Properties

Label 2340.2.u.g.577.4
Level $2340$
Weight $2$
Character 2340.577
Analytic conductor $18.685$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(73,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.u (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-2,0,0,0,0,0,-14,0,14,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.31678304256.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 8x^{5} + 32x^{4} - 20x^{3} + 8x^{2} + 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 260)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.4
Root \(-0.285451 - 0.285451i\) of defining polynomial
Character \(\chi\) \(=\) 2340.577
Dual form 2340.2.u.g.73.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.21777 + 0.285451i) q^{5} +1.26613i q^{7} +(-4.21777 - 4.21777i) q^{11} +(2.28545 + 2.78868i) q^{13} +(1.93232 - 1.93232i) q^{17} +(-2.55158 - 2.55158i) q^{19} +(5.21777 + 5.21777i) q^{23} +(4.83704 + 1.26613i) q^{25} -7.16941i q^{29} +(2.78868 - 2.78868i) q^{31} +(-0.361419 + 2.80799i) q^{35} -5.83704i q^{37} +(1.33381 - 1.33381i) q^{41} +(5.65332 + 5.65332i) q^{43} +10.8048i q^{47} +5.39691 q^{49} +(9.27258 - 9.27258i) q^{53} +(-8.15009 - 10.5580i) q^{55} +(2.55158 - 2.55158i) q^{59} +13.8499 q^{61} +(4.27258 + 6.83704i) q^{65} +1.30477 q^{67} +(-8.72745 + 8.72745i) q^{71} -7.64360 q^{73} +(5.34026 - 5.34026i) q^{77} -0.954914i q^{79} +5.13078i q^{83} +(4.83704 - 3.73387i) q^{85} +(-5.31122 + 5.31122i) q^{89} +(-3.53083 + 2.89368i) q^{91} +(-4.93048 - 6.38719i) q^{95} +2.81956 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{5} - 14 q^{11} + 14 q^{13} + 2 q^{19} + 22 q^{23} + 12 q^{25} - 6 q^{31} + 4 q^{35} + 8 q^{41} - 14 q^{43} - 24 q^{49} + 8 q^{53} - 30 q^{55} - 2 q^{59} - 12 q^{61} - 32 q^{65} + 20 q^{67} + 22 q^{71}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.21777 + 0.285451i 0.991818 + 0.127658i
\(6\) 0 0
\(7\) 1.26613i 0.478553i 0.970951 + 0.239277i \(0.0769103\pi\)
−0.970951 + 0.239277i \(0.923090\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.21777 4.21777i −1.27171 1.27171i −0.945192 0.326514i \(-0.894126\pi\)
−0.326514 0.945192i \(-0.605874\pi\)
\(12\) 0 0
\(13\) 2.28545 + 2.78868i 0.633870 + 0.773439i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.93232 1.93232i 0.468657 0.468657i −0.432822 0.901479i \(-0.642482\pi\)
0.901479 + 0.432822i \(0.142482\pi\)
\(18\) 0 0
\(19\) −2.55158 2.55158i −0.585373 0.585373i 0.351001 0.936375i \(-0.385841\pi\)
−0.936375 + 0.351001i \(0.885841\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.21777 + 5.21777i 1.08798 + 1.08798i 0.995736 + 0.0922445i \(0.0294041\pi\)
0.0922445 + 0.995736i \(0.470596\pi\)
\(24\) 0 0
\(25\) 4.83704 + 1.26613i 0.967407 + 0.253226i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.16941i 1.33133i −0.746252 0.665663i \(-0.768149\pi\)
0.746252 0.665663i \(-0.231851\pi\)
\(30\) 0 0
\(31\) 2.78868 2.78868i 0.500861 0.500861i −0.410844 0.911705i \(-0.634766\pi\)
0.911705 + 0.410844i \(0.134766\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.361419 + 2.80799i −0.0610910 + 0.474638i
\(36\) 0 0
\(37\) 5.83704i 0.959603i −0.877377 0.479801i \(-0.840709\pi\)
0.877377 0.479801i \(-0.159291\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.33381 1.33381i 0.208306 0.208306i −0.595241 0.803547i \(-0.702943\pi\)
0.803547 + 0.595241i \(0.202943\pi\)
\(42\) 0 0
\(43\) 5.65332 + 5.65332i 0.862123 + 0.862123i 0.991584 0.129461i \(-0.0413248\pi\)
−0.129461 + 0.991584i \(0.541325\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.8048i 1.57605i 0.615644 + 0.788024i \(0.288896\pi\)
−0.615644 + 0.788024i \(0.711104\pi\)
\(48\) 0 0
\(49\) 5.39691 0.770987
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.27258 9.27258i 1.27369 1.27369i 0.329548 0.944139i \(-0.393104\pi\)
0.944139 0.329548i \(-0.106896\pi\)
