Properties

Label 2340.2.y.b.1457.6
Level $2340$
Weight $2$
Character 2340.1457
Analytic conductor $18.685$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(53,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1457.6
Character \(\chi\) \(=\) 2340.1457
Dual form 2340.2.y.b.53.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.686017 - 2.12823i) q^{5} +(0.778541 + 0.778541i) q^{7} -5.13019i q^{11} +(-0.707107 + 0.707107i) q^{13} +(2.51872 - 2.51872i) q^{17} -0.758530i q^{19} +(-0.142183 - 0.142183i) q^{23} +(-4.05876 + 2.92001i) q^{25} +2.35974 q^{29} -2.70016 q^{31} +(1.12283 - 2.19101i) q^{35} +(-3.12130 - 3.12130i) q^{37} +5.42303i q^{41} +(-1.79109 + 1.79109i) q^{43} +(-2.72344 + 2.72344i) q^{47} -5.78775i q^{49} +(-7.53548 - 7.53548i) q^{53} +(-10.9183 + 3.51940i) q^{55} +4.73391 q^{59} +5.36238 q^{61} +(1.98998 + 1.01980i) q^{65} +(-3.20584 - 3.20584i) q^{67} -5.57259i q^{71} +(-10.3790 + 10.3790i) q^{73} +(3.99407 - 3.99407i) q^{77} -15.2434i q^{79} +(8.68060 + 8.68060i) q^{83} +(-7.08831 - 3.63254i) q^{85} -14.8667 q^{89} -1.10102 q^{91} +(-1.61433 + 0.520365i) q^{95} +(-2.00993 - 2.00993i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{5} - 8 q^{7} + 8 q^{17} + 8 q^{23} + 16 q^{25} - 32 q^{29} - 8 q^{35} + 16 q^{37} - 8 q^{43} + 40 q^{47} + 8 q^{53} + 8 q^{55} - 56 q^{59} + 8 q^{61} + 4 q^{65} - 16 q^{67} + 72 q^{77} + 32 q^{83}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.686017 2.12823i −0.306796 0.951775i
\(6\) 0 0
\(7\) 0.778541 + 0.778541i 0.294261 + 0.294261i 0.838761 0.544500i \(-0.183281\pi\)
−0.544500 + 0.838761i \(0.683281\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.13019i 1.54681i −0.633911 0.773406i \(-0.718551\pi\)
0.633911 0.773406i \(-0.281449\pi\)
\(12\) 0 0
\(13\) −0.707107 + 0.707107i −0.196116 + 0.196116i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.51872 2.51872i 0.610879 0.610879i −0.332296 0.943175i \(-0.607823\pi\)
0.943175 + 0.332296i \(0.107823\pi\)
\(18\) 0 0
\(19\) 0.758530i 0.174019i −0.996207 0.0870094i \(-0.972269\pi\)
0.996207 0.0870094i \(-0.0277310\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.142183 0.142183i −0.0296472 0.0296472i 0.692128 0.721775i \(-0.256673\pi\)
−0.721775 + 0.692128i \(0.756673\pi\)
\(24\) 0 0
\(25\) −4.05876 + 2.92001i −0.811752 + 0.584002i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.35974 0.438192 0.219096 0.975703i \(-0.429689\pi\)
0.219096 + 0.975703i \(0.429689\pi\)
\(30\) 0 0
\(31\) −2.70016 −0.484964 −0.242482 0.970156i \(-0.577961\pi\)
−0.242482 + 0.970156i \(0.577961\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.12283 2.19101i 0.189792 0.370349i
\(36\) 0 0
\(37\) −3.12130 3.12130i −0.513139 0.513139i 0.402348 0.915487i \(-0.368194\pi\)
−0.915487 + 0.402348i \(0.868194\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.42303i 0.846935i 0.905911 + 0.423468i \(0.139187\pi\)
−0.905911 + 0.423468i \(0.860813\pi\)
\(42\) 0 0
\(43\) −1.79109 + 1.79109i −0.273139 + 0.273139i −0.830363 0.557223i \(-0.811867\pi\)
0.557223 + 0.830363i \(0.311867\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.72344 + 2.72344i −0.397255 + 0.397255i −0.877264 0.480009i \(-0.840634\pi\)
0.480009 + 0.877264i \(0.340634\pi\)
\(48\) 0 0
\(49\) 5.78775i 0.826821i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.53548 7.53548i −1.03508 1.03508i −0.999362 0.0357156i \(-0.988629\pi\)
−0.0357156 0.999362i \(-0.511371\pi\)
\(54\) 0 0
\(55\) −10.9183 + 3.51940i −1.47222 + 0.474556i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.73391 0.616303 0.308151 0.951337i \(-0.400290\pi\)
0.308151 + 0.951337i \(0.400290\pi\)
\(60\) 0 0
\(61\) 5.36238 0.686582 0.343291 0.939229i \(-0.388458\pi\)
0.343291 + 0.939229i \(0.388458\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.98998 + 1.01980i 0.246826 + 0.126491i
\(66\) 0 0
\(67\) −3.20584 3.20584i −0.391656 0.391656i 0.483622 0.875277i \(-0.339321\pi\)
−0.875277 + 0.483622i \(0.839321\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.57259i 0.661344i −0.943746 0.330672i \(-0.892725\pi\)
0.943746 0.330672i \(-0.107275\pi\)
\(72\) 0 0
\(73\) −10.3790 + 10.3790i −1.21477 + 1.21477i −0.245327 + 0.969440i \(0.578895\pi\)
−0.969440 + 0.245327i \(0.921105\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.99407 3.99407i 0.455166 0.455166i
\(78\) 0 0
\(79\) 15.2434i 1.71502i −0.514466 0.857511i \(-0.672010\pi\)
0.514466 0.857511i \(-0.327990\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.68060 + 8.68060i 0.952820 + 0.952820i 0.998936 0.0461163i \(-0.0146845\pi\)
