Properties

Label 2340.2.y.b.53.6
Level $2340$
Weight $2$
Character 2340.53
Analytic conductor $18.685$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(53,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 53.6
Character \(\chi\) \(=\) 2340.53
Dual form 2340.2.y.b.1457.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.686017 + 2.12823i) q^{5} +(0.778541 - 0.778541i) q^{7} +5.13019i q^{11} +(-0.707107 - 0.707107i) q^{13} +(2.51872 + 2.51872i) q^{17} +0.758530i q^{19} +(-0.142183 + 0.142183i) q^{23} +(-4.05876 - 2.92001i) q^{25} +2.35974 q^{29} -2.70016 q^{31} +(1.12283 + 2.19101i) q^{35} +(-3.12130 + 3.12130i) q^{37} -5.42303i q^{41} +(-1.79109 - 1.79109i) q^{43} +(-2.72344 - 2.72344i) q^{47} +5.78775i q^{49} +(-7.53548 + 7.53548i) q^{53} +(-10.9183 - 3.51940i) q^{55} +4.73391 q^{59} +5.36238 q^{61} +(1.98998 - 1.01980i) q^{65} +(-3.20584 + 3.20584i) q^{67} +5.57259i q^{71} +(-10.3790 - 10.3790i) q^{73} +(3.99407 + 3.99407i) q^{77} +15.2434i q^{79} +(8.68060 - 8.68060i) q^{83} +(-7.08831 + 3.63254i) q^{85} -14.8667 q^{89} -1.10102 q^{91} +(-1.61433 - 0.520365i) q^{95} +(-2.00993 + 2.00993i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{5} - 8 q^{7} + 8 q^{17} + 8 q^{23} + 16 q^{25} - 32 q^{29} - 8 q^{35} + 16 q^{37} - 8 q^{43} + 40 q^{47} + 8 q^{53} + 8 q^{55} - 56 q^{59} + 8 q^{61} + 4 q^{65} - 16 q^{67} + 72 q^{77} + 32 q^{83}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.686017 + 2.12823i −0.306796 + 0.951775i
\(6\) 0 0
\(7\) 0.778541 0.778541i 0.294261 0.294261i −0.544500 0.838761i \(-0.683281\pi\)
0.838761 + 0.544500i \(0.183281\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.13019i 1.54681i 0.633911 + 0.773406i \(0.281449\pi\)
−0.633911 + 0.773406i \(0.718551\pi\)
\(12\) 0 0
\(13\) −0.707107 0.707107i −0.196116 0.196116i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.51872 + 2.51872i 0.610879 + 0.610879i 0.943175 0.332296i \(-0.107823\pi\)
−0.332296 + 0.943175i \(0.607823\pi\)
\(18\) 0 0
\(19\) 0.758530i 0.174019i 0.996207 + 0.0870094i \(0.0277310\pi\)
−0.996207 + 0.0870094i \(0.972269\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.142183 + 0.142183i −0.0296472 + 0.0296472i −0.721775 0.692128i \(-0.756673\pi\)
0.692128 + 0.721775i \(0.256673\pi\)
\(24\) 0 0
\(25\) −4.05876 2.92001i −0.811752 0.584002i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.35974 0.438192 0.219096 0.975703i \(-0.429689\pi\)
0.219096 + 0.975703i \(0.429689\pi\)
\(30\) 0 0
\(31\) −2.70016 −0.484964 −0.242482 0.970156i \(-0.577961\pi\)
−0.242482 + 0.970156i \(0.577961\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.12283 + 2.19101i 0.189792 + 0.370349i
\(36\) 0 0
\(37\) −3.12130 + 3.12130i −0.513139 + 0.513139i −0.915487 0.402348i \(-0.868194\pi\)
0.402348 + 0.915487i \(0.368194\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.42303i 0.846935i −0.905911 0.423468i \(-0.860813\pi\)
0.905911 0.423468i \(-0.139187\pi\)
\(42\) 0 0
\(43\) −1.79109 1.79109i −0.273139 0.273139i 0.557223 0.830363i \(-0.311867\pi\)
−0.830363 + 0.557223i \(0.811867\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.72344 2.72344i −0.397255 0.397255i 0.480009 0.877264i \(-0.340634\pi\)
−0.877264 + 0.480009i \(0.840634\pi\)
\(48\) 0 0
\(49\) 5.78775i 0.826821i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.53548 + 7.53548i −1.03508 + 1.03508i −0.0357156 + 0.999362i \(0.511371\pi\)
−0.999362 + 0.0357156i \(0.988629\pi\)
\(54\) 0 0
\(55\) −10.9183 3.51940i −1.47222 0.474556i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.73391 0.616303 0.308151 0.951337i \(-0.400290\pi\)
0.308151 + 0.951337i \(0.400290\pi\)
\(60\) 0 0
\(61\) 5.36238 0.686582 0.343291 0.939229i \(-0.388458\pi\)
0.343291 + 0.939229i \(0.388458\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.98998 1.01980i 0.246826 0.126491i
\(66\) 0 0
\(67\) −3.20584 + 3.20584i −0.391656 + 0.391656i −0.875277 0.483622i \(-0.839321\pi\)
0.483622 + 0.875277i \(0.339321\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.57259i 0.661344i 0.943746 + 0.330672i \(0.107275\pi\)
−0.943746 + 0.330672i \(0.892725\pi\)
\(72\) 0 0
\(73\) −10.3790 10.3790i −1.21477 1.21477i −0.969440 0.245327i \(-0.921105\pi\)
−0.245327 0.969440i \(-0.578895\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.99407 + 3.99407i 0.455166 + 0.455166i
\(78\) 0 0
\(79\) 15.2434i 1.71502i 0.514466 + 0.857511i \(0.327990\pi\)
−0.514466 + 0.857511i \(0.672010\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.68060 8.68060i 0.952820 0.952820i −0.0461163 0.998936i \(-0.514684\pi\)