\(54\) 0 0
\(55\) −8.15009 10.5580i −1.09896 1.42364i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.55158 2.55158i 0.332188 0.332188i −0.521229 0.853417i \(-0.674526\pi\)
0.853417 + 0.521229i \(0.174526\pi\)
\(60\) 0 0
\(61\) 13.8499 1.77330 0.886651 0.462439i \(-0.153026\pi\)
0.886651 + 0.462439i \(0.153026\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.27258 + 6.83704i 0.529948 + 0.848030i
\(66\) 0 0
\(67\) 1.30477 0.159403 0.0797015 0.996819i \(-0.474603\pi\)
0.0797015 + 0.996819i \(0.474603\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.72745 + 8.72745i −1.03576 + 1.03576i −0.0364208 + 0.999337i \(0.511596\pi\)
−0.999337 + 0.0364208i \(0.988404\pi\)
\(72\) 0 0
\(73\) −7.64360 −0.894615 −0.447308 0.894380i \(-0.647617\pi\)
−0.447308 + 0.894380i \(0.647617\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.34026 5.34026i 0.608579 0.608579i
\(78\) 0 0
\(79\) 0.954914i 0.107436i −0.998556 0.0537181i \(-0.982893\pi\)
0.998556 0.0537181i \(-0.0171072\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.13078i 0.563176i 0.959535 + 0.281588i \(0.0908611\pi\)
−0.959535 + 0.281588i \(0.909139\pi\)
\(84\) 0 0
\(85\) 4.83704 3.73387i 0.524650 0.404995i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.31122 + 5.31122i −0.562988 + 0.562988i −0.930155 0.367167i \(-0.880328\pi\)
0.367167 + 0.930155i \(0.380328\pi\)
\(90\) 0 0
\(91\) −3.53083 + 2.89368i −0.370132 + 0.303341i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.93048 6.38719i −0.505857 0.655312i
\(96\) 0 0
\(97\) 2.81956 0.286283 0.143141 0.989702i \(-0.454280\pi\)
0.143141 + 0.989702i \(0.454280\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.27716i 0.127082i −0.997979 0.0635412i \(-0.979761\pi\)
0.997979 0.0635412i \(-0.0202394\pi\)
\(102\) 0 0
\(103\) 0.313060 + 0.313060i 0.0308467 + 0.0308467i 0.722362 0.691515i \(-0.243057\pi\)
−0.691515 + 0.722362i \(0.743057\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.19016 7.19016i −0.695099 0.695099i 0.268250 0.963349i \(-0.413555\pi\)
−0.963349 + 0.268250i \(0.913555\pi\)
\(108\) 0 0
\(109\) 3.07413 + 3.07413i 0.294448 + 0.294448i 0.838834 0.544387i \(-0.183238\pi\)
−0.544387 + 0.838834i \(0.683238\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.06310 + 9.06310i −0.852585 + 0.852585i −0.990451 0.137866i \(-0.955976\pi\)
0.137866 + 0.990451i \(0.455976\pi\)
\(114\) 0 0
\(115\) 10.0824 + 13.0613i 0.940190 + 1.21797i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.44658 + 2.44658i 0.224277 + 0.224277i
\(120\) 0 0
\(121\) 24.5792i 2.23447i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.3660 + 4.18873i 0.927166 + 0.374652i
\(126\) 0 0
\(127\) 6.88396 6.88396i 0.610853 0.610853i −0.332315 0.943168i \(-0.607830\pi\)
0.943168 + 0.332315i \(0.107830\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.193437 −0.0169007 −0.00845036 0.999964i \(-0.502690\pi\)
−0.00845036 + 0.999964i \(0.502690\pi\)
\(132\) 0 0
\(133\) 3.23064 3.23064i 0.280132 0.280132i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.03864i 0.345044i −0.985006 0.172522i \(-0.944808\pi\)
0.985006 0.172522i \(-0.0551916\pi\)
\(138\) 0 0
\(139\) 2.57090i 0.218061i −0.994038 0.109031i \(-0.965225\pi\)
0.994038 0.109031i \(-0.0347746\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.12249 21.4015i 0.177491 1.78968i
\(144\) 0 0
\(145\) 2.04652 15.9001i 0.169954 1.32043i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.898264 0.898264i −0.0735887 0.0735887i 0.669354 0.742943i \(-0.266571\pi\)
−0.742943 + 0.669354i \(0.766571\pi\)
\(150\) 0 0
\(151\) −7.58564 7.58564i −0.617311 0.617311i 0.327530 0.944841i \(-0.393784\pi\)
−0.944841 + 0.327530i \(0.893784\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.98068 5.38862i 0.560702 0.432824i
\(156\) 0 0
\(157\) −5.36142 5.36142i −0.427888 0.427888i 0.460020 0.887908i \(-0.347842\pi\)