−0.0461163 + 0.998936i \(0.514684\pi\)
\(84\) 0 0
\(85\) −7.08831 3.63254i −0.768835 0.394004i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.8667 −1.57586 −0.787932 0.615763i \(-0.788848\pi\)
−0.787932 + 0.615763i \(0.788848\pi\)
\(90\) 0 0
\(91\) −1.10102 −0.115419
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.61433 + 0.520365i −0.165627 + 0.0533883i
\(96\) 0 0
\(97\) −2.00993 2.00993i −0.204077 0.204077i 0.597667 0.801744i \(-0.296095\pi\)
−0.801744 + 0.597667i \(0.796095\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.9142i 1.68303i −0.540235 0.841514i \(-0.681665\pi\)
0.540235 0.841514i \(-0.318335\pi\)
\(102\) 0 0
\(103\) 1.58678 1.58678i 0.156351 0.156351i −0.624597 0.780947i \(-0.714737\pi\)
0.780947 + 0.624597i \(0.214737\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.299369 + 0.299369i −0.0289411 + 0.0289411i −0.721429 0.692488i \(-0.756514\pi\)
0.692488 + 0.721429i \(0.256514\pi\)
\(108\) 0 0
\(109\) 7.22041i 0.691590i 0.938310 + 0.345795i \(0.112391\pi\)
−0.938310 + 0.345795i \(0.887609\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.98107 7.98107i −0.750796 0.750796i 0.223832 0.974628i \(-0.428143\pi\)
−0.974628 + 0.223832i \(0.928143\pi\)
\(114\) 0 0
\(115\) −0.205058 + 0.400138i −0.0191218 + 0.0373131i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.92185 0.359516
\(120\) 0 0
\(121\) −15.3189 −1.39263
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.99885 + 6.63481i 0.804881 + 0.593436i
\(126\) 0 0
\(127\) 3.91374 + 3.91374i 0.347288 + 0.347288i 0.859099 0.511810i \(-0.171025\pi\)
−0.511810 + 0.859099i \(0.671025\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.78460i 0.505403i −0.967544 0.252701i \(-0.918681\pi\)
0.967544 0.252701i \(-0.0813190\pi\)
\(132\) 0 0
\(133\) 0.590547 0.590547i 0.0512069 0.0512069i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.867994 0.867994i 0.0741577 0.0741577i −0.669055 0.743213i \(-0.733301\pi\)
0.743213 + 0.669055i \(0.233301\pi\)
\(138\) 0 0
\(139\) 3.44197i 0.291944i 0.989289 + 0.145972i \(0.0466310\pi\)
−0.989289 + 0.145972i \(0.953369\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.62760 + 3.62760i 0.303355 + 0.303355i
\(144\) 0 0
\(145\) −1.61882 5.02207i −0.134436 0.417060i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.8941 −1.05633 −0.528163 0.849143i \(-0.677119\pi\)
−0.528163 + 0.849143i \(0.677119\pi\)
\(150\) 0 0
\(151\) −21.3913 −1.74080 −0.870401 0.492344i \(-0.836140\pi\)
−0.870401 + 0.492344i \(0.836140\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.85236 + 5.74658i 0.148785 + 0.461576i
\(156\) 0 0
\(157\) 4.05669 + 4.05669i 0.323759 + 0.323759i 0.850207 0.526448i \(-0.176477\pi\)
−0.526448 + 0.850207i \(0.676477\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.221390i 0.0174480i
\(162\) 0 0
\(163\) −4.04609 + 4.04609i −0.316914 + 0.316914i −0.847581 0.530666i \(-0.821942\pi\)
0.530666 + 0.847581i \(0.321942\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.8454 12.8454i 0.994006 0.994006i −0.00597581 0.999982i \(-0.501902\pi\)
0.999982 + 0.00597581i \(0.00190217\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.77705 3.77705i −0.287164 0.287164i 0.548794 0.835958i \(-0.315087\pi\)
−0.835958 + 0.548794i \(0.815087\pi\)
\(174\) 0 0
\(175\) −5.43326 0.886563i −0.410716 0.0670179i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.58934 −0.343024 −0.171512 0.985182i \(-0.554865\pi\)
−0.171512 + 0.985182i \(0.554865\pi\)
\(180\) 0 0
\(181\) −2.61145 −0.194107 −0.0970537 0.995279i \(-0.530942\pi\)
−0.0970537 + 0.995279i \(0.530942\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.50159 + 8.78413i −0.330964 + 0.645822i
\(186\) 0 0
\(187\) −12.9215 12.9215i −0.944915 0.944915i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.6654i 0.771722i −0.922557 0.385861i \(-0.873904\pi\)
0.922557 0.385861i \(-0.126096\pi\)
\(192\) 0 0
\(193\) −8.61898 + 8.61898i −0.620408 + 0.620408i −0.945636 0.325228i \(-0.894559\pi\)
0.325228 + 0.945636i \(0.394559\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.30581 2.30581i 0.164282 0.164282i −0.620178 0.784461i \(-0.712940\pi\)
0.784461 + 0.620178i \(0.212940\pi\)
\(198\) 0 0
\(199\) 6.80773i 0.482587i −0.970452 0.241293i \(-0.922428\pi\)
0.970452 0.241293i \(-0.0775716\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.83715 + 1.83715i 0.128943 + 0.128943i
\(204\) 0 0
\(205\) 11.5415 3.72029i 0.806092 0.259837i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.89141 −0.269174