0.998936 + 0.0461163i \(0.0146845\pi\)
\(84\) 0 0
\(85\) −7.08831 + 3.63254i −0.768835 + 0.394004i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.8667 −1.57586 −0.787932 0.615763i \(-0.788848\pi\)
−0.787932 + 0.615763i \(0.788848\pi\)
\(90\) 0 0
\(91\) −1.10102 −0.115419
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.61433 0.520365i −0.165627 0.0533883i
\(96\) 0 0
\(97\) −2.00993 + 2.00993i −0.204077 + 0.204077i −0.801744 0.597667i \(-0.796095\pi\)
0.597667 + 0.801744i \(0.296095\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.9142i 1.68303i 0.540235 + 0.841514i \(0.318335\pi\)
−0.540235 + 0.841514i \(0.681665\pi\)
\(102\) 0 0
\(103\) 1.58678 + 1.58678i 0.156351 + 0.156351i 0.780947 0.624597i \(-0.214737\pi\)
−0.624597 + 0.780947i \(0.714737\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.299369 0.299369i −0.0289411 0.0289411i 0.692488 0.721429i \(-0.256514\pi\)
−0.721429 + 0.692488i \(0.756514\pi\)
\(108\) 0 0
\(109\) 7.22041i 0.691590i −0.938310 0.345795i \(-0.887609\pi\)
0.938310 0.345795i \(-0.112391\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.98107 + 7.98107i −0.750796 + 0.750796i −0.974628 0.223832i \(-0.928143\pi\)
0.223832 + 0.974628i \(0.428143\pi\)
\(114\) 0 0
\(115\) −0.205058 0.400138i −0.0191218 0.0373131i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.92185 0.359516
\(120\) 0 0
\(121\) −15.3189 −1.39263
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.99885 6.63481i 0.804881 0.593436i
\(126\) 0 0
\(127\) 3.91374 3.91374i 0.347288 0.347288i −0.511810 0.859099i \(-0.671025\pi\)
0.859099 + 0.511810i \(0.171025\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.78460i 0.505403i 0.967544 + 0.252701i \(0.0813190\pi\)
−0.967544 + 0.252701i \(0.918681\pi\)
\(132\) 0 0
\(133\) 0.590547 + 0.590547i 0.0512069 + 0.0512069i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.867994 + 0.867994i 0.0741577 + 0.0741577i 0.743213 0.669055i \(-0.233301\pi\)
−0.669055 + 0.743213i \(0.733301\pi\)
\(138\) 0 0
\(139\) 3.44197i 0.291944i −0.989289 0.145972i \(-0.953369\pi\)
0.989289 0.145972i \(-0.0466310\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.62760 3.62760i 0.303355 0.303355i
\(144\) 0 0
\(145\) −1.61882 + 5.02207i −0.134436 + 0.417060i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.8941 −1.05633 −0.528163 0.849143i \(-0.677119\pi\)
−0.528163 + 0.849143i \(0.677119\pi\)
\(150\) 0 0
\(151\) −21.3913 −1.74080 −0.870401 0.492344i \(-0.836140\pi\)
−0.870401 + 0.492344i \(0.836140\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.85236 5.74658i 0.148785 0.461576i
\(156\) 0 0
\(157\) 4.05669 4.05669i 0.323759 0.323759i −0.526448 0.850207i \(-0.676477\pi\)
0.850207 + 0.526448i \(0.176477\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.221390i 0.0174480i
\(162\) 0 0
\(163\) −4.04609 4.04609i −0.316914 0.316914i 0.530666 0.847581i \(-0.321942\pi\)
−0.847581 + 0.530666i \(0.821942\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.8454 + 12.8454i 0.994006 + 0.994006i 0.999982 0.00597581i \(-0.00190217\pi\)
−0.00597581 + 0.999982i \(0.501902\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.77705 + 3.77705i −0.287164 + 0.287164i −0.835958 0.548794i \(-0.815087\pi\)
0.548794 + 0.835958i \(0.315087\pi\)
\(174\) 0 0
\(175\) −5.43326 + 0.886563i −0.410716 + 0.0670179i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.58934 −0.343024 −0.171512 0.985182i \(-0.554865\pi\)
−0.171512 + 0.985182i \(0.554865\pi\)
\(180\) 0 0
\(181\) −2.61145 −0.194107 −0.0970537 0.995279i \(-0.530942\pi\)
−0.0970537 + 0.995279i \(0.530942\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.50159 8.78413i −0.330964 0.645822i
\(186\) 0 0
\(187\) −12.9215 + 12.9215i −0.944915 + 0.944915i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.6654i 0.771722i 0.922557 + 0.385861i \(0.126096\pi\)
−0.922557 + 0.385861i \(0.873904\pi\)
\(192\) 0 0
\(193\) −8.61898 8.61898i −0.620408 0.620408i 0.325228 0.945636i \(-0.394559\pi\)
−0.945636 + 0.325228i \(0.894559\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.30581 + 2.30581i 0.164282 + 0.164282i 0.784461 0.620178i \(-0.212940\pi\)
−0.620178 + 0.784461i \(0.712940\pi\)
\(198\) 0 0
\(199\) 6.80773i 0.482587i 0.970452 + 0.241293i \(0.0775716\pi\)
−0.970452 + 0.241293i \(0.922428\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.83715 1.83715i 0.128943 0.128943i
\(204\) 0 0
