.49246i 0.0829147 + 0.143612i
\(109\) 5.11747i 0.490165i 0.969502 + 0.245082i \(0.0788150\pi\)
−0.969502 + 0.245082i \(0.921185\pi\)
\(110\) −3.38739 + 1.95571i −0.322975 + 0.186470i
\(111\) 0.286286 0.165287i 0.0271731 0.0156884i
\(112\) 0 0
\(113\) −8.96603 15.5296i −0.843453 1.46090i −0.886958 0.461850i \(-0.847186\pi\)
0.0435052 0.999053i \(-0.486147\pi\)
\(114\) −7.06980 + 12.2453i −0.662148 + 1.14687i
\(115\) −6.60049 3.81080i −0.615499 0.355359i
\(116\) 2.19286 0.203602
\(117\) −7.44884 + 3.19266i −0.688645 + 0.295162i
\(118\) 8.54933 0.787030
\(119\) 0 0
\(120\) 1.03296 1.78914i 0.0942959 0.163325i
\(121\) 3.90550 + 6.76452i 0.355045 + 0.614956i
\(122\) 8.33440i 0.754561i
\(123\) 7.92864 4.57761i 0.714902 0.412749i
\(124\) 0.756094 0.436531i 0.0678993 0.0392017i
\(125\) 8.28491i 0.741025i
\(126\) 0 0
\(127\) −9.75681 + 16.8993i −0.865777 + 1.49957i 0.000496195 1.00000i \(0.499842\pi\)
−0.866273 + 0.499570i \(0.833491\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 17.6586 1.55475
\(130\) −2.60370 1.94777i −0.228359 0.170831i
\(131\) 20.6496 1.80417 0.902083 0.431562i \(-0.142037\pi\)
0.902083 + 0.431562i \(0.142037\pi\)
\(132\) −8.60441 4.96776i −0.748918 0.432388i
\(133\) 0 0
\(134\) −5.19142 8.99180i −0.448470 0.776773i
\(135\) 1.55418i 0.133763i
\(136\) 4.38722 2.53296i 0.376201 0.217200i
\(137\) 2.76224 1.59478i 0.235994 0.136251i −0.377340 0.926075i \(-0.623161\pi\)
0.613334 + 0.789823i \(0.289828\pi\)
\(138\) 19.3598i 1.64802i
\(139\) −0.297855 0.515900i −0.0252637 0.0437581i 0.853117 0.521719i \(-0.174709\pi\)
−0.878381 + 0.477961i \(0.841376\pi\)
\(140\) 0 0
\(141\) 5.79521 + 3.34587i 0.488045 + 0.281773i
\(142\) −3.27856 −0.275131
\(143\) −9.36733 + 12.5218i −0.783335 + 1.04713i
\(144\) 2.24770 0.187309
\(145\) −1.71266 0.988802i −0.142228 0.0821155i
\(146\) 0.269511 0.466808i 0.0223049 0.0386333i
\(147\) 0 0
\(148\) 0.144306i 0.0118619i
\(149\) 9.70783 5.60482i 0.795297 0.459165i −0.0465273 0.998917i \(-0.514815\pi\)
0.841824 + 0.539752i \(0.181482\pi\)
\(150\) 8.30588 4.79540i 0.678172 0.391543i
\(151\) 13.0731i 1.06387i −0.846785 0.531935i \(-0.821465\pi\)
0.846785 0.531935i \(-0.178535\pi\)
\(152\) −3.08619 5.34544i −0.250323 0.433572i
\(153\) −5.69334 + 9.86116i −0.460280 + 0.797228i
\(154\) 0 0
\(155\) −0.787362 −0.0632424
\(156\) 0.977882 8.20146i 0.0782932 0.656642i
\(157\) −17.9245 −1.43053 −0.715266 0.698853i \(-0.753694\pi\)
−0.715266 + 0.698853i \(0.753694\pi\)
\(158\) 5.65817 + 3.26674i 0.450139 + 0.259888i
\(159\) 1.94372 3.36661i 0.154147 0.266990i
\(160\) 0.450919 + 0.781015i 0.0356483 + 0.0617447i
\(161\) 0 0
\(162\) 9.25862 5.34547i 0.727426 0.419980i
\(163\) 17.5958 10.1589i 1.37821 0.795710i 0.386266 0.922387i \(-0.373765\pi\)
0.991944 + 0.126677i \(0.0404312\pi\)
\(164\) 3.99654i 0.312077i
\(165\) 4.48012 + 7.75979i 0.348777 + 0.604099i
\(166\) −6.61742 + 11.4617i −0.513611 + 0.889601i
\(167\) 2.79770 + 1.61525i 0.216493 + 0.124992i 0.604325 0.796738i \(-0.293443\pi\)
−0.387833 + 0.921730i \(0.626776\pi\)
\(168\) 0 0
\(169\) −12.6356 3.05660i −0.971966 0.235123i
\(170\) −4.56864 −0.350399
\(171\) 12.0150 + 6.93684i 0.918807 + 0.530474i
\(172\) −3.85426 + 6.67577i −0.293884 + 0.509022i
\(173\) 4.58522 + 7.94183i 0.348608 + 0.603806i 0.986002 0.166731i \(-0.0533212\pi\)
−0.637395 + 0.770538i \(0.719988\pi\)
\(174\) 5.02337i 0.380821i
\(175\) 0 0
\(176\) 3.75609 2.16858i 0.283126 0.163463i
\(177\) 19.5847i 1.47208i
\(178\) 3.89590 + 6.74790i 0.292010 + 0.505776i
\(179\) −8.47747 + 14.6834i −0.633636 + 1.09749i 0.353166 + 0.935561i \(0.385105\pi\)
−0.986802 + 0.161929i \(0.948228\pi\)
\(180\) −1.75549 1.01353i −0.130847 0.0755443i
\(181\) 2.65743 0.197525 0.0987626 0.995111i \(-0.468512\pi\)
0.0987626 + 0.995111i \(0.468512\pi\)
\(182\) 0 0
\(183\) 19.0923 1.41135
\(184\) 7.31893 + 4.22559i 0.539559 + 0.311514i
\(185\) 0.0650705 0.112705i 0.00478408 0.00828627i
\(186\) −1.00000 1.73205i −0.0733236 0.127000i
\(187\) 21.9717i 1.60673i
\(188\) −2.52979 + 1.46057i −0.184504 + 0.106523i
\(189\) 0 0
\(190\) 5.56649i 0.403836i
\(191\) 12.2430 + 21.2056i 0.885875 + 1.53438i 0.844708 + 0.535228i \(0.179774\pi\)
0.0411671 + 0.999152i \(0.486892\pi\)
\(192\) −1.14539 + 1.98388i −0.0826616 + 0.143174i
\(193\) 10.6009 + 6.12046i 0.763072 + 0.440560i 0.830398 0.557171i \(-0.188113\pi\)
−0.0673254 + 0.997731i \(0.521447\pi\)
\(194\) −11.7061 −0.840449
\(195\) −4.46194 + 5.96452i −0.319526 + 0.427128i
\(196\) 0 0
\(197\) 4.72634 + 2.72876i 0.336738 + 0.194416i 0.658829 0.752293i \(-0.271052\pi\)
−0.322091 + 0.946709i \(0.604386\pi\)
\(198\) −4.87433 + 8.44259i −0.346404 + 0.599989i
\(199\) 6.40832 + 11.0995i 0.454274 + 0.786825i 0.998646 0.0520184i \(-0.0165654\pi\)
−0.544372 + 0.838844i \(0.683232\pi\)
\(200\) 4.18669i 0.296043i
\(201\) −20.5983 + 11.8924i −1.45289 + 0.838828i
\(202\) 9.30362 5.37145i 0.654600 0.377934i
\(203\) 0 0
\(204\) −5.80247 10.0502i −0.406254 0.703653i
\(205\) 1.80212 3.12136i 0.125865 0.218005i
\(206\) −4.16644 2.40550i −0.290290 0.167599i
\(207\) −18.9957 −1.32029
\(208\) 2.88710 + 2.15978i 0.200184 + 0.149754i
\(209\) 26.7706 1.85176
\(210\) 0 0
\(211\) 9.65552 16.7239i 0.664713 1.15132i −0.314649 0.949208i \(-0.601887\pi\)
0.979363 0.202110i \(-0.0647797\pi\)
\(212\) 0.848493 + 1.46963i 0.0582747 + 0.100935i
\(213\) 7.51048i 0.514610i
\(214\) −11.8239 + 6.82652i −0.808263 + 0.466651i
\(215\) 6.02046 3.47592i 0.410592 0.237056i
\(216\) 1.72335i 0.117259i
\(217\) 0 0
\(218\) −2.55874 + 4.43186i −0.173299 + 0.300163i
\(219\) −1.06936 0.617393i −0.0722604 0.0417196i
\(220\) −3.91142 −0.263708
\(221\) −16.7883 + 7.19569i −1.12931 + 0.484034i