\(210\) 0 0
\(211\) 14.6035 1.00534 0.502672 0.864477i \(-0.332350\pi\)
0.502672 + 0.864477i \(0.332350\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.04059 + 2.58314i 0.343765 + 0.176169i
\(216\) 0 0
\(217\) −2.10219 2.10219i −0.142706 0.142706i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.56201i 0.239606i
\(222\) 0 0
\(223\) −0.914357 + 0.914357i −0.0612299 + 0.0612299i −0.737059 0.675829i \(-0.763786\pi\)
0.675829 + 0.737059i \(0.263786\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.9786 16.9786i 1.12691 1.12691i 0.136230 0.990677i \(-0.456501\pi\)
0.990677 0.136230i \(-0.0434985\pi\)
\(228\) 0 0
\(229\) 6.92261i 0.457459i 0.973490 + 0.228730i \(0.0734572\pi\)
−0.973490 + 0.228730i \(0.926543\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.53548 4.53548i −0.297129 0.297129i 0.542759 0.839888i \(-0.317380\pi\)
−0.839888 + 0.542759i \(0.817380\pi\)
\(234\) 0 0
\(235\) 7.66446 + 3.92780i 0.499974 + 0.256221i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.77740 −0.438393 −0.219197 0.975681i \(-0.570344\pi\)
−0.219197 + 0.975681i \(0.570344\pi\)
\(240\) 0 0
\(241\) 12.1896 0.785201 0.392600 0.919709i \(-0.371576\pi\)
0.392600 + 0.919709i \(0.371576\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −12.3177 + 3.97050i −0.786948 + 0.253666i
\(246\) 0 0
\(247\) 0.536362 + 0.536362i 0.0341279 + 0.0341279i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.0872i 1.20477i −0.798204 0.602387i \(-0.794216\pi\)
0.798204 0.602387i \(-0.205784\pi\)
\(252\) 0 0
\(253\) −0.729425 + 0.729425i −0.0458586 + 0.0458586i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.57385 2.57385i 0.160552 0.160552i −0.622259 0.782811i \(-0.713785\pi\)
0.782811 + 0.622259i \(0.213785\pi\)
\(258\) 0 0
\(259\) 4.86013i 0.301993i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.1667 + 20.1667i 1.24353 + 1.24353i 0.958526 + 0.285007i \(0.0919958\pi\)
0.285007 + 0.958526i \(0.408004\pi\)
\(264\) 0 0
\(265\) −10.8678 + 21.2067i −0.667603 + 1.30272i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −22.3802 −1.36455 −0.682273 0.731098i \(-0.739008\pi\)
−0.682273 + 0.731098i \(0.739008\pi\)
\(270\) 0 0
\(271\) −4.01955 −0.244170 −0.122085 0.992520i \(-0.538958\pi\)
−0.122085 + 0.992520i \(0.538958\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 14.9802 + 20.8222i 0.903342 + 1.25563i
\(276\) 0 0
\(277\) 13.4025 + 13.4025i 0.805279 + 0.805279i 0.983915 0.178636i \(-0.0571685\pi\)
−0.178636 + 0.983915i \(0.557168\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.49504i 0.208496i −0.994551 0.104248i \(-0.966756\pi\)
0.994551 0.104248i \(-0.0332436\pi\)
\(282\) 0 0
\(283\) 18.9358 18.9358i 1.12562 1.12562i 0.134736 0.990882i \(-0.456982\pi\)
0.990882 0.134736i \(-0.0430185\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.22205 + 4.22205i −0.249220 + 0.249220i
\(288\) 0 0
\(289\) 4.31212i 0.253654i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.65762 + 3.65762i 0.213680 + 0.213680i 0.805829 0.592148i \(-0.201720\pi\)
−0.592148 + 0.805829i \(0.701720\pi\)
\(294\) 0 0
\(295\) −3.24755 10.0749i −0.189079 0.586582i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.201077 0.0116286
\(300\) 0 0
\(301\) −2.78888 −0.160748
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.67868 11.4124i −0.210641 0.653472i
\(306\) 0 0
\(307\) 21.3299 + 21.3299i 1.21736 + 1.21736i 0.968553 + 0.248809i \(0.0800392\pi\)
0.248809 + 0.968553i \(0.419961\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.2396i 0.750749i −0.926873 0.375374i \(-0.877514\pi\)
0.926873 0.375374i \(-0.122486\pi\)
\(312\) 0 0
\(313\) 7.30455 7.30455i 0.412877 0.412877i −0.469862 0.882740i \(-0.655696\pi\)
0.882740 + 0.469862i \(0.155696\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.3214 15.3214i 0.860538 0.860538i −0.130863 0.991401i \(-0.541775\pi\)
0.991401 + 0.130863i \(0.0417746\pi\)
\(318\) 0 0
\(319\) 12.1059i 0.677800i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.91052 1.91052i −0.106304 0.106304i
\(324\) 0 0
\(325\) 0.805217 4.93474i 0.0446654 0.273730i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.24063 −0.233793
\(330\) 0 0
\(331\) 31.9053 1.75367 0.876837 0.480788i \(-0.159649\pi\)
0.876837 + 0.480788i \(0.159649\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.62351 + 9.02204i −0.252610 + 0.492927i
\(336\) 0 0
\(337\) 19.3880 + 19.3880i 1.05613 + 1.05613i 0.998328 + 0.0578015i \(0.0184091\pi\)