\(205\) 11.5415 + 3.72029i 0.806092 + 0.259837i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.89141 −0.269174
\(210\) 0 0
\(211\) 14.6035 1.00534 0.502672 0.864477i \(-0.332350\pi\)
0.502672 + 0.864477i \(0.332350\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.04059 2.58314i 0.343765 0.176169i
\(216\) 0 0
\(217\) −2.10219 + 2.10219i −0.142706 + 0.142706i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.56201i 0.239606i
\(222\) 0 0
\(223\) −0.914357 0.914357i −0.0612299 0.0612299i 0.675829 0.737059i \(-0.263786\pi\)
−0.737059 + 0.675829i \(0.763786\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.9786 + 16.9786i 1.12691 + 1.12691i 0.990677 + 0.136230i \(0.0434985\pi\)
0.136230 + 0.990677i \(0.456501\pi\)
\(228\) 0 0
\(229\) 6.92261i 0.457459i −0.973490 0.228730i \(-0.926543\pi\)
0.973490 0.228730i \(-0.0734572\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.53548 + 4.53548i −0.297129 + 0.297129i −0.839888 0.542759i \(-0.817380\pi\)
0.542759 + 0.839888i \(0.317380\pi\)
\(234\) 0 0
\(235\) 7.66446 3.92780i 0.499974 0.256221i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.77740 −0.438393 −0.219197 0.975681i \(-0.570344\pi\)
−0.219197 + 0.975681i \(0.570344\pi\)
\(240\) 0 0
\(241\) 12.1896 0.785201 0.392600 0.919709i \(-0.371576\pi\)
0.392600 + 0.919709i \(0.371576\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −12.3177 3.97050i −0.786948 0.253666i
\(246\) 0 0
\(247\) 0.536362 0.536362i 0.0341279 0.0341279i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.0872i 1.20477i 0.798204 + 0.602387i \(0.205784\pi\)
−0.798204 + 0.602387i \(0.794216\pi\)
\(252\) 0 0
\(253\) −0.729425 0.729425i −0.0458586 0.0458586i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.57385 + 2.57385i 0.160552 + 0.160552i 0.782811 0.622259i \(-0.213785\pi\)
−0.622259 + 0.782811i \(0.713785\pi\)
\(258\) 0 0
\(259\) 4.86013i 0.301993i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.1667 20.1667i 1.24353 1.24353i 0.285007 0.958526i \(-0.408004\pi\)
0.958526 0.285007i \(-0.0919958\pi\)
\(264\) 0 0
\(265\) −10.8678 21.2067i −0.667603 1.30272i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −22.3802 −1.36455 −0.682273 0.731098i \(-0.739008\pi\)
−0.682273 + 0.731098i \(0.739008\pi\)
\(270\) 0 0
\(271\) −4.01955 −0.244170 −0.122085 0.992520i \(-0.538958\pi\)
−0.122085 + 0.992520i \(0.538958\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 14.9802 20.8222i 0.903342 1.25563i
\(276\) 0 0
\(277\) 13.4025 13.4025i 0.805279 0.805279i −0.178636 0.983915i \(-0.557168\pi\)
0.983915 + 0.178636i \(0.0571685\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.49504i 0.208496i 0.994551 + 0.104248i \(0.0332436\pi\)
−0.994551 + 0.104248i \(0.966756\pi\)
\(282\) 0 0
\(283\) 18.9358 + 18.9358i 1.12562 + 1.12562i 0.990882 + 0.134736i \(0.0430185\pi\)
0.134736 + 0.990882i \(0.456982\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.22205 4.22205i −0.249220 0.249220i
\(288\) 0 0
\(289\) 4.31212i 0.253654i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.65762 3.65762i 0.213680 0.213680i −0.592148 0.805829i \(-0.701720\pi\)
0.805829 + 0.592148i \(0.201720\pi\)
\(294\) 0 0
\(295\) −3.24755 + 10.0749i −0.189079 + 0.586582i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.201077 0.0116286
\(300\) 0 0
\(301\) −2.78888 −0.160748
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.67868 + 11.4124i −0.210641 + 0.653472i
\(306\) 0 0
\(307\) 21.3299 21.3299i 1.21736 1.21736i 0.248809 0.968553i \(-0.419961\pi\)
0.968553 0.248809i \(-0.0800392\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.2396i 0.750749i 0.926873 + 0.375374i \(0.122486\pi\)
−0.926873 + 0.375374i \(0.877514\pi\)
\(312\) 0 0
\(313\) 7.30455 + 7.30455i 0.412877 + 0.412877i 0.882740 0.469862i \(-0.155696\pi\)
−0.469862 + 0.882740i \(0.655696\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.3214 + 15.3214i 0.860538 + 0.860538i 0.991401 0.130863i \(-0.0417746\pi\)
−0.130863 + 0.991401i \(0.541775\pi\)
\(318\) 0 0
\(319\) 12.1059i 0.677800i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.91052 + 1.91052i −0.106304 + 0.106304i
\(324\) 0 0
\(325\) 0.805217 + 4.93474i 0.0446654 + 0.273730i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.24063 −0.233793
\(330\) 0 0
\(331\) 31.9053 1.75367 0.876837 0.480788i \(-0.159649\pi\)
0.876837 + 0.480788i \(0.159649\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.62351 9.02204i −0.252610 0.492927i
\(336\) 0 0
\(337\) 19.3880 19.3880i 1.05613 1.05613i 0.0578015 0.998328i \(-0.481591\pi\)