\(222\) 0.330575 0.0221867
\(223\) 9.21079 + 5.31785i 0.616800 + 0.356110i 0.775622 0.631197i \(-0.217436\pi\)
−0.158822 + 0.987307i \(0.550770\pi\)
\(224\) 0 0
\(225\) −4.70522 8.14967i −0.313681 0.543312i
\(226\) 17.9321i 1.19282i
\(227\) −19.6776 + 11.3609i −1.30605 + 0.754047i −0.981434 0.191800i \(-0.938567\pi\)
−0.324613 + 0.945847i \(0.605234\pi\)
\(228\) −12.2453 + 7.06980i −0.810962 + 0.468209i
\(229\) 20.3094i 1.34208i −0.741420 0.671042i \(-0.765847\pi\)
0.741420 0.671042i \(-0.234153\pi\)
\(230\) −3.81080 6.60049i −0.251277 0.435224i
\(231\) 0 0
\(232\) 1.89907 + 1.09643i 0.124680 + 0.0719841i
\(233\) 10.6446 0.697352 0.348676 0.937243i \(-0.386631\pi\)
0.348676 + 0.937243i \(0.386631\pi\)
\(234\) −8.04721 0.959491i −0.526063 0.0627239i
\(235\) 2.63441 0.171850
\(236\) 7.40394 + 4.27467i 0.481955 + 0.278257i
\(237\) 7.48341 12.9617i 0.486100 0.841950i
\(238\) 0 0
\(239\) 0.311564i 0.0201534i −0.999949 0.0100767i \(-0.996792\pi\)
0.999949 0.0100767i \(-0.00320757\pi\)
\(240\) 1.78914 1.03296i 0.115488 0.0666773i
\(241\) 21.9100 12.6498i 1.41135 0.814843i 0.415833 0.909441i \(-0.363490\pi\)
0.995516 + 0.0945983i \(0.0301567\pi\)
\(242\) 7.81099i 0.502110i
\(243\) −9.66031 16.7321i −0.619709 1.07337i
\(244\) −4.16720 + 7.21780i −0.266778 + 0.462073i
\(245\) 0 0
\(246\) 9.15521 0.583715
\(247\) 8.76732 + 20.4551i 0.557851 + 1.30153i
\(248\) 0.873062 0.0554395
\(249\) 26.2563 + 15.1591i 1.66393 + 0.960669i
\(250\) 4.14246 7.17494i 0.261992 0.453783i
\(251\) −4.02015 6.96311i −0.253750 0.439507i 0.710805 0.703389i \(-0.248331\pi\)
−0.964555 + 0.263881i \(0.914997\pi\)
\(252\) 0 0
\(253\) −31.7434 + 18.3271i −1.99569 + 1.15221i
\(254\) −16.8993 + 9.75681i −1.06036 + 0.612197i
\(255\) 10.4658i 0.655393i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 8.46634 14.6641i 0.528116 0.914723i −0.471347 0.881948i \(-0.656232\pi\)
0.999463 0.0327753i \(-0.0104346\pi\)
\(258\) 15.2928 + 8.82928i 0.952085 + 0.549687i
\(259\) 0 0
\(260\) −1.28098 2.98867i −0.0794431 0.185350i
\(261\) −4.92890 −0.305091
\(262\) 17.8831 + 10.3248i 1.10482 + 0.637869i
\(263\) −5.16045 + 8.93817i −0.318207 + 0.551151i −0.980114 0.198435i \(-0.936414\pi\)
0.661907 + 0.749586i \(0.269747\pi\)
\(264\) −4.96776 8.60441i −0.305744 0.529565i
\(265\) 1.53041i 0.0940122i
\(266\) 0 0
\(267\) 15.4580 8.92468i 0.946014 0.546181i
\(268\) 10.3828i 0.634233i
\(269\) −3.06999 5.31738i −0.187181 0.324207i 0.757128 0.653266i \(-0.226602\pi\)
−0.944309 + 0.329059i \(0.893268\pi\)
\(270\) 0.777092 1.34596i 0.0472923 0.0819127i
\(271\) −9.24673 5.33860i −0.561699 0.324297i 0.192128 0.981370i \(-0.438461\pi\)
−0.753827 + 0.657073i \(0.771794\pi\)
\(272\) 5.06592 0.307167
\(273\) 0 0
\(274\) 3.18956 0.192689
\(275\) −15.7256 9.07917i −0.948289 0.547495i
\(276\) 9.67992 16.7661i 0.582662 1.00920i
\(277\) 10.9545 + 18.9737i 0.658191 + 1.14002i 0.981084 + 0.193585i \(0.0620114\pi\)
−0.322892 + 0.946436i \(0.604655\pi\)
\(278\) 0.595710i 0.0357283i
\(279\) −1.69948 + 0.981193i −0.101745 + 0.0587425i
\(280\) 0 0
\(281\) 25.7719i 1.53743i −0.639594 0.768713i \(-0.720898\pi\)
0.639594 0.768713i \(-0.279102\pi\)
\(282\) 3.34587 + 5.79521i 0.199243 + 0.345100i
\(283\) 5.66344 9.80937i 0.336657 0.583107i −0.647145 0.762367i \(-0.724037\pi\)
0.983802 + 0.179260i \(0.0573704\pi\)
\(284\) −2.83932 1.63928i −0.168482 0.0972733i
\(285\) 12.7516 0.755342
\(286\) −14.3733 + 6.16055i −0.849908 + 0.364281i
\(287\) 0 0
\(288\) 1.94657 + 1.12385i 0.114703 + 0.0662236i
\(289\) −4.33177 + 7.50285i −0.254810 + 0.441344i
\(290\) −0.988802 1.71266i −0.0580645 0.100571i
\(291\) 26.8162i 1.57199i
\(292\) 0.466808 0.269511i 0.0273178 0.0157720i
\(293\) −20.5646 + 11.8730i −1.20140 + 0.693626i −0.960865 0.277016i \(-0.910655\pi\)
−0.240530 + 0.970642i \(0.577321\pi\)
\(294\) 0 0
\(295\) −3.85506 6.67716i −0.224450 0.388759i
\(296\) −0.0721531 + 0.124973i −0.00419382 + 0.00726390i
\(297\) −6.47306 3.73723i −0.375605 0.216856i
\(298\) 11.2096 0.649357
\(299\) −24.3994 18.2527i −1.41105 1.05558i
\(300\) 9.59081 0.553725
\(301\) 0 0
\(302\) 6.53653 11.3216i 0.376135 0.651485i
\(303\) −12.3048 21.3126i −0.706894 1.22438i
\(304\) 6.17238i 0.354010i
\(305\) 6.50930 3.75814i 0.372721 0.215191i
\(306\) −9.86116 + 5.69334i −0.563725 + 0.325467i
\(307\) 6.68810i 0.381710i 0.981618 + 0.190855i \(0.0611261\pi\)
−0.981618 + 0.190855i \(0.938874\pi\)
\(308\) 0 0
\(309\) −5.51048 + 9.54443i −0.313480 + 0.542964i
\(310\) −0.681875 0.393681i −0.0387279 0.0223596i
\(311\) −9.18724 −0.520961 −0.260480 0.965479i \(-0.583881\pi\)
−0.260480 + 0.965479i \(0.583881\pi\)
\(312\) 4.94760 6.61373i 0.280103 0.374429i
\(313\) 17.1631 0.970118 0.485059 0.874481i \(-0.338798\pi\)
0.485059 + 0.874481i \(0.338798\pi\)
\(314\) −15.5231 8.96225i −0.876018 0.505769i
\(315\) 0 0
\(316\) 3.26674 + 5.65817i 0.183769 + 0.318297i
\(317\) 3.76247i 0.211322i −0.994402 0.105661i \(-0.966304\pi\)
0.994402 0.105661i \(-0.0336958\pi\)
\(318\) 3.36661 1.94372i 0.188790 0.108998i
\(319\) −8.23658 + 4.75539i −0.461160 + 0.266251i
\(320\) 0.901839i 0.0504143i
\(321\) 15.6381 + 27.0860i 0.872833 + 1.51179i
\(322\) 0 0
\(323\) 27.0796 + 15.6344i 1.50675 + 0.869921i
\(324\) 10.6909 0.593941
\(325\) 1.78720 14.9891i 0.0991358 0.831448i
\(326\) 20.3179 1.12530
\(327\) 10.1524 + 5.86152i 0.561432 + 0.324143i
\(328\) −1.99827 + 3.46110i −0.110336 + 0.191107i
\(329\) 0 0
\(330\) 8.96024i 0.493245i
\(331\) −27.9083 + 16.1129i −1.53398 + 0.885643i −0.534806 + 0.844975i \(0.679615\pi\)
−0.999173 + 0.0406683i \(0.987051\pi\)
\(332\) −11.4617 + 6.61742i −0.629043 + 0.363178i
\(333\) 0.324358i 0.0177747i