0.0578015 + 0.998328i \(0.481591\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 13.8524i 0.750147i
\(342\) 0 0
\(343\) 9.95579 9.95579i 0.537562 0.537562i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.3148 11.3148i 0.607411 0.607411i −0.334857 0.942269i \(-0.608688\pi\)
0.942269 + 0.334857i \(0.108688\pi\)
\(348\) 0 0
\(349\) 7.73939i 0.414280i 0.978311 + 0.207140i \(0.0664156\pi\)
−0.978311 + 0.207140i \(0.933584\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 20.0426 + 20.0426i 1.06676 + 1.06676i 0.997606 + 0.0691538i \(0.0220299\pi\)
0.0691538 + 0.997606i \(0.477970\pi\)
\(354\) 0 0
\(355\) −11.8598 + 3.82289i −0.629451 + 0.202898i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −21.1393 −1.11569 −0.557846 0.829945i \(-0.688372\pi\)
−0.557846 + 0.829945i \(0.688372\pi\)
\(360\) 0 0
\(361\) 18.4246 0.969717
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 29.2091 + 14.9687i 1.52887 + 0.783499i
\(366\) 0 0
\(367\) −24.7535 24.7535i −1.29212 1.29212i −0.933471 0.358654i \(-0.883236\pi\)
−0.358654 0.933471i \(-0.616764\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11.7334i 0.609166i
\(372\) 0 0
\(373\) −12.5014 + 12.5014i −0.647298 + 0.647298i −0.952339 0.305041i \(-0.901330\pi\)
0.305041 + 0.952339i \(0.401330\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.66858 + 1.66858i −0.0859365 + 0.0859365i
\(378\) 0 0
\(379\) 20.2385i 1.03958i −0.854293 0.519792i \(-0.826009\pi\)
0.854293 0.519792i \(-0.173991\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8.41348 8.41348i −0.429909 0.429909i 0.458689 0.888597i \(-0.348319\pi\)
−0.888597 + 0.458689i \(0.848319\pi\)
\(384\) 0 0
\(385\) −11.2403 5.76031i −0.572859 0.293573i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12.5963 −0.638656 −0.319328 0.947644i \(-0.603457\pi\)
−0.319328 + 0.947644i \(0.603457\pi\)
\(390\) 0 0
\(391\) −0.716237 −0.0362217
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −32.4416 + 10.4573i −1.63232 + 0.526162i
\(396\) 0 0
\(397\) −6.90354 6.90354i −0.346479 0.346479i 0.512317 0.858796i \(-0.328787\pi\)
−0.858796 + 0.512317i \(0.828787\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 26.2841i 1.31256i 0.754516 + 0.656282i \(0.227872\pi\)
−0.754516 + 0.656282i \(0.772128\pi\)
\(402\) 0 0
\(403\) 1.90930 1.90930i 0.0951092 0.0951092i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −16.0129 + 16.0129i −0.793729 + 0.793729i
\(408\) 0 0
\(409\) 5.80896i 0.287234i 0.989633 + 0.143617i \(0.0458734\pi\)
−0.989633 + 0.143617i \(0.954127\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.68555 + 3.68555i 0.181354 + 0.181354i
\(414\) 0 0
\(415\) 12.5193 24.4294i 0.614549 1.19919i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5.46952 −0.267203 −0.133602 0.991035i \(-0.542654\pi\)
−0.133602 + 0.991035i \(0.542654\pi\)
\(420\) 0 0
\(421\) 18.8828 0.920289 0.460144 0.887844i \(-0.347798\pi\)
0.460144 + 0.887844i \(0.347798\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.86819 + 17.5776i −0.139127 + 0.852637i
\(426\) 0 0
\(427\) 4.17483 + 4.17483i 0.202034 + 0.202034i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.0150i 0.819586i 0.912179 + 0.409793i \(0.134399\pi\)
−0.912179 + 0.409793i \(0.865601\pi\)
\(432\) 0 0
\(433\) −26.0681 + 26.0681i −1.25275 + 1.25275i −0.298269 + 0.954482i \(0.596409\pi\)
−0.954482 + 0.298269i \(0.903591\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.107850 + 0.107850i −0.00515916 + 0.00515916i
\(438\) 0 0
\(439\) 25.3848i 1.21155i −0.795635 0.605776i \(-0.792863\pi\)
0.795635 0.605776i \(-0.207137\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 21.3418 + 21.3418i 1.01398 + 1.01398i 0.999901 + 0.0140806i \(0.00448213\pi\)
0.0140806 + 0.999901i \(0.495518\pi\)
\(444\) 0 0
\(445\) 10.1988 + 31.6397i 0.483469 + 1.49987i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −28.0453 −1.32354 −0.661769 0.749708i \(-0.730194\pi\)
−0.661769 + 0.749708i \(0.730194\pi\)
\(450\) 0 0
\(451\) 27.8212 1.31005
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.755322 + 2.34324i 0.0354100 + 0.109853i
\(456\) 0 0
\(457\) 23.5875 + 23.5875i 1.10338 + 1.10338i 0.994000 + 0.109376i \(0.0348852\pi\)
0.109376 + 0.994000i \(0.465115\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.61612i 0.261569i 0.991411 + 0.130784i \(0.0417496\pi\)
−0.991411 + 0.130784i \(0.958250\pi\)
\(462\) 0 0
\(463\) −15.4155 + 15.4155i −0.716417 + 0.716417i −0.967870 0.251452i \(-0.919092\pi\)