0.998328 0.0578015i \(-0.0184091\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 13.8524i 0.750147i
\(342\) 0 0
\(343\) 9.95579 + 9.95579i 0.537562 + 0.537562i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.3148 + 11.3148i 0.607411 + 0.607411i 0.942269 0.334857i \(-0.108688\pi\)
−0.334857 + 0.942269i \(0.608688\pi\)
\(348\) 0 0
\(349\) 7.73939i 0.414280i −0.978311 0.207140i \(-0.933584\pi\)
0.978311 0.207140i \(-0.0664156\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 20.0426 20.0426i 1.06676 1.06676i 0.0691538 0.997606i \(-0.477970\pi\)
0.997606 0.0691538i \(-0.0220299\pi\)
\(354\) 0 0
\(355\) −11.8598 3.82289i −0.629451 0.202898i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −21.1393 −1.11569 −0.557846 0.829945i \(-0.688372\pi\)
−0.557846 + 0.829945i \(0.688372\pi\)
\(360\) 0 0
\(361\) 18.4246 0.969717
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 29.2091 14.9687i 1.52887 0.783499i
\(366\) 0 0
\(367\) −24.7535 + 24.7535i −1.29212 + 1.29212i −0.358654 + 0.933471i \(0.616764\pi\)
−0.933471 + 0.358654i \(0.883236\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11.7334i 0.609166i
\(372\) 0 0
\(373\) −12.5014 12.5014i −0.647298 0.647298i 0.305041 0.952339i \(-0.401330\pi\)
−0.952339 + 0.305041i \(0.901330\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.66858 1.66858i −0.0859365 0.0859365i
\(378\) 0 0
\(379\) 20.2385i 1.03958i 0.854293 + 0.519792i \(0.173991\pi\)
−0.854293 + 0.519792i \(0.826009\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8.41348 + 8.41348i −0.429909 + 0.429909i −0.888597 0.458689i \(-0.848319\pi\)
0.458689 + 0.888597i \(0.348319\pi\)
\(384\) 0 0
\(385\) −11.2403 + 5.76031i −0.572859 + 0.293573i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12.5963 −0.638656 −0.319328 0.947644i \(-0.603457\pi\)
−0.319328 + 0.947644i \(0.603457\pi\)
\(390\) 0 0
\(391\) −0.716237 −0.0362217
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −32.4416 10.4573i −1.63232 0.526162i
\(396\) 0 0
\(397\) −6.90354 + 6.90354i −0.346479 + 0.346479i −0.858796 0.512317i \(-0.828787\pi\)
0.512317 + 0.858796i \(0.328787\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 26.2841i 1.31256i −0.754516 0.656282i \(-0.772128\pi\)
0.754516 0.656282i \(-0.227872\pi\)
\(402\) 0 0
\(403\) 1.90930 + 1.90930i 0.0951092 + 0.0951092i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −16.0129 16.0129i −0.793729 0.793729i
\(408\) 0 0
\(409\) 5.80896i 0.287234i −0.989633 0.143617i \(-0.954127\pi\)
0.989633 0.143617i \(-0.0458734\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.68555 3.68555i 0.181354 0.181354i
\(414\) 0 0
\(415\) 12.5193 + 24.4294i 0.614549 + 1.19919i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5.46952 −0.267203 −0.133602 0.991035i \(-0.542654\pi\)
−0.133602 + 0.991035i \(0.542654\pi\)
\(420\) 0 0
\(421\) 18.8828 0.920289 0.460144 0.887844i \(-0.347798\pi\)
0.460144 + 0.887844i \(0.347798\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.86819 17.5776i −0.139127 0.852637i
\(426\) 0 0
\(427\) 4.17483 4.17483i 0.202034 0.202034i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.0150i 0.819586i −0.912179 0.409793i \(-0.865601\pi\)
0.912179 0.409793i \(-0.134399\pi\)
\(432\) 0 0
\(433\) −26.0681 26.0681i −1.25275 1.25275i −0.954482 0.298269i \(-0.903591\pi\)
−0.298269 0.954482i \(-0.596409\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.107850 0.107850i −0.00515916 0.00515916i
\(438\) 0 0
\(439\) 25.3848i 1.21155i 0.795635 + 0.605776i \(0.207137\pi\)
−0.795635 + 0.605776i \(0.792863\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 21.3418 21.3418i 1.01398 1.01398i 0.0140806 0.999901i \(-0.495518\pi\)
0.999901 0.0140806i \(-0.00448213\pi\)
\(444\) 0 0
\(445\) 10.1988 31.6397i 0.483469 1.49987i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −28.0453 −1.32354 −0.661769 0.749708i \(-0.730194\pi\)
−0.661769 + 0.749708i \(0.730194\pi\)
\(450\) 0 0
\(451\) 27.8212 1.31005
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.755322 2.34324i 0.0354100 0.109853i
\(456\) 0 0
\(457\) 23.5875 23.5875i 1.10338 1.10338i 0.109376 0.994000i \(-0.465115\pi\)
0.994000 0.109376i \(-0.0348852\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.61612i 0.261569i −0.991411 0.130784i \(-0.958250\pi\)
0.991411 0.130784i \(-0.0417496\pi\)
\(462\) 0 0
\(463\) −15.4155 15.4155i −0.716417 0.716417i 0.251452 0.967870i \(-0.419092\pi\)
−0.967870 + 0.251452i \(0.919092\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.9097 11.9097i −0.551113 0.551113i 0.375649 0.926762i \(-0.377420\pi\)
