Newspace parameters
| Level: | \( N \) | \(=\) | \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1176.u (of order \(6\), degree \(2\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(9.39040727770\) |
| Analytic rank: | \(0\) |
| Dimension: | \(48\) |
| Relative dimension: | \(24\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 521.1 | 0 | −1.72182 | − | 0.187979i | 0 | 0.244530 | + | 0.423539i | 0 | 0 | 0 | 2.92933 | + | 0.647333i | 0 | ||||||||||||
| 521.2 | 0 | −1.70977 | − | 0.276907i | 0 | 0.655965 | + | 1.13616i | 0 | 0 | 0 | 2.84664 | + | 0.946897i | 0 | ||||||||||||
| 521.3 | 0 | −1.54460 | − | 0.783712i | 0 | −1.67181 | − | 2.89567i | 0 | 0 | 0 | 1.77159 | + | 2.42105i | 0 | ||||||||||||
| 521.4 | 0 | −1.51046 | + | 0.847647i | 0 | −0.496051 | − | 0.859186i | 0 | 0 | 0 | 1.56299 | − | 2.56068i | 0 | ||||||||||||
| 521.5 | 0 | −1.45102 | − | 0.945808i | 0 | 1.67181 | + | 2.89567i | 0 | 0 | 0 | 1.21089 | + | 2.74477i | 0 | ||||||||||||
| 521.6 | 0 | −1.09470 | − | 1.34225i | 0 | −0.655965 | − | 1.13616i | 0 | 0 | 0 | −0.603285 | + | 2.93872i | 0 | ||||||||||||
| 521.7 | 0 | −1.06416 | + | 1.36659i | 0 | −0.661917 | − | 1.14647i | 0 | 0 | 0 | −0.735138 | − | 2.90853i | 0 | ||||||||||||
| 521.8 | 0 | −1.02453 | + | 1.39655i | 0 | 2.00767 | + | 3.47739i | 0 | 0 | 0 | −0.900685 | − | 2.86160i | 0 | ||||||||||||
| 521.9 | 0 | −1.02370 | − | 1.39715i | 0 | −0.244530 | − | 0.423539i | 0 | 0 | 0 | −0.904057 | + | 2.86054i | 0 | ||||||||||||
| 521.10 | 0 | −0.697181 | + | 1.58554i | 0 | 2.00767 | + | 3.47739i | 0 | 0 | 0 | −2.02788 | − | 2.21082i | 0 | ||||||||||||
| 521.11 | 0 | −0.651423 | + | 1.60488i | 0 | −0.661917 | − | 1.14647i | 0 | 0 | 0 | −2.15130 | − | 2.09092i | 0 | ||||||||||||
| 521.12 | 0 | −0.0211468 | − | 1.73192i | 0 | 0.496051 | + | 0.859186i | 0 | 0 | 0 | −2.99911 | + | 0.0732492i | 0 | ||||||||||||
| 521.13 | 0 | 0.0211468 | + | 1.73192i | 0 | −0.496051 | − | 0.859186i | 0 | 0 | 0 | −2.99911 | + | 0.0732492i | 0 | ||||||||||||
| 521.14 | 0 | 0.651423 | − | 1.60488i | 0 | 0.661917 | + | 1.14647i | 0 | 0 | 0 | −2.15130 | − | 2.09092i | 0 | ||||||||||||
| 521.15 | 0 | 0.697181 | − | 1.58554i | 0 | −2.00767 | − | 3.47739i | 0 | 0 | 0 | −2.02788 | − | 2.21082i | 0 | ||||||||||||
| 521.16 | 0 | 1.02370 | + | 1.39715i | 0 | 0.244530 | + | 0.423539i | 0 | 0 | 0 | −0.904057 | + | 2.86054i | 0 | ||||||||||||
| 521.17 | 0 | 1.02453 | − | 1.39655i | 0 | −2.00767 | − | 3.47739i | 0 | 0 | 0 | −0.900685 | − | 2.86160i | 0 | ||||||||||||