0.251452 + 0.967870i \(0.419092\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.9097 + 11.9097i −0.551113 + 0.551113i −0.926762 0.375649i \(-0.877420\pi\)
0.375649 + 0.926762i \(0.377420\pi\)
\(468\) 0 0
\(469\) 4.99176i 0.230498i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.18865 + 9.18865i 0.422495 + 0.422495i
\(474\) 0 0
\(475\) 2.21492 + 3.07869i 0.101627 + 0.141260i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 16.6094 0.758902 0.379451 0.925212i \(-0.376113\pi\)
0.379451 + 0.925212i \(0.376113\pi\)
\(480\) 0 0
\(481\) 4.41419 0.201270
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.89875 + 5.65645i −0.131626 + 0.256846i
\(486\) 0 0
\(487\) −6.46072 6.46072i −0.292763 0.292763i 0.545408 0.838171i \(-0.316375\pi\)
−0.838171 + 0.545408i \(0.816375\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 21.8307i 0.985208i 0.870254 + 0.492604i \(0.163955\pi\)
−0.870254 + 0.492604i \(0.836045\pi\)
\(492\) 0 0
\(493\) 5.94351 5.94351i 0.267682 0.267682i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.33849 4.33849i 0.194608 0.194608i
\(498\) 0 0
\(499\) 24.9183i 1.11550i −0.830010 0.557749i \(-0.811665\pi\)
0.830010 0.557749i \(-0.188335\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.7963 + 20.7963i 0.927262 + 0.927262i 0.997528 0.0702659i \(-0.0223848\pi\)
−0.0702659 + 0.997528i \(0.522385\pi\)
\(504\) 0 0
\(505\) −35.9974 + 11.6035i −1.60186 + 0.516347i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.00020 −0.398927 −0.199463 0.979905i \(-0.563920\pi\)
−0.199463 + 0.979905i \(0.563920\pi\)
\(510\) 0 0
\(511\) −16.1609 −0.714917
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.46561 2.28849i −0.196778 0.100843i
\(516\) 0 0
\(517\) 13.9718 + 13.9718i 0.614479 + 0.614479i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.83534i 0.168029i 0.996465 + 0.0840147i \(0.0267743\pi\)
−0.996465 + 0.0840147i \(0.973226\pi\)
\(522\) 0 0
\(523\) 21.4876 21.4876i 0.939589 0.939589i −0.0586875 0.998276i \(-0.518692\pi\)
0.998276 + 0.0586875i \(0.0186915\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.80095 + 6.80095i −0.296254 + 0.296254i
\(528\) 0 0
\(529\) 22.9596i 0.998242i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.83466 3.83466i −0.166098 0.166098i
\(534\) 0 0
\(535\) 0.842500 + 0.431755i 0.0364245 + 0.0186664i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −29.6923 −1.27894
\(540\) 0 0
\(541\) −11.9171 −0.512358 −0.256179 0.966629i \(-0.582464\pi\)
−0.256179 + 0.966629i \(0.582464\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 15.3667 4.95333i 0.658238 0.212177i
\(546\) 0 0
\(547\) 25.0963 + 25.0963i 1.07304 + 1.07304i 0.997113 + 0.0759274i \(0.0241917\pi\)
0.0759274 + 0.997113i \(0.475808\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.78993i 0.0762536i
\(552\) 0 0
\(553\) 11.8677 11.8677i 0.504664 0.504664i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.99097 + 2.99097i −0.126731 + 0.126731i −0.767628 0.640896i \(-0.778563\pi\)
0.640896 + 0.767628i \(0.278563\pi\)
\(558\) 0 0
\(559\) 2.53299i 0.107134i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.91667 3.91667i −0.165068 0.165068i 0.619740 0.784808i \(-0.287238\pi\)
−0.784808 + 0.619740i \(0.787238\pi\)
\(564\) 0 0
\(565\) −11.5104 + 22.4607i −0.484247 + 0.944930i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.3200 0.642249 0.321124 0.947037i \(-0.395939\pi\)
0.321124 + 0.947037i \(0.395939\pi\)
\(570\) 0 0
\(571\) 24.8305 1.03912 0.519561 0.854433i \(-0.326095\pi\)
0.519561 + 0.854433i \(0.326095\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.992261 + 0.161910i 0.0413802 + 0.00675213i
\(576\) 0 0
\(577\) 30.5771 + 30.5771i 1.27294 + 1.27294i 0.944538 + 0.328403i \(0.106510\pi\)
0.328403 + 0.944538i \(0.393490\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 13.5164i 0.560755i
\(582\) 0 0
\(583\) −38.6585 + 38.6585i −1.60107 + 1.60107i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.60293 5.60293i 0.231258 0.231258i −0.581960 0.813217i \(-0.697714\pi\)
0.813217 + 0.581960i \(0.197714\pi\)
\(588\) 0 0
\(589\) 2.04816i 0.0843928i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −23.8695 23.8695i −0.980204 0.980204i 0.0196036 0.999808i \(-0.493760\pi\)
−0.999808 + 0.0196036i \(0.993760\pi\)
\(594\) 0 0
\(595\) −2.69046 8.34662i −0.110298 0.342178i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 21.4255 0.875420 0.437710 0.899116i \(-0.355790\pi\)
0.437710 + 0.899116i \(0.355790\pi\)
\(600\) 0 0
\(601\) 38.8554 1.58494 0.792472 0.609908i \(-0.208794\pi\)