−0.926762 + 0.375649i \(0.877420\pi\)
\(468\) 0 0
\(469\) 4.99176i 0.230498i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.18865 9.18865i 0.422495 0.422495i
\(474\) 0 0
\(475\) 2.21492 3.07869i 0.101627 0.141260i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 16.6094 0.758902 0.379451 0.925212i \(-0.376113\pi\)
0.379451 + 0.925212i \(0.376113\pi\)
\(480\) 0 0
\(481\) 4.41419 0.201270
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.89875 5.65645i −0.131626 0.256846i
\(486\) 0 0
\(487\) −6.46072 + 6.46072i −0.292763 + 0.292763i −0.838171 0.545408i \(-0.816375\pi\)
0.545408 + 0.838171i \(0.316375\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 21.8307i 0.985208i −0.870254 0.492604i \(-0.836045\pi\)
0.870254 0.492604i \(-0.163955\pi\)
\(492\) 0 0
\(493\) 5.94351 + 5.94351i 0.267682 + 0.267682i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.33849 + 4.33849i 0.194608 + 0.194608i
\(498\) 0 0
\(499\) 24.9183i 1.11550i 0.830010 + 0.557749i \(0.188335\pi\)
−0.830010 + 0.557749i \(0.811665\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.7963 20.7963i 0.927262 0.927262i −0.0702659 0.997528i \(-0.522385\pi\)
0.997528 + 0.0702659i \(0.0223848\pi\)
\(504\) 0 0
\(505\) −35.9974 11.6035i −1.60186 0.516347i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.00020 −0.398927 −0.199463 0.979905i \(-0.563920\pi\)
−0.199463 + 0.979905i \(0.563920\pi\)
\(510\) 0 0
\(511\) −16.1609 −0.714917
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.46561 + 2.28849i −0.196778 + 0.100843i
\(516\) 0 0
\(517\) 13.9718 13.9718i 0.614479 0.614479i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.83534i 0.168029i −0.996465 0.0840147i \(-0.973226\pi\)
0.996465 0.0840147i \(-0.0267743\pi\)
\(522\) 0 0
\(523\) 21.4876 + 21.4876i 0.939589 + 0.939589i 0.998276 0.0586875i \(-0.0186915\pi\)
−0.0586875 + 0.998276i \(0.518692\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.80095 6.80095i −0.296254 0.296254i
\(528\) 0 0
\(529\) 22.9596i 0.998242i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.83466 + 3.83466i −0.166098 + 0.166098i
\(534\) 0 0
\(535\) 0.842500 0.431755i 0.0364245 0.0186664i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −29.6923 −1.27894
\(540\) 0 0
\(541\) −11.9171 −0.512358 −0.256179 0.966629i \(-0.582464\pi\)
−0.256179 + 0.966629i \(0.582464\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 15.3667 + 4.95333i 0.658238 + 0.212177i
\(546\) 0 0
\(547\) 25.0963 25.0963i 1.07304 1.07304i 0.0759274 0.997113i \(-0.475808\pi\)
0.997113 0.0759274i \(-0.0241917\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.78993i 0.0762536i
\(552\) 0 0
\(553\) 11.8677 + 11.8677i 0.504664 + 0.504664i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.99097 2.99097i −0.126731 0.126731i 0.640896 0.767628i \(-0.278563\pi\)
−0.767628 + 0.640896i \(0.778563\pi\)
\(558\) 0 0
\(559\) 2.53299i 0.107134i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.91667 + 3.91667i −0.165068 + 0.165068i −0.784808 0.619740i \(-0.787238\pi\)
0.619740 + 0.784808i \(0.287238\pi\)
\(564\) 0 0
\(565\) −11.5104 22.4607i −0.484247 0.944930i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.3200 0.642249 0.321124 0.947037i \(-0.395939\pi\)
0.321124 + 0.947037i \(0.395939\pi\)
\(570\) 0 0
\(571\) 24.8305 1.03912 0.519561 0.854433i \(-0.326095\pi\)
0.519561 + 0.854433i \(0.326095\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.992261 0.161910i 0.0413802 0.00675213i
\(576\) 0 0
\(577\) 30.5771 30.5771i 1.27294 1.27294i 0.328403 0.944538i \(-0.393490\pi\)
0.944538 0.328403i \(-0.106510\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 13.5164i 0.560755i
\(582\) 0 0
\(583\) −38.6585 38.6585i −1.60107 1.60107i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.60293 + 5.60293i 0.231258 + 0.231258i 0.813217 0.581960i \(-0.197714\pi\)
−0.581960 + 0.813217i \(0.697714\pi\)
\(588\) 0 0
\(589\) 2.04816i 0.0843928i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −23.8695 + 23.8695i −0.980204 + 0.980204i −0.999808 0.0196036i \(-0.993760\pi\)
0.0196036 + 0.999808i \(0.493760\pi\)
\(594\) 0 0
\(595\) −2.69046 + 8.34662i −0.110298 + 0.342178i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 21.4255 0.875420 0.437710 0.899116i \(-0.355790\pi\)
0.437710 + 0.899116i \(0.355790\pi\)
\(600\) 0 0
\(601\) 38.8554 1.58494 0.792472 0.609908i \(-0.208794\pi\)
0.792472 + 0.609908i \(0.208794\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.5090 32.6022i 0.427253 1.32547i