−0.887908 + 0.460020i \(0.847842\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.60639 + 6.60639i −0.520657 + 0.520657i
\(162\) 0 0
\(163\) 16.7883 1.31496 0.657479 0.753473i \(-0.271623\pi\)
0.657479 + 0.753473i \(0.271623\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.2790i 1.33709i −0.743671 0.668546i \(-0.766917\pi\)
0.743671 0.668546i \(-0.233083\pi\)
\(168\) 0 0
\(169\) −2.55342 + 12.7468i −0.196417 + 0.980520i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.52582 + 4.52582i 0.344091 + 0.344091i 0.857903 0.513812i \(-0.171767\pi\)
−0.513812 + 0.857903i \(0.671767\pi\)
\(174\) 0 0
\(175\) −1.60309 + 6.12433i −0.121182 + 0.462956i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.01935 0.524651 0.262325 0.964980i \(-0.415511\pi\)
0.262325 + 0.964980i \(0.415511\pi\)
\(180\) 0 0
\(181\) 3.02116i 0.224561i −0.993677 0.112281i \(-0.964184\pi\)
0.993677 0.112281i \(-0.0358155\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.66619 12.9452i 0.122501 0.951751i
\(186\) 0 0
\(187\) −16.3002 −1.19199
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.916276 0.0662994 0.0331497 0.999450i \(-0.489446\pi\)
0.0331497 + 0.999450i \(0.489446\pi\)
\(192\) 0 0
\(193\) 15.0580 1.08390 0.541949 0.840412i \(-0.317687\pi\)
0.541949 + 0.840412i \(0.317687\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.56445 0.396451 0.198225 0.980156i \(-0.436482\pi\)
0.198225 + 0.980156i \(0.436482\pi\)
\(198\) 0 0
\(199\) 16.2616 1.15275 0.576375 0.817185i \(-0.304467\pi\)
0.576375 + 0.817185i \(0.304467\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9.07743 0.637111
\(204\) 0 0
\(205\) 3.33883 2.57735i 0.233194 0.180010i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 21.5240i 1.48885i
\(210\) 0 0
\(211\) −19.4383 −1.33819 −0.669094 0.743177i \(-0.733318\pi\)
−0.669094 + 0.743177i \(0.733318\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 10.9240 + 14.1515i 0.745013 + 0.965126i
\(216\) 0 0
\(217\) 3.53083 + 3.53083i 0.239689 + 0.239689i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.80485 + 0.972392i 0.659545 + 0.0654101i
\(222\) 0 0
\(223\) 3.60496i 0.241406i −0.992689 0.120703i \(-0.961485\pi\)
0.992689 0.120703i \(-0.0385149\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −24.4374 −1.62197 −0.810984 0.585068i \(-0.801068\pi\)
−0.810984 + 0.585068i \(0.801068\pi\)
\(228\) 0 0
\(229\) 9.46315 9.46315i 0.625343 0.625343i −0.321550 0.946893i \(-0.604204\pi\)
0.946893 + 0.321550i \(0.104204\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.80011 + 1.80011i 0.117929 + 0.117929i 0.763609 0.645679i \(-0.223426\pi\)
−0.645679 + 0.763609i \(0.723426\pi\)
\(234\) 0 0
\(235\) −3.08426 + 23.9627i −0.201195 + 1.56315i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.0999 + 13.0999i 0.847362 + 0.847362i 0.989803 0.142441i \(-0.0454953\pi\)
−0.142441 + 0.989803i \(0.545495\pi\)
\(240\) 0 0
\(241\) −13.2371 13.2371i −0.852676 0.852676i 0.137786 0.990462i \(-0.456001\pi\)
−0.990462 + 0.137786i \(0.956001\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 11.9691 + 1.54055i 0.764679 + 0.0984224i
\(246\) 0 0
\(247\) 1.28402 12.9471i 0.0817002 0.823802i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.62612i 0.291998i −0.989285 0.145999i \(-0.953360\pi\)
0.989285 0.145999i \(-0.0466396\pi\)
\(252\) 0 0
\(253\) 44.0148i 2.76718i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.55342 4.55342i 0.284035 0.284035i −0.550681 0.834716i \(-0.685632\pi\)
0.834716 + 0.550681i \(0.185632\pi\)
\(258\) 0 0
\(259\) 7.39046 0.459221
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.72100 2.72100i 0.167784 0.167784i −0.618221 0.786005i \(-0.712146\pi\)
0.786005 + 0.618221i \(0.212146\pi\)
\(264\) 0 0
\(265\) 23.2114 17.9176i 1.42586 1.10067i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 11.6870i 0.712567i 0.934378 + 0.356284i \(0.115956\pi\)