0.792472 + 0.609908i \(0.208794\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.5090 + 32.6022i 0.427253 + 1.32547i
\(606\) 0 0
\(607\) 21.4068 + 21.4068i 0.868874 + 0.868874i 0.992348 0.123474i \(-0.0394035\pi\)
−0.123474 + 0.992348i \(0.539404\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.85153i 0.155816i
\(612\) 0 0
\(613\) 24.7085 24.7085i 0.997967 0.997967i −0.00203135 0.999998i \(-0.500647\pi\)
0.999998 + 0.00203135i \(0.000646600\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.81012 8.81012i 0.354682 0.354682i −0.507166 0.861848i \(-0.669307\pi\)
0.861848 + 0.507166i \(0.169307\pi\)
\(618\) 0 0
\(619\) 29.1781i 1.17276i −0.810034 0.586382i \(-0.800552\pi\)
0.810034 0.586382i \(-0.199448\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11.5743 11.5743i −0.463715 0.463715i
\(624\) 0 0
\(625\) 7.94707 23.7033i 0.317883 0.948130i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.7234 −0.626931
\(630\) 0 0
\(631\) 30.3157 1.20685 0.603425 0.797420i \(-0.293802\pi\)
0.603425 + 0.797420i \(0.293802\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.64446 11.0142i 0.223994 0.437087i
\(636\) 0 0
\(637\) 4.09255 + 4.09255i 0.162153 + 0.162153i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 45.4250i 1.79418i −0.441850 0.897089i \(-0.645678\pi\)
0.441850 0.897089i \(-0.354322\pi\)
\(642\) 0 0
\(643\) 15.9826 15.9826i 0.630291 0.630291i −0.317850 0.948141i \(-0.602961\pi\)
0.948141 + 0.317850i \(0.102961\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.4945 11.4945i 0.451896 0.451896i −0.444087 0.895983i \(-0.646472\pi\)
0.895983 + 0.444087i \(0.146472\pi\)
\(648\) 0 0
\(649\) 24.2859i 0.953305i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.0649 + 12.0649i 0.472138 + 0.472138i 0.902606 0.430468i \(-0.141652\pi\)
−0.430468 + 0.902606i \(0.641652\pi\)
\(654\) 0 0
\(655\) −12.3110 + 3.96834i −0.481030 + 0.155056i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 23.0216 0.896795 0.448398 0.893834i \(-0.351995\pi\)
0.448398 + 0.893834i \(0.351995\pi\)
\(660\) 0 0
\(661\) −19.2309 −0.747994 −0.373997 0.927430i \(-0.622013\pi\)
−0.373997 + 0.927430i \(0.622013\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.66195 0.851697i −0.0644476 0.0330274i
\(666\) 0 0
\(667\) −0.335514 0.335514i −0.0129911 0.0129911i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 27.5100i 1.06201i
\(672\) 0 0
\(673\) 0.471549 0.471549i 0.0181769 0.0181769i −0.697960 0.716137i \(-0.745909\pi\)
0.716137 + 0.697960i \(0.245909\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.6135 + 14.6135i −0.561644 + 0.561644i −0.929774 0.368131i \(-0.879998\pi\)
0.368131 + 0.929774i \(0.379998\pi\)
\(678\) 0 0
\(679\) 3.12963i 0.120104i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.55682 6.55682i −0.250890 0.250890i 0.570446 0.821335i \(-0.306771\pi\)
−0.821335 + 0.570446i \(0.806771\pi\)
\(684\) 0 0
\(685\) −2.44275 1.25184i −0.0933328 0.0478302i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 10.6568 0.405991
\(690\) 0 0
\(691\) 44.9588 1.71032 0.855158 0.518368i \(-0.173460\pi\)
0.855158 + 0.518368i \(0.173460\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.32532 2.36125i 0.277865 0.0895674i
\(696\) 0 0
\(697\) 13.6591 + 13.6591i 0.517375 + 0.517375i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.2722i 1.06783i −0.845539 0.533914i \(-0.820721\pi\)
0.845539 0.533914i \(-0.179279\pi\)
\(702\) 0 0
\(703\) −2.36760 + 2.36760i −0.0892958 + 0.0892958i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 13.1684 13.1684i 0.495250 0.495250i
\(708\) 0 0
\(709\) 41.1125i 1.54401i 0.635614 + 0.772007i \(0.280747\pi\)
−0.635614 + 0.772007i \(0.719253\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.383917 + 0.383917i 0.0143778 + 0.0143778i
\(714\) 0 0
\(715\) 5.23178 10.2090i 0.195657 0.381794i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −34.7951 −1.29764 −0.648819 0.760943i \(-0.724737\pi\)
−0.648819 + 0.760943i \(0.724737\pi\)
\(720\) 0 0
\(721\) 2.47076 0.0920157
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.57760 + 6.89045i −0.355703 + 0.255905i
\(726\) 0 0
\(727\) −0.799528 0.799528i −0.0296529 0.0296529i 0.692125 0.721778i \(-0.256675\pi\)
−0.721778 + 0.692125i \(0.756675\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9.02252i 0.333710i
\(732\) 0 0
\(733\) 9.87358 9.87358i 0.364689 0.364689i −0.500847 0.865536i \(-0.666978\pi\)
0.865536 + 0.500847i \(0.166978\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.4466 + 16.4466i −0.605818 + 0.605818i