\(334\) 1.61525 + 2.79770i 0.0883827 + 0.153083i
\(335\) −4.68182 + 8.10916i −0.255795 + 0.443051i
\(336\) 0 0
\(337\) −3.01703 −0.164348 −0.0821740 0.996618i \(-0.526186\pi\)
−0.0821740 + 0.996618i \(0.526186\pi\)
\(338\) −9.41441 8.96487i −0.512077 0.487624i
\(339\) −41.0785 −2.23108
\(340\) −3.95656 2.28432i −0.214575 0.123885i
\(341\) −1.89331 + 3.27931i −0.102528 + 0.177584i
\(342\) 6.93684 + 12.0150i 0.375101 + 0.649695i
\(343\) 0 0
\(344\) −6.67577 + 3.85426i −0.359933 + 0.207808i
\(345\) −15.1203 + 8.72972i −0.814051 + 0.469993i
\(346\) 9.17044i 0.493006i
\(347\) −0.234270 0.405768i −0.0125763 0.0217828i 0.859669 0.510852i \(-0.170670\pi\)
−0.872245 + 0.489069i \(0.837337\pi\)
\(348\) 2.51168 4.35037i 0.134640 0.233204i
\(349\) 27.9044 + 16.1106i 1.49369 + 0.862380i 0.999974 0.00724565i \(-0.00230638\pi\)
0.493712 + 0.869625i \(0.335640\pi\)
\(350\) 0 0
\(351\) 0.735656 6.16992i 0.0392664 0.329326i
\(352\) 4.33716 0.231172
\(353\) 11.3583 + 6.55771i 0.604540 + 0.349031i 0.770826 0.637046i \(-0.219844\pi\)
−0.166285 + 0.986078i \(0.553177\pi\)
\(354\) 9.79235 16.9608i 0.520457 0.901459i
\(355\) 1.47837 + 2.56060i 0.0784635 + 0.135903i
\(356\) 7.79180i 0.412965i
\(357\) 0 0
\(358\) −14.6834 + 8.47747i −0.776043 + 0.448048i
\(359\) 4.37981i 0.231157i 0.993298 + 0.115579i \(0.0368722\pi\)
−0.993298 + 0.115579i \(0.963128\pi\)
\(360\) −1.01353 1.75549i −0.0534179 0.0925225i
\(361\) 9.54914 16.5396i 0.502586 0.870505i
\(362\) 2.30140 + 1.32871i 0.120959 + 0.0698357i
\(363\) 17.8933 0.939156
\(364\) 0 0
\(365\) −0.486112 −0.0254443
\(366\) 16.5344 + 9.54617i 0.864269 + 0.498986i
\(367\) 12.9094 22.3597i 0.673865 1.16717i −0.302934 0.953011i \(-0.597966\pi\)
0.976799 0.214157i \(-0.0687004\pi\)
\(368\) 4.22559 + 7.31893i 0.220274 + 0.381526i
\(369\) 8.98303i 0.467638i
\(370\) 0.112705 0.0650705i 0.00585928 0.00338285i
\(371\) 0 0
\(372\) 2.00000i 0.103695i
\(373\) −15.3143 26.5251i −0.792942 1.37342i −0.924138 0.382059i \(-0.875215\pi\)
0.131196 0.991356i \(-0.458118\pi\)
\(374\) −10.9859 + 19.0281i −0.568065 + 0.983918i
\(375\) −16.4363 9.48948i −0.848765 0.490035i
\(376\) −2.92115 −0.150647
\(377\) −6.33100 4.73609i −0.326063 0.243921i
\(378\) 0 0
\(379\) −33.0409 19.0762i −1.69720 0.979877i −0.948400 0.317076i \(-0.897299\pi\)
−0.748796 0.662801i \(-0.769368\pi\)
\(380\) −2.78325 + 4.82072i −0.142778 + 0.247298i
\(381\) 22.3508 + 38.7127i 1.14507 + 1.98331i
\(382\) 24.4861i 1.25282i
\(383\) 27.6783 15.9801i 1.41430 0.816544i 0.418507 0.908214i \(-0.362554\pi\)
0.995790 + 0.0916693i \(0.0292203\pi\)
\(384\) −1.98388 + 1.14539i −0.101239 + 0.0584506i
\(385\) 0 0
\(386\) 6.12046 + 10.6009i 0.311523 + 0.539574i
\(387\) 8.66323 15.0051i 0.440377 0.762754i
\(388\) −10.1378 5.85305i −0.514668 0.297144i
\(389\) 5.24585 0.265975 0.132988 0.991118i \(-0.457543\pi\)
0.132988 + 0.991118i \(0.457543\pi\)
\(390\) −6.84641 + 2.93446i −0.346681 + 0.148592i
\(391\) −42.8130 −2.16514
\(392\) 0 0
\(393\) 23.6520 40.9664i 1.19308 2.06648i
\(394\) 2.72876 + 4.72634i 0.137473 + 0.238110i
\(395\) 5.89215i 0.296466i
\(396\) −8.44259 + 4.87433i −0.424256 + 0.244944i
\(397\) −21.2432 + 12.2648i −1.06617 + 0.615552i −0.927132 0.374736i \(-0.877734\pi\)
−0.139035 + 0.990287i \(0.544400\pi\)
\(398\) 12.8166i 0.642440i
\(399\) 0 0
\(400\) −2.09334 + 3.62578i −0.104667 + 0.181289i
\(401\) 3.69916 + 2.13571i 0.184727 + 0.106652i 0.589512 0.807760i \(-0.299320\pi\)
−0.404784 + 0.914412i \(0.632653\pi\)
\(402\) −23.7849 −1.18628
\(403\) −3.12573 0.372689i −0.155704 0.0185650i
\(404\) 10.7429 0.534479
\(405\) −8.34979 4.82075i −0.414904 0.239545i
\(406\) 0 0
\(407\) −0.312940 0.542028i −0.0155119 0.0268673i
\(408\) 11.6049i 0.574530i
\(409\) 1.39990 0.808235i 0.0692208 0.0399646i −0.464990 0.885316i \(-0.653942\pi\)
0.534211 + 0.845351i \(0.320609\pi\)
\(410\) 3.12136 1.80212i 0.154153 0.0890001i
\(411\) 7.30661i 0.360408i
\(412\) −2.40550 4.16644i −0.118510 0.205266i
\(413\) 0 0
\(414\) −16.4508 9.49787i −0.808512 0.466795i
\(415\) 11.9357 0.585900
\(416\) 1.42041 + 3.31398i 0.0696414 + 0.162481i
\(417\) −1.36464 −0.0668269
\(418\) 23.1840 + 13.3853i 1.13397 + 0.654697i
\(419\) −13.0156 + 22.5437i −0.635854 + 1.10133i 0.350480 + 0.936570i \(0.386018\pi\)
−0.986334 + 0.164761i \(0.947315\pi\)
\(420\) 0 0
\(421\) 37.5391i 1.82954i 0.403971 + 0.914772i \(0.367630\pi\)
−0.403971 + 0.914772i \(0.632370\pi\)
\(422\) 16.7239 9.65552i 0.814104 0.470023i
\(423\) 5.68622 3.28294i 0.276473 0.159622i
\(424\) 1.69699i 0.0824129i
\(425\) −10.6047 18.3679i −0.514404 0.890974i
\(426\) −3.75524 + 6.50427i −0.181942 + 0.315133i
\(427\) 0 0
\(428\) −13.6530 −0.659944
\(429\) 14.1125 + 32.9261i 0.681359 + 1.58969i
\(430\) 6.95183 0.335247
\(431\) 18.6662 + 10.7769i 0.899118 + 0.519106i 0.876914 0.480647i \(-0.159598\pi\)
0.0222041 + 0.999753i \(0.492932\pi\)
\(432\) −0.861675 + 1.49246i −0.0414573 + 0.0718062i
\(433\) −1.59958 2.77056i −0.0768710 0.133145i 0.825027 0.565093i \(-0.191160\pi\)
−0.901898 + 0.431948i \(0.857826\pi\)
\(434\) 0 0
\(435\) −3.92333 + 2.26513i −0.188109 + 0.108605i
\(436\) −4.43186 + 2.55874i −0.212248 + 0.122541i
\(437\) 52.1638i 2.49534i
\(438\) −0.617393 1.06936i −0.0295002 0.0510958i
\(439\) −13.3114 + 23.0560i −0.635317 + 1.10040i 0.351131 + 0.936326i \(0.385797\pi\)
−0.986448 + 0.164075i \(0.947536\pi\)
\(440\) −3.38739 1.95571i −0.161488 0.0932349i
\(441\) 0 0
\(442\) −18.1370 2.16252i −0.862688 0.102861i
\(443\) 9.09867 0.432291 0.216145 0.976361i \(-0.430652\pi\)
0.216145 + 0.976361i \(0.430652\pi\)
\(444\) 0.286286 + 0.165287i 0.0135865 + 0.00784420i
\(445\) 3.51347 6.08551i 0.166555 0.288481i