\(606\) 0 0
\(607\) 21.4068 21.4068i 0.868874 0.868874i −0.123474 0.992348i \(-0.539404\pi\)
0.992348 + 0.123474i \(0.0394035\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.85153i 0.155816i
\(612\) 0 0
\(613\) 24.7085 + 24.7085i 0.997967 + 0.997967i 0.999998 0.00203135i \(-0.000646600\pi\)
−0.00203135 + 0.999998i \(0.500647\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.81012 + 8.81012i 0.354682 + 0.354682i 0.861848 0.507166i \(-0.169307\pi\)
−0.507166 + 0.861848i \(0.669307\pi\)
\(618\) 0 0
\(619\) 29.1781i 1.17276i 0.810034 + 0.586382i \(0.199448\pi\)
−0.810034 + 0.586382i \(0.800552\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11.5743 + 11.5743i −0.463715 + 0.463715i
\(624\) 0 0
\(625\) 7.94707 + 23.7033i 0.317883 + 0.948130i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.7234 −0.626931
\(630\) 0 0
\(631\) 30.3157 1.20685 0.603425 0.797420i \(-0.293802\pi\)
0.603425 + 0.797420i \(0.293802\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.64446 + 11.0142i 0.223994 + 0.437087i
\(636\) 0 0
\(637\) 4.09255 4.09255i 0.162153 0.162153i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 45.4250i 1.79418i 0.441850 + 0.897089i \(0.354322\pi\)
−0.441850 + 0.897089i \(0.645678\pi\)
\(642\) 0 0
\(643\) 15.9826 + 15.9826i 0.630291 + 0.630291i 0.948141 0.317850i \(-0.102961\pi\)
−0.317850 + 0.948141i \(0.602961\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.4945 + 11.4945i 0.451896 + 0.451896i 0.895983 0.444087i \(-0.146472\pi\)
−0.444087 + 0.895983i \(0.646472\pi\)
\(648\) 0 0
\(649\) 24.2859i 0.953305i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.0649 12.0649i 0.472138 0.472138i −0.430468 0.902606i \(-0.641652\pi\)
0.902606 + 0.430468i \(0.141652\pi\)
\(654\) 0 0
\(655\) −12.3110 3.96834i −0.481030 0.155056i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 23.0216 0.896795 0.448398 0.893834i \(-0.351995\pi\)
0.448398 + 0.893834i \(0.351995\pi\)
\(660\) 0 0
\(661\) −19.2309 −0.747994 −0.373997 0.927430i \(-0.622013\pi\)
−0.373997 + 0.927430i \(0.622013\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.66195 + 0.851697i −0.0644476 + 0.0330274i
\(666\) 0 0
\(667\) −0.335514 + 0.335514i −0.0129911 + 0.0129911i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 27.5100i 1.06201i
\(672\) 0 0
\(673\) 0.471549 + 0.471549i 0.0181769 + 0.0181769i 0.716137 0.697960i \(-0.245909\pi\)
−0.697960 + 0.716137i \(0.745909\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.6135 14.6135i −0.561644 0.561644i 0.368131 0.929774i \(-0.379998\pi\)
−0.929774 + 0.368131i \(0.879998\pi\)
\(678\) 0 0
\(679\) 3.12963i 0.120104i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.55682 + 6.55682i −0.250890 + 0.250890i −0.821335 0.570446i \(-0.806771\pi\)
0.570446 + 0.821335i \(0.306771\pi\)
\(684\) 0 0
\(685\) −2.44275 + 1.25184i −0.0933328 + 0.0478302i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 10.6568 0.405991
\(690\) 0 0
\(691\) 44.9588 1.71032 0.855158 0.518368i \(-0.173460\pi\)
0.855158 + 0.518368i \(0.173460\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.32532 + 2.36125i 0.277865 + 0.0895674i
\(696\) 0 0
\(697\) 13.6591 13.6591i 0.517375 0.517375i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.2722i 1.06783i 0.845539 + 0.533914i \(0.179279\pi\)
−0.845539 + 0.533914i \(0.820721\pi\)
\(702\) 0 0
\(703\) −2.36760 2.36760i −0.0892958 0.0892958i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 13.1684 + 13.1684i 0.495250 + 0.495250i
\(708\) 0 0
\(709\) 41.1125i 1.54401i −0.635614 0.772007i \(-0.719253\pi\)
0.635614 0.772007i \(-0.280747\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.383917 0.383917i 0.0143778 0.0143778i
\(714\) 0 0
\(715\) 5.23178 + 10.2090i 0.195657 + 0.381794i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −34.7951 −1.29764 −0.648819 0.760943i \(-0.724737\pi\)
−0.648819 + 0.760943i \(0.724737\pi\)
\(720\) 0 0
\(721\) 2.47076 0.0920157
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.57760 6.89045i −0.355703 0.255905i
\(726\) 0 0
\(727\) −0.799528 + 0.799528i −0.0296529 + 0.0296529i −0.721778 0.692125i \(-0.756675\pi\)
0.692125 + 0.721778i \(0.256675\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9.02252i 0.333710i
\(732\) 0 0
\(733\) 9.87358 + 9.87358i 0.364689 + 0.364689i 0.865536 0.500847i \(-0.166978\pi\)
−0.500847 + 0.865536i \(0.666978\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.4466 16.4466i −0.605818 0.605818i