\(738\) 0 0
\(739\) 36.3597i 1.33751i 0.743481 + 0.668757i \(0.233173\pi\)
−0.743481 + 0.668757i \(0.766827\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14.8529 + 14.8529i 0.544901 + 0.544901i 0.924962 0.380060i \(-0.124097\pi\)
−0.380060 + 0.924962i \(0.624097\pi\)
\(744\) 0 0
\(745\) 8.84557 + 27.4416i 0.324077 + 1.00538i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.466143 −0.0170325
\(750\) 0 0
\(751\) 27.0024 0.985330 0.492665 0.870219i \(-0.336023\pi\)
0.492665 + 0.870219i \(0.336023\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14.6748 + 45.5257i 0.534071 + 1.65685i
\(756\) 0 0
\(757\) −14.3842 14.3842i −0.522803 0.522803i 0.395614 0.918417i \(-0.370532\pi\)
−0.918417 + 0.395614i \(0.870532\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 16.7167i 0.605980i −0.952994 0.302990i \(-0.902015\pi\)
0.952994 0.302990i \(-0.0979848\pi\)
\(762\) 0 0
\(763\) −5.62139 + 5.62139i −0.203508 + 0.203508i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.34738 + 3.34738i −0.120867 + 0.120867i
\(768\) 0 0
\(769\) 38.3934i 1.38450i −0.721657 0.692251i \(-0.756619\pi\)
0.721657 0.692251i \(-0.243381\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −16.0119 16.0119i −0.575907 0.575907i 0.357866 0.933773i \(-0.383504\pi\)
−0.933773 + 0.357866i \(0.883504\pi\)
\(774\) 0 0
\(775\) 10.9593 7.88451i 0.393670 0.283220i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.11353 0.147383
\(780\) 0 0
\(781\) −28.5885 −1.02298
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.85063 11.4165i 0.208818 0.407474i
\(786\) 0 0
\(787\) −14.2816 14.2816i −0.509084 0.509084i 0.405161 0.914245i \(-0.367215\pi\)
−0.914245 + 0.405161i \(0.867215\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.4272i 0.441860i
\(792\) 0 0
\(793\) −3.79177 + 3.79177i −0.134650 + 0.134650i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.77509 8.77509i 0.310830 0.310830i −0.534401 0.845231i \(-0.679463\pi\)
0.845231 + 0.534401i \(0.179463\pi\)
\(798\) 0 0
\(799\) 13.7192i 0.485350i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 53.2462 + 53.2462i 1.87902 + 1.87902i
\(804\) 0 0
\(805\) −0.471171 + 0.151878i −0.0166066 + 0.00535298i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22.8365 −0.802889 −0.401444 0.915883i \(-0.631492\pi\)
−0.401444 + 0.915883i \(0.631492\pi\)
\(810\) 0 0
\(811\) −15.2844 −0.536707 −0.268353 0.963321i \(-0.586480\pi\)
−0.268353 + 0.963321i \(0.586480\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 11.3867 + 5.83534i 0.398859 + 0.204403i
\(816\) 0 0
\(817\) 1.35860 + 1.35860i 0.0475313 + 0.0475313i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20.5233i 0.716268i 0.933670 + 0.358134i \(0.116587\pi\)
−0.933670 + 0.358134i \(0.883413\pi\)
\(822\) 0 0
\(823\) −28.1214 + 28.1214i −0.980250 + 0.980250i −0.999809 0.0195591i \(-0.993774\pi\)
0.0195591 + 0.999809i \(0.493774\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −4.24626 + 4.24626i −0.147657 + 0.147657i −0.777070 0.629414i \(-0.783295\pi\)
0.629414 + 0.777070i \(0.283295\pi\)
\(828\) 0 0
\(829\) 33.0365i 1.14740i −0.819064 0.573702i \(-0.805507\pi\)
0.819064 0.573702i \(-0.194493\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −14.5777 14.5777i −0.505087 0.505087i
\(834\) 0 0
\(835\) −36.1502 18.5258i −1.25103 0.641113i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 43.4221 1.49910 0.749549 0.661949i \(-0.230271\pi\)
0.749549 + 0.661949i \(0.230271\pi\)
\(840\) 0 0
\(841\) −23.4316 −0.807988
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.12823 + 0.686017i −0.0732135 + 0.0235997i
\(846\) 0 0
\(847\) −11.9264 11.9264i −0.409796 0.409796i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.887591i 0.0304262i
\(852\) 0 0
\(853\) −9.51845 + 9.51845i −0.325906 + 0.325906i −0.851027 0.525122i \(-0.824020\pi\)
0.525122 + 0.851027i \(0.324020\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.44191 6.44191i 0.220051 0.220051i −0.588469 0.808520i \(-0.700269\pi\)
0.808520 + 0.588469i \(0.200269\pi\)
\(858\) 0 0
\(859\) 20.4149i 0.696549i −0.937393 0.348275i \(-0.886768\pi\)
0.937393 0.348275i \(-0.113232\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.49306 2.49306i −0.0848646 0.0848646i 0.663400 0.748265i \(-0.269113\pi\)
−0.748265 + 0.663400i \(0.769113\pi\)
\(864\) 0 0
\(865\) −5.44733 + 10.6296i −0.185215 + 0.361417i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −78.2018 −2.65282
\(870\) 0 0
\(871\) 4.53374 0.153620