\(446\) 5.31785 + 9.21079i 0.251808 + 0.436144i
\(447\) 25.6789i 1.21457i
\(448\) 0 0
\(449\) 6.08550 3.51346i 0.287192 0.165811i −0.349483 0.936943i \(-0.613643\pi\)
0.636675 + 0.771132i \(0.280309\pi\)
\(450\) 9.41043i 0.443612i
\(451\) −8.66681 15.0114i −0.408104 0.706858i
\(452\) 8.96603 15.5296i 0.421726 0.730452i
\(453\) −25.9354 14.9738i −1.21855 0.703531i
\(454\) −22.7217 −1.06638
\(455\) 0 0
\(456\) −14.1396 −0.662148
\(457\) −16.5853 9.57556i −0.775830 0.447926i 0.0591204 0.998251i \(-0.481170\pi\)
−0.834950 + 0.550325i \(0.814504\pi\)
\(458\) 10.1547 17.5885i 0.474498 0.821855i
\(459\) −4.36518 7.56071i −0.203749 0.352904i
\(460\) 7.62159i 0.355359i
\(461\) 2.82026 1.62828i 0.131353 0.0758365i −0.432884 0.901450i \(-0.642504\pi\)
0.564236 + 0.825613i \(0.309171\pi\)
\(462\) 0 0
\(463\) 21.2761i 0.988786i 0.869238 + 0.494393i \(0.164610\pi\)
−0.869238 + 0.494393i \(0.835390\pi\)
\(464\) 1.09643 + 1.89907i 0.0509004 + 0.0881621i
\(465\) −0.901839 + 1.56203i −0.0418218 + 0.0724374i
\(466\) 9.21851 + 5.32231i 0.427039 + 0.246551i
\(467\) 3.33171 0.154173 0.0770866 0.997024i \(-0.475438\pi\)
0.0770866 + 0.997024i \(0.475438\pi\)
\(468\) −6.48935 4.85455i −0.299970 0.224402i
\(469\) 0 0
\(470\) 2.28146 + 1.31720i 0.105236 + 0.0607580i
\(471\) −20.5306 + 35.5601i −0.946001 + 1.63852i
\(472\) 4.27467 + 7.40394i 0.196757 + 0.340794i
\(473\) 33.4331i 1.53725i
\(474\) 12.9617 7.48341i 0.595348 0.343725i
\(475\) −22.3797 + 12.9209i −1.02685 + 0.592852i
\(476\) 0 0
\(477\) −1.90716 3.30330i −0.0873229 0.151248i
\(478\) 0.155782 0.269822i 0.00712530 0.0123414i
\(479\) 0.160402 + 0.0926079i 0.00732894 + 0.00423136i 0.503660 0.863902i \(-0.331986\pi\)
−0.496331 + 0.868133i \(0.665320\pi\)
\(480\) 2.06592 0.0942959
\(481\) 0.311670 0.416627i 0.0142109 0.0189965i
\(482\) 25.2995 1.15236
\(483\) 0 0
\(484\) −3.90550 + 6.76452i −0.177523 + 0.307478i
\(485\) 5.27851 + 9.14264i 0.239685 + 0.415146i
\(486\) 19.3206i 0.876401i
\(487\) −27.0466 + 15.6154i −1.22560 + 0.707601i −0.966106 0.258144i \(-0.916889\pi\)
−0.259494 + 0.965745i \(0.583556\pi\)
\(488\) −7.21780 + 4.16720i −0.326735 + 0.188640i
\(489\) 46.5440i 2.10479i
\(490\) 0 0
\(491\) 13.4236 23.2504i 0.605799 1.04927i −0.386126 0.922446i \(-0.626187\pi\)
0.991925 0.126829i \(-0.0404798\pi\)
\(492\) 7.92864 + 4.57761i 0.357451 + 0.206374i
\(493\) −11.1088 −0.500317
\(494\) −2.63484 + 22.0983i −0.118547 + 0.994250i
\(495\) 8.79172 0.395158
\(496\) 0.756094 + 0.436531i 0.0339496 + 0.0196008i
\(497\) 0 0
\(498\) 15.1591 + 26.2563i 0.679295 + 1.17657i
\(499\) 15.2869i 0.684337i −0.939639 0.342168i \(-0.888839\pi\)
0.939639 0.342168i \(-0.111161\pi\)
\(500\) 7.17494 4.14246i 0.320873 0.185256i
\(501\) 6.40893 3.70020i 0.286330 0.165313i
\(502\) 8.04030i 0.358856i
\(503\) −13.0551 22.6121i −0.582097 1.00822i −0.995230 0.0975513i \(-0.968899\pi\)
0.413133 0.910671i \(-0.364434\pi\)
\(504\) 0 0
\(505\) −8.39036 4.84418i −0.373366 0.215563i
\(506\) −36.6541 −1.62947
\(507\) −20.5366 + 21.5664i −0.912062 + 0.957798i
\(508\) −19.5136 −0.865777
\(509\) −14.7459 8.51357i −0.653602 0.377357i 0.136233 0.990677i \(-0.456500\pi\)
−0.789835 + 0.613320i \(0.789834\pi\)
\(510\) −5.23289 + 9.06364i −0.231716 + 0.401345i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) −9.21206 + 5.31858i −0.406722 + 0.234821i
\(514\) 14.6641 8.46634i 0.646807 0.373434i
\(515\) 4.33874i 0.191188i
\(516\) 8.82928 + 15.2928i 0.388687 + 0.673226i
\(517\) 6.33475 10.9721i 0.278602 0.482553i
\(518\) 0 0
\(519\) 21.0075 0.922128
\(520\) 0.384973 3.22876i 0.0168822 0.141590i
\(521\) 18.7760 0.822593 0.411297 0.911502i \(-0.365076\pi\)
0.411297 + 0.911502i \(0.365076\pi\)
\(522\) −4.26855 2.46445i −0.186829 0.107866i
\(523\) −1.51624 + 2.62620i −0.0663004 + 0.114836i −0.897270 0.441482i \(-0.854453\pi\)
0.830970 + 0.556318i \(0.187786\pi\)
\(524\) 10.3248 + 17.8831i 0.451042 + 0.781227i
\(525\) 0 0
\(526\) −8.93817 + 5.16045i −0.389723 + 0.225006i
\(527\) −3.83031 + 2.21143i −0.166851 + 0.0963315i
\(528\) 9.93552i 0.432388i
\(529\) −24.2111 41.9349i −1.05266 1.82326i
\(530\) 0.765204 1.32537i 0.0332383 0.0575705i
\(531\) −16.6419 9.60818i −0.722195 0.416960i
\(532\) 0 0
\(533\) 8.63164 11.5384i 0.373878 0.499783i
\(534\) 17.8494 0.772417
\(535\) 10.6632 + 6.15642i 0.461011 + 0.266165i
\(536\) 5.19142 8.99180i 0.224235 0.388387i
\(537\) 19.4201 + 33.6366i 0.838038 + 1.45153i
\(538\) 6.13999i 0.264714i
\(539\) 0 0
\(540\) 1.34596 0.777092i 0.0579210 0.0334407i
\(541\) 6.11845i 0.263053i 0.991313 + 0.131526i \(0.0419878\pi\)
−0.991313 + 0.131526i \(0.958012\pi\)
\(542\) −5.33860 9.24673i −0.229313 0.397181i
\(543\) 3.04380 5.27202i 0.130622 0.226244i
\(544\) 4.38722 + 2.53296i 0.188100 + 0.108600i
\(545\) 4.61513 0.197691
\(546\) 0 0
\(547\) −37.4754 −1.60233 −0.801166 0.598442i \(-0.795786\pi\)
−0.801166 + 0.598442i \(0.795786\pi\)
\(548\) 2.76224 + 1.59478i 0.117997 + 0.0681257i
\(549\) 9.36663 16.2235i 0.399758 0.692402i
\(550\) −9.07917 15.7256i −0.387137 0.670541i
\(551\) 13.5352i 0.576617i
\(552\) 16.7661 9.67992i 0.713613 0.412005i
\(553\) 0 0
\(554\) 21.9090i 0.930823i
\(555\) −0.149063 0.258184i −0.00632736 0.0109593i
\(556\) 0.297855 0.515900i 0.0126319 0.0218790i
\(557\) −7.69941 4.44526i −0.326234 0.188352i 0.327934 0.944701i \(-0.393648\pi\)
−0.654168 + 0.756349i \(0.726981\pi\)
\(558\) −1.96239 −0.0830744
\(559\) 25.5458 10.9493i 1.08047 0.463104i
\(560\) 0 0
\(561\) 43.5893 + 25.1663i 1.84034 + 1.06252i
\(562\) 12.8860 22.3192i 0.543562 0.941477i
\(563\) −8.89598 15.4083i −0.374921 0.649382i 0.615394 0.788219i \(-0.288997\pi\)
