L(s) = 1 | + (−0.686 + 2.12i)5-s + (0.778 − 0.778i)7-s + 5.13i·11-s + (−0.707 − 0.707i)13-s + (2.51 + 2.51i)17-s + 0.758i·19-s + (−0.142 + 0.142i)23-s + (−4.05 − 2.92i)25-s + 2.35·29-s − 2.70·31-s + (1.12 + 2.19i)35-s + (−3.12 + 3.12i)37-s − 5.42i·41-s + (−1.79 − 1.79i)43-s + (−2.72 − 2.72i)47-s + ⋯ |
L(s) = 1 | + (−0.306 + 0.951i)5-s + (0.294 − 0.294i)7-s + 1.54i·11-s + (−0.196 − 0.196i)13-s + (0.610 + 0.610i)17-s + 0.174i·19-s + (−0.0296 + 0.0296i)23-s + (−0.811 − 0.584i)25-s + 0.438·29-s − 0.484·31-s + (0.189 + 0.370i)35-s + (−0.513 + 0.513i)37-s − 0.846i·41-s + (−0.273 − 0.273i)43-s + (−0.397 − 0.397i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.767 - 0.640i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.767 - 0.640i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.135005071\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.135005071\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.686 - 2.12i)T \) |
| 13 | \( 1 + (0.707 + 0.707i)T \) |
good | 7 | \( 1 + (-0.778 + 0.778i)T - 7iT^{2} \) |
| 11 | \( 1 - 5.13iT - 11T^{2} \) |
| 17 | \( 1 + (-2.51 - 2.51i)T + 17iT^{2} \) |
| 19 | \( 1 - 0.758iT - 19T^{2} \) |
| 23 | \( 1 + (0.142 - 0.142i)T - 23iT^{2} \) |
| 29 | \( 1 - 2.35T + 29T^{2} \) |
| 31 | \( 1 + 2.70T + 31T^{2} \) |
| 37 | \( 1 + (3.12 - 3.12i)T - 37iT^{2} \) |
| 41 | \( 1 + 5.42iT - 41T^{2} \) |
| 43 | \( 1 + (1.79 + 1.79i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.72 + 2.72i)T + 47iT^{2} \) |
| 53 | \( 1 + (7.53 - 7.53i)T - 53iT^{2} \) |
| 59 | \( 1 - 4.73T + 59T^{2} \) |
| 61 | \( 1 - 5.36T + 61T^{2} \) |
| 67 | \( 1 + (3.20 - 3.20i)T - 67iT^{2} \) |
| 71 | \( 1 - 5.57iT - 71T^{2} \) |
| 73 | \( 1 + (10.3 + 10.3i)T + 73iT^{2} \) |
| 79 | \( 1 - 15.2iT - 79T^{2} \) |
| 83 | \( 1 + (-8.68 + 8.68i)T - 83iT^{2} \) |
| 89 | \( 1 + 14.8T + 89T^{2} \) |
| 97 | \( 1 + (2.00 - 2.00i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.435347131430245421081836459281, −8.349855977306479506241715297042, −7.58949306900821359745905363954, −7.12573018675138870626748097178, −6.33156624397029945017640348045, −5.31920516561995344734142695595, −4.39334891443888667475557120774, −3.62926560086096311449863343516, −2.57813160504481681051732727734, −1.56682061523228085031936099953,
0.38933475465444768005715158561, 1.53637973242715307827272970494, 2.92249257075655250521453430735, 3.77514141719317225518776870204, 4.84318164074413531247519123523, 5.42169993248896120661106479834, 6.22125739377480277169931997585, 7.27154274834328594433268484090, 8.170645593881762276282464291610, 8.560678244953081028793226271763