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.84050 + 12.1715i 0.0622203 + 0.411470i
\(876\) 0 0
\(877\) −9.95800 9.95800i −0.336258 0.336258i 0.518699 0.854957i \(-0.326417\pi\)
−0.854957 + 0.518699i \(0.826417\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 34.6008i 1.16573i 0.812569 + 0.582865i \(0.198068\pi\)
−0.812569 + 0.582865i \(0.801932\pi\)
\(882\) 0 0
\(883\) −24.0027 + 24.0027i −0.807756 + 0.807756i −0.984294 0.176538i \(-0.943510\pi\)
0.176538 + 0.984294i \(0.443510\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30.5714 30.5714i 1.02649 1.02649i 0.0268490 0.999640i \(-0.491453\pi\)
0.999640 0.0268490i \(-0.00854732\pi\)
\(888\) 0 0
\(889\) 6.09402i 0.204387i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.06581 + 2.06581i 0.0691298 + 0.0691298i
\(894\) 0 0
\(895\) 3.14837 + 9.76720i 0.105238 + 0.326481i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.37167 −0.212507
\(900\) 0 0
\(901\) −37.9595 −1.26461
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.79150 + 5.55777i 0.0595514 + 0.184747i
\(906\) 0 0
\(907\) 5.01428 + 5.01428i 0.166496 + 0.166496i 0.785437 0.618941i \(-0.212438\pi\)
−0.618941 + 0.785437i \(0.712438\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 10.0534i 0.333085i −0.986034 0.166543i \(-0.946740\pi\)
0.986034 0.166543i \(-0.0532604\pi\)
\(912\) 0 0
\(913\) 44.5332 44.5332i 1.47383 1.47383i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.50355 4.50355i 0.148720 0.148720i
\(918\) 0 0
\(919\) 29.5002i 0.973121i 0.873647 + 0.486560i \(0.161749\pi\)
−0.873647 + 0.486560i \(0.838251\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.94041 + 3.94041i 0.129700 + 0.129700i
\(924\) 0 0
\(925\) 21.7829 + 3.55438i 0.716216 + 0.116867i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −37.3370 −1.22499 −0.612494 0.790476i \(-0.709833\pi\)
−0.612494 + 0.790476i \(0.709833\pi\)
\(930\) 0 0
\(931\) −4.39018 −0.143882
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −18.6356 + 36.3644i −0.609450 + 1.18924i
\(936\) 0 0
\(937\) 2.47400 + 2.47400i 0.0808220 + 0.0808220i 0.746362 0.665540i \(-0.231799\pi\)
−0.665540 + 0.746362i \(0.731799\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.85440i 0.158249i 0.996865 + 0.0791245i \(0.0252125\pi\)
−0.996865 + 0.0791245i \(0.974788\pi\)
\(942\) 0 0
\(943\) 0.771062 0.771062i 0.0251092 0.0251092i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33.9352 33.9352i 1.10275 1.10275i 0.108669 0.994078i \(-0.465341\pi\)
0.994078 0.108669i \(-0.0346588\pi\)
\(948\) 0 0
\(949\) 14.6781i 0.476471i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −30.9144 30.9144i −1.00142 1.00142i −0.999999 0.00141682i \(-0.999549\pi\)
−0.00141682 0.999999i \(-0.500451\pi\)
\(954\) 0 0
\(955\) −22.6985 + 7.31666i −0.734506 + 0.236761i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.35154 0.0436435
\(960\) 0 0
\(961\) −23.7091 −0.764810
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 24.2560 + 12.4304i 0.780828 + 0.400150i
\(966\) 0 0
\(967\) −36.9560 36.9560i −1.18842 1.18842i −0.977503 0.210921i \(-0.932354\pi\)
−0.210921 0.977503i \(-0.567646\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 29.8842i 0.959028i −0.877534 0.479514i \(-0.840813\pi\)
0.877534 0.479514i \(-0.159187\pi\)
\(972\) 0 0
\(973\) −2.67972 + 2.67972i −0.0859078 + 0.0859078i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −0.932667 + 0.932667i −0.0298386 + 0.0298386i −0.721869 0.692030i \(-0.756717\pi\)
0.692030 + 0.721869i \(0.256717\pi\)
\(978\) 0 0
\(979\) 76.2689i 2.43756i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −21.3425 21.3425i −0.680720 0.680720i 0.279442 0.960163i \(-0.409850\pi\)
−0.960163 + 0.279442i \(0.909850\pi\)
\(984\) 0 0
\(985\) −6.48914 3.32548i −0.206761 0.105959i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.509325 0.0161956
\(990\) 0 0
\(991\) 31.3268 0.995128 0.497564 0.867427i \(-0.334228\pi\)
0.497564 + 0.867427i \(0.334228\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −14.4884 + 4.67022i −0.459314 + 0.148056i
\(996\) 0 0
\(997\) −28.0676 28.0676i −0.888909 0.888909i 0.105509 0.994418i \(-0.466353\pi\)
−0.994418 + 0.105509i \(0.966353\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.y.b.1457.6 yes 24
3.2 odd 2 2340.2.y.a.1457.7 yes 24
5.3 odd 4 2340.2.y.a.53.7 24
15.8 even 4 inner 2340.2.y.b.53.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.y.a.53.7 24 5.3 odd 4
2340.2.y.a.1457.7 yes 24 3.2 odd 2
2340.2.y.b.53.6 yes 24 15.8 even 4 inner
2340.2.y.b.1457.6 yes 24 1.1 even 1 trivial