−0.990315 + 0.138838i \(0.955663\pi\)
\(564\) 6.69173i 0.281773i
\(565\) −14.0052 + 8.08591i −0.589204 + 0.340177i
\(566\) 9.80937 5.66344i 0.412319 0.238052i
\(567\) 0 0
\(568\) −1.63928 2.83932i −0.0687826 0.119135i
\(569\) 5.58684 9.67669i 0.234212 0.405668i −0.724831 0.688927i \(-0.758082\pi\)
0.959044 + 0.283259i \(0.0914155\pi\)
\(570\) 11.0432 + 6.37582i 0.462551 + 0.267054i
\(571\) −16.7239 −0.699873 −0.349936 0.936773i \(-0.613797\pi\)
−0.349936 + 0.936773i \(0.613797\pi\)
\(572\) −15.5279 1.85143i −0.649253 0.0774122i
\(573\) 56.0924 2.34329
\(574\) 0 0
\(575\) 17.6912 30.6421i 0.737774 1.27786i
\(576\) 1.12385 + 1.94657i 0.0468272 + 0.0811070i
\(577\) 0.798887i 0.0332581i −0.999862 0.0166291i \(-0.994707\pi\)
0.999862 0.0166291i \(-0.00529344\pi\)
\(578\) −7.50285 + 4.33177i −0.312078 + 0.180178i
\(579\) 24.2845 14.0207i 1.00923 0.582679i
\(580\) 1.97760i 0.0821155i
\(581\) 0 0
\(582\) −13.4081 + 23.2235i −0.555783 + 0.962645i
\(583\) −6.37404 3.68005i −0.263986 0.152412i
\(584\) 0.539023 0.0223049
\(585\) 2.87927 + 6.71765i 0.119043 + 0.277741i
\(586\) −23.7459 −0.980935
\(587\) −6.94921 4.01213i −0.286825 0.165598i 0.349684 0.936868i \(-0.386289\pi\)
−0.636509 + 0.771269i \(0.719622\pi\)
\(588\) 0 0
\(589\) 2.69444 + 4.66690i 0.111022 + 0.192296i
\(590\) 7.71012i 0.317421i
\(591\) 10.8270 6.25100i 0.445365 0.257132i
\(592\) −0.124973 + 0.0721531i −0.00513635 + 0.00296548i
\(593\) 4.93120i 0.202500i 0.994861 + 0.101250i \(0.0322842\pi\)
−0.994861 + 0.101250i \(0.967716\pi\)
\(594\) −3.73723 6.47306i −0.153340 0.265593i
\(595\) 0 0
\(596\) 9.70783 + 5.60482i 0.397648 + 0.229582i
\(597\) 29.3602 1.20163
\(598\) −12.0041 28.0070i −0.490886 1.14529i
\(599\) −17.8249 −0.728306 −0.364153 0.931339i \(-0.618642\pi\)
−0.364153 + 0.931339i \(0.618642\pi\)
\(600\) 8.30588 + 4.79540i 0.339086 + 0.195772i
\(601\) −0.0809165 + 0.140152i −0.00330065 + 0.00571690i −0.867671 0.497139i \(-0.834384\pi\)
0.864370 + 0.502856i \(0.167717\pi\)
\(602\) 0 0
\(603\) 23.3375i 0.950378i
\(604\) 11.3216 6.53653i 0.460670 0.265968i
\(605\) 6.10050 3.52213i 0.248021 0.143195i
\(606\) 24.6097i 0.999700i
\(607\) 3.09423 + 5.35937i 0.125591 + 0.217530i 0.921964 0.387276i \(-0.126584\pi\)
−0.796373 + 0.604806i \(0.793251\pi\)
\(608\) 3.08619 5.34544i 0.125162 0.216786i
\(609\) 0 0
\(610\) 7.51629 0.304326
\(611\) 10.4583 + 1.24697i 0.423097 + 0.0504469i
\(612\) −11.3867 −0.460280
\(613\) 32.2269 + 18.6062i 1.30163 + 0.751497i 0.980684 0.195600i \(-0.0626654\pi\)
0.320947 + 0.947097i \(0.395999\pi\)
\(614\) −3.34405 + 5.79207i −0.134955 + 0.233749i
\(615\) −4.12826 7.15036i −0.166468 0.288330i
\(616\) 0 0
\(617\) −5.78536 + 3.34018i −0.232910 + 0.134471i −0.611914 0.790924i \(-0.709600\pi\)
0.379004 + 0.925395i \(0.376267\pi\)
\(618\) −9.54443 + 5.51048i −0.383933 + 0.221664i
\(619\) 23.7344i 0.953965i 0.878913 + 0.476982i \(0.158269\pi\)
−0.878913 + 0.476982i \(0.841731\pi\)
\(620\) −0.393681 0.681875i −0.0158106 0.0273848i
\(621\) 7.28216 12.6131i 0.292223 0.506145i
\(622\) −7.95639 4.59362i −0.319022 0.184187i
\(623\) 0 0
\(624\) 7.59161 3.25386i 0.303908 0.130259i
\(625\) 13.4618 0.538471
\(626\) 14.8637 + 8.58157i 0.594074 + 0.342989i
\(627\) 30.6629 53.1097i 1.22456 2.12100i
\(628\) −8.96225 15.5231i −0.357633 0.619438i
\(629\) 0.731044i 0.0291486i
\(630\) 0 0
\(631\) 19.9348 11.5093i 0.793590 0.458180i −0.0476346 0.998865i \(-0.515168\pi\)
0.841225 + 0.540685i \(0.181835\pi\)
\(632\) 6.53349i 0.259888i
\(633\) −22.1187 38.3108i −0.879141 1.52272i
\(634\) 1.88124 3.25840i 0.0747135 0.129408i
\(635\) 15.2404 + 8.79907i 0.604798 + 0.349181i
\(636\) 3.88743 0.154147
\(637\) 0 0
\(638\) −9.51078 −0.376536
\(639\) 6.38194 + 3.68461i 0.252466 + 0.145761i
\(640\) −0.450919 + 0.781015i −0.0178242 + 0.0308723i
\(641\) 6.32539 + 10.9559i 0.249838 + 0.432732i 0.963481 0.267778i \(-0.0862893\pi\)
−0.713643 + 0.700510i \(0.752956\pi\)
\(642\) 31.2762i 1.23437i
\(643\) 13.1971 7.61938i 0.520445 0.300479i −0.216672 0.976244i \(-0.569520\pi\)
0.737117 + 0.675766i \(0.236187\pi\)
\(644\) 0 0
\(645\) 15.9252i 0.627053i
\(646\) 15.6344 + 27.0796i 0.615127 + 1.06543i
\(647\) 14.6821 25.4301i 0.577213 0.999762i −0.418585 0.908178i \(-0.637474\pi\)
0.995797 0.0915840i \(-0.0291930\pi\)
\(648\) 9.25862 + 5.34547i 0.363713 + 0.209990i
\(649\) −37.0799 −1.45551
\(650\) 9.04233 12.0874i 0.354669 0.474106i
\(651\) 0 0
\(652\) 17.5958 + 10.1589i 0.689105 + 0.397855i
\(653\) 14.5106 25.1330i 0.567842 0.983532i −0.428937 0.903335i \(-0.641112\pi\)
0.996779 0.0801974i \(-0.0255551\pi\)
\(654\) 5.86152 + 10.1524i 0.229204 + 0.396992i
\(655\) 18.6226i 0.727647i
\(656\) −3.46110 + 1.99827i −0.135133 + 0.0780192i
\(657\) −1.04925 + 0.605782i −0.0409350 + 0.0236338i
\(658\) 0 0
\(659\) −3.98651 6.90484i −0.155293 0.268975i 0.777873 0.628422i \(-0.216299\pi\)
−0.933166 + 0.359447i \(0.882965\pi\)
\(660\) −4.48012 + 7.75979i −0.174388 + 0.302049i
\(661\) −3.40668 1.96685i −0.132505 0.0765015i 0.432282 0.901738i \(-0.357708\pi\)
−0.564787 + 0.825237i \(0.691042\pi\)
\(662\) −32.2257 −1.25249
\(663\) −4.95387 + 41.5479i −0.192392 + 1.61359i
\(664\) −13.2348 −0.513611
\(665\) 0 0
\(666\) 0.162179 0.280902i 0.00628430 0.0108847i
\(667\) −9.26611 16.0494i −0.358785 0.621434i
\(668\) 3.23051i 0.124992i
\(669\) 21.1000 12.1821i 0.815772 0.470986i
\(670\) −8.10916 + 4.68182i −0.313284 + 0.180875i
\(671\) 36.1477i 1.39547i
\(672\) 0 0
\(673\) 18.1599 31.4539i 0.700014 1.21246i −0.268447 0.963295i \(-0.586510\pi\)
0.968461 0.249166i \(-0.0801563\pi\)
\(674\) −2.61282 1.50851i −0.100642 0.0581058i
\(675\) 7.21513 0.277710
\(676\) −3.67069 12.4710i −0.141180 0.479654i