\(738\) 0 0
\(739\) 36.3597i 1.33751i −0.743481 0.668757i \(-0.766827\pi\)
0.743481 0.668757i \(-0.233173\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14.8529 14.8529i 0.544901 0.544901i −0.380060 0.924962i \(-0.624097\pi\)
0.924962 + 0.380060i \(0.124097\pi\)
\(744\) 0 0
\(745\) 8.84557 27.4416i 0.324077 1.00538i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.466143 −0.0170325
\(750\) 0 0
\(751\) 27.0024 0.985330 0.492665 0.870219i \(-0.336023\pi\)
0.492665 + 0.870219i \(0.336023\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14.6748 45.5257i 0.534071 1.65685i
\(756\) 0 0
\(757\) −14.3842 + 14.3842i −0.522803 + 0.522803i −0.918417 0.395614i \(-0.870532\pi\)
0.395614 + 0.918417i \(0.370532\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 16.7167i 0.605980i 0.952994 + 0.302990i \(0.0979848\pi\)
−0.952994 + 0.302990i \(0.902015\pi\)
\(762\) 0 0
\(763\) −5.62139 5.62139i −0.203508 0.203508i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.34738 3.34738i −0.120867 0.120867i
\(768\) 0 0
\(769\) 38.3934i 1.38450i 0.721657 + 0.692251i \(0.243381\pi\)
−0.721657 + 0.692251i \(0.756619\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −16.0119 + 16.0119i −0.575907 + 0.575907i −0.933773 0.357866i \(-0.883504\pi\)
0.357866 + 0.933773i \(0.383504\pi\)
\(774\) 0 0
\(775\) 10.9593 + 7.88451i 0.393670 + 0.283220i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.11353 0.147383
\(780\) 0 0
\(781\) −28.5885 −1.02298
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.85063 + 11.4165i 0.208818 + 0.407474i
\(786\) 0 0
\(787\) −14.2816 + 14.2816i −0.509084 + 0.509084i −0.914245 0.405161i \(-0.867215\pi\)
0.405161 + 0.914245i \(0.367215\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.4272i 0.441860i
\(792\) 0 0
\(793\) −3.79177 3.79177i −0.134650 0.134650i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.77509 + 8.77509i 0.310830 + 0.310830i 0.845231 0.534401i \(-0.179463\pi\)
−0.534401 + 0.845231i \(0.679463\pi\)
\(798\) 0 0
\(799\) 13.7192i 0.485350i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 53.2462 53.2462i 1.87902 1.87902i
\(804\) 0 0
\(805\) −0.471171 0.151878i −0.0166066 0.00535298i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22.8365 −0.802889 −0.401444 0.915883i \(-0.631492\pi\)
−0.401444 + 0.915883i \(0.631492\pi\)
\(810\) 0 0
\(811\) −15.2844 −0.536707 −0.268353 0.963321i \(-0.586480\pi\)
−0.268353 + 0.963321i \(0.586480\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 11.3867 5.83534i 0.398859 0.204403i
\(816\) 0 0
\(817\) 1.35860 1.35860i 0.0475313 0.0475313i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20.5233i 0.716268i −0.933670 0.358134i \(-0.883413\pi\)
0.933670 0.358134i \(-0.116587\pi\)
\(822\) 0 0
\(823\) −28.1214 28.1214i −0.980250 0.980250i 0.0195591 0.999809i \(-0.493774\pi\)
−0.999809 + 0.0195591i \(0.993774\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −4.24626 4.24626i −0.147657 0.147657i 0.629414 0.777070i \(-0.283295\pi\)
−0.777070 + 0.629414i \(0.783295\pi\)
\(828\) 0 0
\(829\) 33.0365i 1.14740i 0.819064 + 0.573702i \(0.194493\pi\)
−0.819064 + 0.573702i \(0.805507\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −14.5777 + 14.5777i −0.505087 + 0.505087i
\(834\) 0 0
\(835\) −36.1502 + 18.5258i −1.25103 + 0.641113i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 43.4221 1.49910 0.749549 0.661949i \(-0.230271\pi\)
0.749549 + 0.661949i \(0.230271\pi\)
\(840\) 0 0
\(841\) −23.4316 −0.807988
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.12823 0.686017i −0.0732135 0.0235997i
\(846\) 0 0
\(847\) −11.9264 + 11.9264i −0.409796 + 0.409796i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.887591i 0.0304262i
\(852\) 0 0
\(853\) −9.51845 9.51845i −0.325906 0.325906i 0.525122 0.851027i \(-0.324020\pi\)
−0.851027 + 0.525122i \(0.824020\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.44191 + 6.44191i 0.220051 + 0.220051i 0.808520 0.588469i \(-0.200269\pi\)
−0.588469 + 0.808520i \(0.700269\pi\)
\(858\) 0 0
\(859\) 20.4149i 0.696549i 0.937393 + 0.348275i \(0.113232\pi\)
−0.937393 + 0.348275i \(0.886768\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.49306 + 2.49306i −0.0848646 + 0.0848646i −0.748265 0.663400i \(-0.769113\pi\)
0.663400 + 0.748265i \(0.269113\pi\)
\(864\) 0 0
\(865\) −5.44733 10.6296i −0.185215 0.361417i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −78.2018 −2.65282
\(870\) 0 0
\(871\) 4.53374 0.153620
