Newspace parameters
| Level: | \( N \) | \(=\) | \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2352.k (of order \(2\), degree \(1\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(18.7808145554\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Twist minimal: | no (minimal twist has level 1176) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 881.1 | 0 | −1.72171 | − | 0.188994i | 0 | −4.01535 | 0 | 0 | 0 | 2.92856 | + | 0.650785i | 0 | ||||||||||||||
| 881.2 | 0 | −1.72171 | + | 0.188994i | 0 | −4.01535 | 0 | 0 | 0 | 2.92856 | − | 0.650785i | 0 | ||||||||||||||
| 881.3 | 0 | −1.71558 | − | 0.238292i | 0 | 1.32383 | 0 | 0 | 0 | 2.88643 | + | 0.817619i | 0 | ||||||||||||||
| 881.4 | 0 | −1.71558 | + | 0.238292i | 0 | 1.32383 | 0 | 0 | 0 | 2.88643 | − | 0.817619i | 0 | ||||||||||||||
| 881.5 | 0 | −1.48931 | − | 0.884275i | 0 | 0.992103 | 0 | 0 | 0 | 1.43612 | + | 2.63393i | 0 | ||||||||||||||
| 881.6 | 0 | −1.48931 | + | 0.884275i | 0 | 0.992103 | 0 | 0 | 0 | 1.43612 | − | 2.63393i | 0 | ||||||||||||||
| 881.7 | 0 | −0.698115 | − | 1.58513i | 0 | −0.489061 | 0 | 0 | 0 | −2.02527 | + | 2.21321i | 0 | ||||||||||||||
| 881.8 | 0 | −0.698115 | + | 1.58513i | 0 | −0.489061 | 0 | 0 | 0 | −2.02527 | − | 2.21321i | 0 | ||||||||||||||
| 881.9 | 0 | −0.615077 | − | 1.61916i | 0 | −1.31193 | 0 | 0 | 0 | −2.24336 | + | 1.99182i | 0 | ||||||||||||||
| 881.10 | 0 | −0.615077 | + | 1.61916i | 0 | −1.31193 | 0 | 0 | 0 | −2.24336 | − | 1.99182i | 0 | ||||||||||||||
| 881.11 | 0 | −0.0935860 | − | 1.72952i | 0 | 3.34363 | 0 | 0 | 0 | −2.98248 | + | 0.323718i | 0 | ||||||||||||||
| 881.12 | 0 | −0.0935860 | + | 1.72952i | 0 | 3.34363 | 0 | 0 | 0 | −2.98248 | − | 0.323718i | 0 | ||||||||||||||
| 881.13 | 0 | 0.0935860 | − | 1.72952i | 0 | −3.34363 | 0 | 0 | 0 | −2.98248 | − | 0.323718i | 0 | ||||||||||||||
| 881.14 | 0 | 0.0935860 | + | 1.72952i | 0 | −3.34363 | 0 | 0 | 0 | −2.98248 | + | 0.323718i | 0 | ||||||||||||||
| 881.15 | 0 | 0.615077 | − | 1.61916i | 0 | 1.31193 | 0 | 0 | 0 | −2.24336 | − | 1.99182i | 0 | ||||||||||||||
| 881.16 | 0 | 0.615077 | + | 1.61916i | 0 | 1.31193 | 0 | 0 | 0 | −2.24336 | + | 1.99182i | 0 | ||||||||||||||
| 881.17 | 0 | 0.698115 | − | 1.58513i | 0 | 0.489061 | 0 | 0 | 0 | −2.02527 | − | 2.21321i | 0 | ||||||||||||||
| 881.18 | 0 | 0.698115 | + | 1.58513i | 0 | 0.489061 | 0 | 0 | 0 | −2.02527 | + | 2.21321i | 0 | ||||||||||||||
| 881.19 | 0 | 1.48931 | − | 0.884275i | 0 | −0.992103 | 0 | 0 | 0 | 1.43612 | − | 2.63393i | 0 | ||||||||||||||
| 881.20 | 0 | 1.48931 | + | 0.884275i | 0 | −0.992103 | 0 | 0 | 0 | 1.43612 | + | 2.63393i | 0 | ||||||||||||||
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 7.b | odd | 2 | 1 | inner |
| 21.c | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 2352.2.k.j | 24 | |
| 3.b | odd | 2 | 1 | inner | 2352.2.k.j | 24 | |
| 4.b | odd | 2 | 1 | 1176.2.k.b | ✓ | 24 | |
| 7.b | odd | 2 | 1 | inner | 2352.2.k.j | 24 | |
| 12.b | even | 2 | 1 | 1176.2.k.b | ✓ | 24 | |
| 21.c | even | 2 | 1 | inner | 2352.2.k.j | 24 | |
| 28.d | even | 2 | 1 | 1176.2.k.b | ✓ | 24 | |
| 28.f | even | 6 | 2 | 1176.2.u.c | 48 | ||
| 28.g | odd | 6 | 2 | 1176.2.u.c | 48 | ||
| 84.h | odd | 2 | 1 | 1176.2.k.b | ✓ | 24 | |
| 84.j | odd | 6 | 2 | 1176.2.u.c | 48 | ||
| 84.n | even | 6 | 2 | 1176.2.u.c | 48 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 1176.2.k.b | ✓ | 24 | 4.b | odd | 2 | 1 | |
| 1176.2.k.b | ✓ | 24 | 12.b | even | 2 | 1 | |
| 1176.2.k.b | ✓ | 24 | 28.d | even | 2 | 1 | |
| 1176.2.k.b | ✓ | 24 | 84.h | odd | 2 | 1 | |
| 1176.2.u.c | 48 | 28.f | even | 6 | 2 | ||
| 1176.2.u.c | 48 | 28.g | odd | 6 | 2 | ||
| 1176.2.u.c | 48 | 84.j | odd | 6 | 2 | ||
| 1176.2.u.c | 48 | 84.n | even | 6 | 2 | ||
| 2352.2.k.j | 24 | 1.a | even | 1 | 1 | trivial | |
| 2352.2.k.j | 24 | 3.b | odd | 2 | 1 | inner | |
| 2352.2.k.j | 24 | 7.b | odd | 2 | 1 | inner | |
| 2352.2.k.j | 24 | 21.c | even | 2 | 1 | inner | |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2352, [\chi])\):
|
\( T_{5}^{12} - 32T_{5}^{10} + 316T_{5}^{8} - 1056T_{5}^{6} + 1476T_{5}^{4} - 832T_{5}^{2} + 128 \)
|
|
\( T_{13}^{12} + 104T_{13}^{10} + 3668T_{13}^{8} + 50704T_{13}^{6} + 227716T_{13}^{4} + 185472T_{13}^{2} + 41472 \)
|