\(677\) 21.1068 0.811201 0.405600 0.914051i \(-0.367062\pi\)
0.405600 + 0.914051i \(0.367062\pi\)
\(678\) −35.5750 20.5393i −1.36625 0.788805i
\(679\) 0 0
\(680\) −2.28432 3.95656i −0.0875997 0.151727i
\(681\) 52.0506i 1.99458i
\(682\) −3.27931 + 1.89331i −0.125571 + 0.0724985i
\(683\) −22.8854 + 13.2129i −0.875685 + 0.505577i −0.869233 0.494402i \(-0.835387\pi\)
−0.00645161 + 0.999979i \(0.502054\pi\)
\(684\) 13.8737i 0.530474i
\(685\) −1.43824 2.49110i −0.0549522 0.0951799i
\(686\) 0 0
\(687\) −40.2914 23.2623i −1.53721 0.887511i
\(688\) −7.70851 −0.293884
\(689\) 0.724402 6.07553i 0.0275975 0.231459i
\(690\) −17.4594 −0.664670
\(691\) −0.675291 0.389880i −0.0256893 0.0148317i 0.487100 0.873346i \(-0.338055\pi\)
−0.512790 + 0.858514i \(0.671388\pi\)
\(692\) −4.58522 + 7.94183i −0.174304 + 0.301903i
\(693\) 0 0
\(694\) 0.468540i 0.0177855i
\(695\) −0.465259 + 0.268617i −0.0176483 + 0.0101892i
\(696\) 4.35037 2.51168i 0.164900 0.0952052i
\(697\) 20.2461i 0.766877i
\(698\) 16.1106 + 27.9044i 0.609795 + 1.05620i
\(699\) 12.1923 21.1176i 0.461154 0.798742i
\(700\) 0 0
\(701\) 21.5491 0.813899 0.406950 0.913451i \(-0.366592\pi\)
0.406950 + 0.913451i \(0.366592\pi\)
\(702\) 3.72206 4.97548i 0.140480 0.187787i
\(703\) −0.890713 −0.0335939
\(704\) 3.75609 + 2.16858i 0.141563 + 0.0817315i
\(705\) 3.01743 5.22634i 0.113643 0.196835i
\(706\) 6.55771 + 11.3583i 0.246803 + 0.427474i
\(707\) 0 0
\(708\) 16.9608 9.79235i 0.637428 0.368019i
\(709\) −3.92952 + 2.26871i −0.147576 + 0.0852031i −0.571970 0.820275i \(-0.693821\pi\)
0.424394 + 0.905478i \(0.360487\pi\)
\(710\) 2.95673i 0.110964i
\(711\) −7.34267 12.7179i −0.275372 0.476958i
\(712\) −3.89590 + 6.74790i −0.146005 + 0.252888i
\(713\) −6.38988 3.68920i −0.239303 0.138162i
\(714\) 0 0
\(715\) 11.2927 + 8.44782i 0.422322 + 0.315931i
\(716\) −16.9549 −0.633636
\(717\) −0.618106 0.356863i −0.0230836 0.0133273i
\(718\) −2.18990 + 3.79302i −0.0817265 + 0.141554i
\(719\) 7.30036 + 12.6446i 0.272258 + 0.471564i 0.969440 0.245330i \(-0.0788964\pi\)
−0.697182 + 0.716894i \(0.745563\pi\)
\(720\) 2.02707i 0.0755443i
\(721\) 0 0
\(722\) 16.5396 9.54914i 0.615540 0.355382i
\(723\) 57.9558i 2.15540i
\(724\) 1.32871 + 2.30140i 0.0493813 + 0.0855309i
\(725\) 4.59040 7.95081i 0.170483 0.295286i
\(726\) 15.4961 + 8.94666i 0.575113 + 0.332042i
\(727\) −30.6315 −1.13606 −0.568030 0.823008i \(-0.692294\pi\)
−0.568030 + 0.823008i \(0.692294\pi\)
\(728\) 0 0
\(729\) −12.1866 −0.451355
\(730\) −0.420985 0.243056i −0.0155814 0.00899590i
\(731\) 19.5254 33.8189i 0.722171 1.25084i
\(732\) 9.54617 + 16.5344i 0.352837 + 0.611131i
\(733\) 17.7195i 0.654484i −0.944941 0.327242i \(-0.893881\pi\)
0.944941 0.327242i \(-0.106119\pi\)
\(734\) 22.3597 12.9094i 0.825313 0.476495i
\(735\) 0 0
\(736\) 8.45117i 0.311514i
\(737\) 22.5160 + 38.9989i 0.829389 + 1.43654i
\(738\) 4.49151 7.77953i 0.165335 0.286368i
\(739\) −9.05014 5.22510i −0.332915 0.192208i 0.324220 0.945982i \(-0.394898\pi\)
−0.657134 + 0.753773i \(0.728232\pi\)
\(740\) 0.130141 0.00478408
\(741\) 50.6225 + 6.03586i 1.85966 + 0.221733i
\(742\) 0 0
\(743\) 42.0103 + 24.2547i 1.54121 + 0.889818i 0.998763 + 0.0497278i \(0.0158354\pi\)
0.542447 + 0.840090i \(0.317498\pi\)
\(744\) 1.00000 1.73205i 0.0366618 0.0635001i
\(745\) −5.05464 8.75490i −0.185188 0.320755i
\(746\) 30.6285i 1.12139i
\(747\) 25.7625 14.8740i 0.942601 0.544211i
\(748\) −19.0281 + 10.9859i −0.695735 + 0.401683i
\(749\) 0 0
\(750\) −9.48948 16.4363i −0.346507 0.600168i
\(751\) 15.7278 27.2413i 0.573914 0.994049i −0.422244 0.906482i \(-0.638758\pi\)
0.996159 0.0875667i \(-0.0279091\pi\)
\(752\) −2.52979 1.46057i −0.0922519 0.0532617i
\(753\) −18.4186 −0.671212
\(754\) −3.11476 7.26708i −0.113433 0.264651i
\(755\) −11.7898 −0.429075
\(756\) 0 0
\(757\) −24.3442 + 42.1654i −0.884805 + 1.53253i −0.0388676 + 0.999244i \(0.512375\pi\)
−0.845937 + 0.533283i \(0.820958\pi\)
\(758\) −19.0762 33.0409i −0.692877 1.20010i
\(759\) 83.9668i 3.04780i
\(760\) −4.82072 + 2.78325i −0.174866 + 0.100959i
\(761\) 40.3350 23.2874i 1.46214 0.844169i 0.463033 0.886341i \(-0.346761\pi\)
0.999110 + 0.0421718i \(0.0134277\pi\)
\(762\) 44.7016i 1.61937i
\(763\) 0 0
\(764\) −12.2430 + 21.2056i −0.442937 + 0.767190i
\(765\) 8.89318 + 5.13448i 0.321534 + 0.185637i
\(766\) 31.9602 1.15477
\(767\) −12.1436 28.3323i −0.438479 1.02302i
\(768\) −2.29079 −0.0826616
\(769\) 24.1069 + 13.9181i 0.869315 + 0.501899i 0.867121 0.498098i \(-0.165968\pi\)
0.00219468 + 0.999998i \(0.499301\pi\)
\(770\) 0 0
\(771\) −19.3946 33.5924i −0.698479 1.20980i
\(772\) 12.2409i 0.440560i
\(773\) −24.6578 + 14.2362i −0.886880 + 0.512040i −0.872921 0.487862i \(-0.837777\pi\)
−0.0139594 + 0.999903i \(0.504444\pi\)
\(774\) 15.0051 8.66323i 0.539349 0.311393i
\(775\) 3.65524i 0.131300i
\(776\) −5.85305 10.1378i −0.210112 0.363925i
\(777\) 0 0
\(778\) 4.54304 + 2.62292i 0.162876 + 0.0940364i
\(779\) −24.6681 −0.883828
\(780\) −7.39639 0.881892i −0.264833 0.0315768i
\(781\) 14.2196 0.508819
\(782\) −37.0771 21.4065i −1.32587 0.765494i
\(783\) 1.88953 3.27276i 0.0675263 0.116959i
\(784\) 0 0
\(785\) 16.1650i 0.576954i
\(786\) 40.9664 23.6520i 1.46122 0.843637i
\(787\) −13.1046 + 7.56594i −0.467128 + 0.269697i −0.715037 0.699087i \(-0.753590\pi\)
0.247908 + 0.968783i \(0.420257\pi\)
\(788\) 5.45751i 0.194416i
\(789\) 11.8215 + 20.4754i 0.420856 + 0.728945i
\(790\) 2.94608 5.10275i 0.104817 0.181548i
\(791\) 0 0
\(792\) −9.74866 −0.346404
\(793\) 27.6200 11.8383i 0.980815 0.420389i
\(794\) −24.5296 −0.870522
\(795\) −3.03614 1.75292i −0.107681 0.0621696i
\(796\) −6.40832 + 11.0995i −0.227137 + 0.393413i