| 521.18 | 0 | 1.06416 | − | 1.36659i | 0 | 0.661917 | + | 1.14647i | 0 | 0 | 0 | −0.735138 | − | 2.90853i | 0 | ||||||||||||
| 521.19 | 0 | 1.09470 | + | 1.34225i | 0 | 0.655965 | + | 1.13616i | 0 | 0 | 0 | −0.603285 | + | 2.93872i | 0 | ||||||||||||
| 521.20 | 0 | 1.45102 | + | 0.945808i | 0 | −1.67181 | − | 2.89567i | 0 | 0 | 0 | 1.21089 | + | 2.74477i | 0 | ||||||||||||
| See all 48 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 7.b | odd | 2 | 1 | inner |
| 7.c | even | 3 | 1 | inner |
| 7.d | odd | 6 | 1 | inner |
| 21.c | even | 2 | 1 | inner |
| 21.g | even | 6 | 1 | inner |
| 21.h | odd | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 1176.2.u.c | 48 | |
| 3.b | odd | 2 | 1 | inner | 1176.2.u.c | 48 | |
| 7.b | odd | 2 | 1 | inner | 1176.2.u.c | 48 | |
| 7.c | even | 3 | 1 | 1176.2.k.b | ✓ | 24 | |
| 7.c | even | 3 | 1 | inner | 1176.2.u.c | 48 | |
| 7.d | odd | 6 | 1 | 1176.2.k.b | ✓ | 24 | |
| 7.d | odd | 6 | 1 | inner | 1176.2.u.c | 48 | |
| 21.c | even | 2 | 1 | inner | 1176.2.u.c | 48 | |
| 21.g | even | 6 | 1 | 1176.2.k.b | ✓ | 24 | |
| 21.g | even | 6 | 1 | inner | 1176.2.u.c | 48 | |
| 21.h | odd | 6 | 1 | 1176.2.k.b | ✓ | 24 | |
| 21.h | odd | 6 | 1 | inner | 1176.2.u.c | 48 | |
| 28.f | even | 6 | 1 | 2352.2.k.j | 24 | ||
| 28.g | odd | 6 | 1 | 2352.2.k.j | 24 | ||
| 84.j | odd | 6 | 1 | 2352.2.k.j | 24 | ||
| 84.n | even | 6 | 1 | 2352.2.k.j | 24 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 1176.2.k.b | ✓ | 24 | 7.c | even | 3 | 1 | |
| 1176.2.k.b | ✓ | 24 | 7.d | odd | 6 | 1 | |
| 1176.2.k.b | ✓ | 24 | 21.g | even | 6 | 1 | |
| 1176.2.k.b | ✓ | 24 | 21.h | odd | 6 | 1 | |
| 1176.2.u.c | 48 | 1.a | even | 1 | 1 | trivial | |
| 1176.2.u.c | 48 | 3.b | odd | 2 | 1 | inner | |
| 1176.2.u.c | 48 | 7.b | odd | 2 | 1 | inner | |
| 1176.2.u.c | 48 | 7.c | even | 3 | 1 | inner | |
| 1176.2.u.c | 48 | 7.d | odd | 6 | 1 | inner | |
| 1176.2.u.c | 48 | 21.c | even | 2 | 1 | inner | |
| 1176.2.u.c | 48 | 21.g | even | 6 | 1 | inner | |
| 1176.2.u.c | 48 | 21.h | odd | 6 | 1 | inner | |
| 2352.2.k.j | 24 | 28.f | even | 6 | 1 | ||
| 2352.2.k.j | 24 | 28.g | odd | 6 | 1 | ||
| 2352.2.k.j | 24 | 84.j | odd | 6 | 1 | ||
| 2352.2.k.j | 24 | 84.n | even | 6 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{24} + 32 T_{5}^{22} + 708 T_{5}^{20} + 8000 T_{5}^{18} + 64588 T_{5}^{16} + 240064 T_{5}^{14} + \cdots + 16384 \)
acting on \(S_{2}^{\mathrm{new}}(1176, [\chi])\).