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.84050 12.1715i 0.0622203 0.411470i
\(876\) 0 0
\(877\) −9.95800 + 9.95800i −0.336258 + 0.336258i −0.854957 0.518699i \(-0.826417\pi\)
0.518699 + 0.854957i \(0.326417\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 34.6008i 1.16573i −0.812569 0.582865i \(-0.801932\pi\)
0.812569 0.582865i \(-0.198068\pi\)
\(882\) 0 0
\(883\) −24.0027 24.0027i −0.807756 0.807756i 0.176538 0.984294i \(-0.443510\pi\)
−0.984294 + 0.176538i \(0.943510\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30.5714 + 30.5714i 1.02649 + 1.02649i 0.999640 + 0.0268490i \(0.00854732\pi\)
0.0268490 + 0.999640i \(0.491453\pi\)
\(888\) 0 0
\(889\) 6.09402i 0.204387i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.06581 2.06581i 0.0691298 0.0691298i
\(894\) 0 0
\(895\) 3.14837 9.76720i 0.105238 0.326481i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.37167 −0.212507
\(900\) 0 0
\(901\) −37.9595 −1.26461
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.79150 5.55777i 0.0595514 0.184747i
\(906\) 0 0
\(907\) 5.01428 5.01428i 0.166496 0.166496i −0.618941 0.785437i \(-0.712438\pi\)
0.785437 + 0.618941i \(0.212438\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 10.0534i 0.333085i 0.986034 + 0.166543i \(0.0532604\pi\)
−0.986034 + 0.166543i \(0.946740\pi\)
\(912\) 0 0
\(913\) 44.5332 + 44.5332i 1.47383 + 1.47383i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.50355 + 4.50355i 0.148720 + 0.148720i
\(918\) 0 0
\(919\) 29.5002i 0.973121i −0.873647 0.486560i \(-0.838251\pi\)
0.873647 0.486560i \(-0.161749\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.94041 3.94041i 0.129700 0.129700i
\(924\) 0 0
\(925\) 21.7829 3.55438i 0.716216 0.116867i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −37.3370 −1.22499 −0.612494 0.790476i \(-0.709833\pi\)
−0.612494 + 0.790476i \(0.709833\pi\)
\(930\) 0 0
\(931\) −4.39018 −0.143882
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −18.6356 36.3644i −0.609450 1.18924i
\(936\) 0 0
\(937\) 2.47400 2.47400i 0.0808220 0.0808220i −0.665540 0.746362i \(-0.731799\pi\)
0.746362 + 0.665540i \(0.231799\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.85440i 0.158249i −0.996865 0.0791245i \(-0.974788\pi\)
0.996865 0.0791245i \(-0.0252125\pi\)
\(942\) 0 0
\(943\) 0.771062 + 0.771062i 0.0251092 + 0.0251092i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33.9352 + 33.9352i 1.10275 + 1.10275i 0.994078 + 0.108669i \(0.0346588\pi\)
0.108669 + 0.994078i \(0.465341\pi\)
\(948\) 0 0
\(949\) 14.6781i 0.476471i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −30.9144 + 30.9144i −1.00142 + 1.00142i −0.00141682 + 0.999999i \(0.500451\pi\)
−0.999999 + 0.00141682i \(0.999549\pi\)
\(954\) 0 0
\(955\) −22.6985 7.31666i −0.734506 0.236761i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.35154 0.0436435
\(960\) 0 0
\(961\) −23.7091 −0.764810
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 24.2560 12.4304i 0.780828 0.400150i
\(966\) 0 0
\(967\) −36.9560 + 36.9560i −1.18842 + 1.18842i −0.210921 + 0.977503i \(0.567646\pi\)
−0.977503 + 0.210921i \(0.932354\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 29.8842i 0.959028i 0.877534 + 0.479514i \(0.159187\pi\)
−0.877534 + 0.479514i \(0.840813\pi\)
\(972\) 0 0
\(973\) −2.67972 2.67972i −0.0859078 0.0859078i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −0.932667 0.932667i −0.0298386 0.0298386i 0.692030 0.721869i \(-0.256717\pi\)
−0.721869 + 0.692030i \(0.756717\pi\)
\(978\) 0 0
\(979\) 76.2689i 2.43756i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −21.3425 + 21.3425i −0.680720 + 0.680720i −0.960163 0.279442i \(-0.909850\pi\)
0.279442 + 0.960163i \(0.409850\pi\)
\(984\) 0 0
\(985\) −6.48914 + 3.32548i −0.206761 + 0.105959i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.509325 0.0161956
\(990\) 0 0
\(991\) 31.3268 0.995128 0.497564 0.867427i \(-0.334228\pi\)
0.497564 + 0.867427i \(0.334228\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −14.4884 4.67022i −0.459314 0.148056i
\(996\) 0 0
\(997\) −28.0676 + 28.0676i −0.888909 + 0.888909i −0.994418 0.105509i \(-0.966353\pi\)
0.105509 + 0.994418i \(0.466353\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.y.b.53.6 yes 24
3.2 odd 2 2340.2.y.a.53.7 24
5.2 odd 4 2340.2.y.a.1457.7 yes 24
15.2 even 4 inner 2340.2.y.b.1457.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.y.a.53.7 24 3.2 odd 2
2340.2.y.a.1457.7 yes 24 5.2 odd 4
2340.2.y.b.53.6 yes 24 1.1 even 1 trivial
2340.2.y.b.1457.6 yes 24 15.2 even 4 inner