\(797\) −6.97234 12.0764i −0.246973 0.427770i 0.715712 0.698396i \(-0.246103\pi\)
−0.962684 + 0.270626i \(0.912769\pi\)
\(798\) 0 0
\(799\) 12.8157 7.39916i 0.453387 0.261763i
\(800\) −3.62578 + 2.09334i −0.128191 + 0.0740109i
\(801\) 17.5137i 0.618815i
\(802\) 2.13571 + 3.69916i 0.0754147 + 0.130622i
\(803\) −1.16892 + 2.02462i −0.0412501 + 0.0714473i
\(804\) −20.5983 11.8924i −0.726446 0.419414i
\(805\) 0 0
\(806\) −2.52062 1.88562i −0.0887850 0.0664183i
\(807\) −14.0654 −0.495125
\(808\) 9.30362 + 5.37145i 0.327300 + 0.188967i
\(809\) 10.8714 18.8299i 0.382220 0.662024i −0.609159 0.793048i \(-0.708493\pi\)
0.991379 + 0.131024i \(0.0418264\pi\)
\(810\) −4.82075 8.34979i −0.169384 0.293382i
\(811\) 21.1256i 0.741819i −0.928669 0.370910i \(-0.879046\pi\)
0.928669 0.370910i \(-0.120954\pi\)
\(812\) 0 0
\(813\) −21.1823 + 12.2296i −0.742895 + 0.428911i
\(814\) 0.625880i 0.0219371i
\(815\) −9.16173 15.8686i −0.320921 0.555852i
\(816\) 5.80247 10.0502i 0.203127 0.351827i
\(817\) −41.2054 23.7899i −1.44159 0.832304i
\(818\) 1.61647 0.0565185
\(819\) 0 0
\(820\) 3.60423 0.125865
\(821\) −14.0933 8.13678i −0.491860 0.283976i 0.233486 0.972360i \(-0.424987\pi\)
−0.725346 + 0.688385i \(0.758320\pi\)
\(822\) 3.65330 6.32771i 0.127424 0.220704i
\(823\) 9.32713 + 16.1551i 0.325123 + 0.563130i 0.981537 0.191271i \(-0.0612609\pi\)
−0.656414 + 0.754401i \(0.727928\pi\)
\(824\) 4.81099i 0.167599i
\(825\) −36.0240 + 20.7985i −1.25419 + 0.724109i
\(826\) 0 0
\(827\) 47.3361i 1.64604i 0.568015 + 0.823018i \(0.307712\pi\)
−0.568015 + 0.823018i \(0.692288\pi\)
\(828\) −9.49787 16.4508i −0.330074 0.571704i
\(829\) −0.460988 + 0.798454i −0.0160108 + 0.0277315i −0.873920 0.486070i \(-0.838430\pi\)
0.857909 + 0.513802i \(0.171763\pi\)
\(830\) 10.3366 + 5.96784i 0.358789 + 0.207147i
\(831\) 50.1888 1.74103
\(832\) −0.426876 + 3.58019i −0.0147993 + 0.124121i
\(833\) 0 0
\(834\) −1.18182 0.682322i −0.0409230 0.0236269i
\(835\) 1.45670 2.52307i 0.0504111 0.0873146i
\(836\) 13.3853 + 23.1840i 0.462941 + 0.801837i
\(837\) 1.50459i 0.0520063i
\(838\) −22.5437 + 13.0156i −0.778758 + 0.449616i
\(839\) 14.3894 8.30775i 0.496779 0.286815i −0.230604 0.973048i \(-0.574070\pi\)
0.727382 + 0.686232i \(0.240737\pi\)
\(840\) 0 0
\(841\) 12.0957 + 20.9503i 0.417093 + 0.722426i
\(842\) −18.7696 + 32.5098i −0.646841 + 1.12036i
\(843\) −51.1284 29.5190i −1.76096 1.01669i
\(844\) 19.3110 0.664713
\(845\) −2.75656 + 11.3952i −0.0948284 + 0.392008i
\(846\) 6.56588 0.225740
\(847\) 0 0
\(848\) −0.848493 + 1.46963i −0.0291374 + 0.0504674i
\(849\) −12.9737 22.4712i −0.445258 0.771209i
\(850\) 21.2094i 0.727477i
\(851\) 1.05617 0.609779i 0.0362050 0.0209029i
\(852\) −6.50427 + 3.75524i −0.222832 + 0.128652i
\(853\) 26.3277i 0.901445i 0.892664 + 0.450722i \(0.148834\pi\)
−0.892664 + 0.450722i \(0.851166\pi\)
\(854\) 0 0
\(855\) 6.25591 10.8356i 0.213948 0.370568i
\(856\) −11.8239 6.82652i −0.404132 0.233325i
\(857\) −14.1058 −0.481845 −0.240923 0.970544i \(-0.577450\pi\)
−0.240923 + 0.970544i \(0.577450\pi\)
\(858\) −4.24123 + 35.5711i −0.144793 + 1.21438i
\(859\) −23.4719 −0.800850 −0.400425 0.916329i \(-0.631138\pi\)
−0.400425 + 0.916329i \(0.631138\pi\)
\(860\) 6.02046 + 3.47592i 0.205296 + 0.118528i
\(861\) 0 0
\(862\) 10.7769 + 18.6662i 0.367063 + 0.635772i
\(863\) 11.9484i 0.406727i 0.979103 + 0.203364i \(0.0651874\pi\)
−0.979103 + 0.203364i \(0.934813\pi\)
\(864\) −1.49246 + 0.861675i −0.0507747 + 0.0293148i
\(865\) 7.16225 4.13513i 0.243524 0.140599i
\(866\) 3.19917i 0.108712i
\(867\) 9.92317 + 17.1874i 0.337009 + 0.583716i
\(868\) 0 0
\(869\) −24.5404 14.1684i −0.832476 0.480630i
\(870\) −4.53027 −0.153591
\(871\) −22.4247 + 29.9763i −0.759831 + 1.01571i
\(872\) −5.11747 −0.173299
\(873\) 22.7867 + 13.1559i 0.771214 + 0.445261i
\(874\) −26.0819 + 45.1752i −0.882234 + 1.52807i
\(875\) 0 0
\(876\) 1.23479i 0.0417196i
\(877\) −28.3486 + 16.3671i −0.957264 + 0.552677i −0.895330 0.445403i \(-0.853060\pi\)
−0.0619342 + 0.998080i \(0.519727\pi\)
\(878\) −23.0560 + 13.3114i −0.778101 + 0.449237i
\(879\) 54.3969i 1.83476i
\(880\) −1.95571 3.38739i −0.0659270 0.114189i
\(881\) 5.29540 9.17190i 0.178407 0.309009i −0.762928 0.646483i \(-0.776239\pi\)
0.941335 + 0.337474i \(0.109572\pi\)
\(882\) 0 0
\(883\) −38.6713 −1.30139 −0.650696 0.759338i \(-0.725523\pi\)
−0.650696 + 0.759338i \(0.725523\pi\)
\(884\) −14.6258 10.9413i −0.491919 0.367995i
\(885\) −17.6622 −0.593710
\(886\) 7.87968 + 4.54933i 0.264723 + 0.152838i
\(887\) 2.36082 4.08906i 0.0792685 0.137297i −0.823666 0.567075i \(-0.808075\pi\)
0.902935 + 0.429778i \(0.141408\pi\)
\(888\) 0.165287 + 0.286286i 0.00554668 + 0.00960714i
\(889\) 0 0
\(890\) 6.08551 3.51347i 0.203987 0.117772i
\(891\) −40.1562 + 23.1842i −1.34528 + 0.776699i
\(892\) 10.6357i 0.356110i
\(893\) −9.01522 15.6148i −0.301683 0.522530i
\(894\) 12.8394 22.2386i 0.429415 0.743769i
\(895\) 13.2421 + 7.64531i 0.442634 + 0.255555i
\(896\) 0 0
\(897\) −64.1580 + 27.4989i −2.14217 + 0.918162i
\(898\) 7.02693 0.234492
\(899\) −1.65801 0.957251i −0.0552976 0.0319261i
\(900\) 4.70522 8.14967i 0.156841 0.271656i
\(901\) −4.29840 7.44504i −0.143200 0.248030i
\(902\) 17.3336i 0.577147i
\(903\) 0 0
\(904\) 15.5296 8.96603i 0.516507 0.298206i
\(905\) 2.39657i 0.0796648i
\(906\) −14.9738 25.9354i −0.497471 0.861646i
\(907\) −20.9654 + 36.3132i −0.696146 + 1.20576i 0.273646 + 0.961830i \(0.411770\pi\)
−0.969793 + 0.243930i \(0.921563\pi\)
\(908\) −19.6776 11.3609i −0.653023 0.377023i
\(909\) −24.1468 −0.800900
\(910\) 0 0
\(911\) −54.1425 −1.79382 −0.896910 0.442213i \(-0.854194\pi\)
−0.896910 + 0.442213i \(0.854194\pi\)
\(912\) −12.2453 7.06980i −0.405481 0.234105i
\(913\) 28.7008 49.7113i 0.949859 1.64520i
\(914\) −9.57556 16.5853i −0.316731 0.548595i
\(915\) 17.2182i 0.569216i
\(916\) 17.5885 10.1547i 0.581139 0.335521i
\(917\) 0 0
\(918\) 8.73035i 0.288145i
\(919\) 12.9117 + 22.3636i 0.425916 + 0.737708i 0.996506 0.0835271i \(-0.0266185\pi\)
−0.570589 + 0.821236i \(0.693285\pi\)
\(920\) 3.81080 6.60049i 0.125638 0.217612i
\(921\) 13.2684 + 7.66051i 0.437208 + 0.252422i
\(922\) 3.25656 0.107249
\(923\) 4.65690 + 10.8651i 0.153284 + 0.357628i
\(924\) 0 0
\(925\) 0.523222 + 0.302083i 0.0172034 + 0.00993241i
\(926\) −10.6381 + 18.4257i −0.349589 + 0.605506i
\(927\) 5.40684 + 9.36493i 0.177584 + 0.307585i
\(928\) 2.19286i 0.0719841i
\(929\) −13.8843 + 8.01610i −0.455529 + 0.263000i −0.710162 0.704038i \(-0.751379\pi\)
0.254633 + 0.967038i \(0.418045\pi\)
\(930\) −1.56203 + 0.901839i −0.0512210 + 0.0295725i
\(931\) 0 0
\(932\) 5.32231 + 9.21851i 0.174338 + 0.301962i
\(933\) −10.5230 + 18.2264i −0.344508 + 0.596705i
\(934\) 2.88535 + 1.66586i 0.0944115 + 0.0545085i
\(935\) 19.8150 0.648018
\(936\) −3.19266 7.44884i −0.104355 0.243473i
\(937\) −47.0232 −1.53618 −0.768091 0.640340i \(-0.778793\pi\)
−0.768091 + 0.640340i \(0.778793\pi\)
\(938\) 0 0
\(939\) 19.6586 34.0496i 0.641533 1.11117i
\(940\) 1.31720 + 2.28146i 0.0429624 + 0.0744131i
\(941\) 52.8569i 1.72308i 0.507686 + 0.861542i \(0.330501\pi\)
−0.507686 + 0.861542i \(0.669499\pi\)
\(942\) −35.5601 + 20.5306i −1.15861 + 0.668923i
\(943\) 29.2504 16.8877i 0.952523 0.549939i
\(944\) 8.54933i 0.278257i
\(945\) 0 0
\(946\) 16.7165 28.9539i 0.543502 0.941372i
\(947\) −33.4029 19.2852i −1.08545 0.626684i −0.153088 0.988213i \(-0.548922\pi\)
−0.932361 + 0.361528i \(0.882255\pi\)
\(948\) 14.9668 0.486100
\(949\) −1.92981 0.230096i −0.0626441 0.00746923i
\(950\) −25.8418 −0.838419
\(951\) −7.46430 4.30951i −0.242046 0.139746i
\(952\) 0 0
\(953\) 13.6505 + 23.6433i 0.442182 + 0.765882i 0.997851 0.0655217i \(-0.0208711\pi\)
−0.555669 + 0.831404i \(0.687538\pi\)
\(954\) 3.81432i 0.123493i
\(955\) 19.1240 11.0412i 0.618838 0.357286i
\(956\) 0.269822 0.155782i 0.00872668 0.00503835i
\(957\) 21.7872i 0.704279i
\(958\) 0.0926079 + 0.160402i 0.00299203 + 0.00518234i
\(959\) 0 0
\(960\) 1.78914 + 1.03296i 0.0577442 + 0.0333386i
\(961\) 30.2378 0.975412
\(962\) 0.478227 0.204974i 0.0154187 0.00660863i
\(963\) 30.6880 0.988906
\(964\) 21.9100 + 12.6498i 0.705674 + 0.407421i
\(965\) 5.51966 9.56034i 0.177684 0.307758i
\(966\) 0 0
\(967\) 25.2494i 0.811966i −0.913881 0.405983i \(-0.866929\pi\)
0.913881 0.405983i \(-0.133071\pi\)
\(968\) −6.76452 + 3.90550i −0.217420 + 0.125527i
\(969\) 62.0335 35.8151i 1.99280 1.15055i
\(970\) 10.5570i 0.338965i
\(971\) −3.28682 5.69294i −0.105479 0.182695i 0.808455 0.588558i \(-0.200304\pi\)
−0.913934 + 0.405863i \(0.866971\pi\)
\(972\) 9.66031 16.7321i 0.309854 0.536684i
\(973\) 0 0
\(974\) −31.2308 −1.00070
\(975\) −27.6896 20.7140i −0.886777 0.663380i
\(976\) −8.33440 −0.266778
\(977\) 12.0773 + 6.97285i 0.386388 + 0.223081i 0.680594 0.732661i \(-0.261722\pi\)
−0.294206 + 0.955742i \(0.595055\pi\)
\(978\) 23.2720 40.3083i 0.744156 1.28892i
\(979\) −16.8972 29.2667i −0.540036 0.935369i
\(980\) 0 0
\(981\) 9.96151 5.75128i 0.318047 0.183624i
\(982\) 23.2504 13.4236i 0.741949 0.428365i
\(983\) 47.1390i 1.50350i −0.659449 0.751750i \(-0.729210\pi\)
0.659449 0.751750i \(-0.270790\pi\)
\(984\) 4.57761 + 7.92864i 0.145929 + 0.252756i
\(985\) 2.46090 4.26240i 0.0784107 0.135811i
\(986\) −9.62054 5.55442i −0.306380 0.176889i
\(987\) 0 0
\(988\) −13.3310 + 17.8203i −0.424115 + 0.566939i
\(989\) 65.1459 2.07152
\(990\) 7.61385 + 4.39586i 0.241984 + 0.139710i
\(991\) −4.70805 + 8.15458i −0.149556 + 0.259039i −0.931063 0.364857i \(-0.881118\pi\)
0.781507 + 0.623896i \(0.214451\pi\)
\(992\) 0.436531 + 0.756094i 0.0138599 + 0.0240060i
\(993\) 73.8223i 2.34268i
\(994\) 0 0
\(995\) 10.0100 5.77927i 0.317338 0.183215i
\(996\) 30.3182i 0.960669i
\(997\) 20.2607 + 35.0926i 0.641664 + 1.11139i 0.985061 + 0.172204i \(0.0550888\pi\)
−0.343398 + 0.939190i \(0.611578\pi\)
\(998\) 7.64346 13.2389i 0.241950 0.419069i
\(999\) 0.215372 + 0.124345i 0.00681407 + 0.00393410i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.m.c.589.6 12
7.2 even 3 1274.2.o.e.459.3 12
7.3 odd 6 1274.2.v.e.667.3 12
7.4 even 3 1274.2.v.d.667.1 12
7.5 odd 6 1274.2.o.d.459.1 12
7.6 odd 2 182.2.m.b.43.4 12
13.10 even 6 inner 1274.2.m.c.491.6 12
21.20 even 2 1638.2.bj.g.1135.2 12
28.27 even 2 1456.2.cc.d.225.5 12
91.6 even 12 2366.2.a.bf.1.5 6
91.10 odd 6 1274.2.o.d.569.4 12
91.20 even 12 2366.2.a.bh.1.5 6
91.23 even 6 1274.2.v.d.361.1 12
91.48 odd 6 2366.2.d.r.337.5 12
91.62 odd 6 182.2.m.b.127.4 yes 12
91.69 odd 6 2366.2.d.r.337.11 12
91.75 odd 6 1274.2.v.e.361.3 12
91.88 even 6 1274.2.o.e.569.6 12
273.62 even 6 1638.2.bj.g.127.2 12
364.335 even 6 1456.2.cc.d.673.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.m.b.43.4 12 7.6 odd 2
182.2.m.b.127.4 yes 12 91.62 odd 6
1274.2.m.c.491.6 12 13.10 even 6 inner
1274.2.m.c.589.6 12 1.1 even 1 trivial
1274.2.o.d.459.1 12 7.5 odd 6
1274.2.o.d.569.4 12 91.10 odd 6
1274.2.o.e.459.3 12 7.2 even 3
1274.2.o.e.569.6 12 91.88 even 6
1274.2.v.d.361.1 12 91.23 even 6
1274.2.v.d.667.1 12 7.4 even 3
1274.2.v.e.361.3 12 91.75 odd 6
1274.2.v.e.667.3 12 7.3 odd 6
1456.2.cc.d.225.5 12 28.27 even 2
1456.2.cc.d.673.5 12 364.335 even 6
1638.2.bj.g.127.2 12 273.62 even 6
1638.2.bj.g.1135.2 12 21.20 even 2
2366.2.a.bf.1.5 6 91.6 even 12
2366.2.a.bh.1.5 6 91.20 even 12
2366.2.d.r.337.5 12 91.48 odd 6
2366.2.d.r.337.11 12 91.69 odd 6