−0.934378 + 0.356284i \(0.884044\pi\)
\(270\) 0 0
\(271\) −13.9660 13.9660i −0.848372 0.848372i 0.141558 0.989930i \(-0.454789\pi\)
−0.989930 + 0.141558i \(0.954789\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15.0613 25.7418i −0.908228 1.55229i
\(276\) 0 0
\(277\) 1.09672 1.09672i 0.0658954 0.0658954i −0.673391 0.739286i \(-0.735163\pi\)
0.739286 + 0.673391i \(0.235163\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8.62755 + 8.62755i 0.514677 + 0.514677i 0.915956 0.401279i \(-0.131434\pi\)
−0.401279 + 0.915956i \(0.631434\pi\)
\(282\) 0 0
\(283\) 7.50507 + 7.50507i 0.446130 + 0.446130i 0.894066 0.447936i \(-0.147841\pi\)
−0.447936 + 0.894066i \(0.647841\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.68878 + 1.68878i 0.0996856 + 0.0996856i
\(288\) 0 0
\(289\) 9.53226i 0.560721i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −21.0341 −1.22882 −0.614411 0.788986i \(-0.710606\pi\)
−0.614411 + 0.788986i \(0.710606\pi\)
\(294\) 0 0
\(295\) 6.38719 4.93048i 0.371876 0.287064i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.62571 + 26.4756i −0.151849 + 1.53113i
\(300\) 0 0
\(301\) −7.15785 + 7.15785i −0.412572 + 0.412572i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 30.7160 + 3.95348i 1.75879 + 0.226376i
\(306\) 0 0
\(307\) 13.7984i 0.787516i 0.919214 + 0.393758i \(0.128825\pi\)
−0.919214 + 0.393758i \(0.871175\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 19.9743i 1.13264i −0.824187 0.566318i \(-0.808367\pi\)
0.824187 0.566318i \(-0.191633\pi\)
\(312\) 0 0
\(313\) −4.92587 + 4.92587i −0.278427 + 0.278427i −0.832481 0.554054i \(-0.813080\pi\)
0.554054 + 0.832481i \(0.313080\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.7146 −0.657956 −0.328978 0.944338i \(-0.606704\pi\)
−0.328978 + 0.944338i \(0.606704\pi\)
\(318\) 0 0
\(319\) −30.2390 + 30.2390i −1.69306 + 1.69306i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −9.86096 −0.548679
\(324\) 0 0
\(325\) 7.52398 + 16.3826i 0.417355 + 0.908744i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −13.6804 −0.754223
\(330\) 0 0
\(331\) −4.94061 + 4.94061i −0.271561 + 0.271561i −0.829728 0.558168i \(-0.811505\pi\)
0.558168 + 0.829728i \(0.311505\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.89368 + 0.372448i 0.158099 + 0.0203490i
\(336\) 0 0
\(337\) −8.67909 + 8.67909i −0.472780 + 0.472780i −0.902813 0.430033i \(-0.858502\pi\)
0.430033 + 0.902813i \(0.358502\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −23.5240 −1.27390
\(342\) 0 0
\(343\) 15.6961i 0.847511i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −19.0627 19.0627i −1.02334 1.02334i −0.999721 0.0236177i \(-0.992482\pi\)
−0.0236177 0.999721i \(-0.507518\pi\)
\(348\) 0 0
\(349\) 2.00645 2.00645i 0.107403 0.107403i −0.651363 0.758766i \(-0.725803\pi\)
0.758766 + 0.651363i \(0.225803\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.41162i 0.128358i −0.997938 0.0641788i \(-0.979557\pi\)
0.997938 0.0641788i \(-0.0204428\pi\)
\(354\) 0 0
\(355\) −21.8468 + 16.8642i −1.15951 + 0.895061i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.92546 + 1.92546i −0.101622 + 0.101622i −0.756090 0.654468i \(-0.772893\pi\)
0.654468 + 0.756090i \(0.272893\pi\)
\(360\) 0 0
\(361\) 5.97884i 0.314676i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −16.9518 2.18187i −0.887296 0.114205i
\(366\) 0 0
\(367\) −16.8435 16.8435i −0.879224 0.879224i 0.114230 0.993454i \(-0.463560\pi\)
−0.993454 + 0.114230i \(0.963560\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11.7403 + 11.7403i 0.609527 + 0.609527i
\(372\) 0 0
\(373\) −20.4388 + 20.4388i −1.05828 + 1.05828i −0.0600904 + 0.998193i \(0.519139\pi\)
−0.998193 + 0.0600904i \(0.980861\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.9932 16.3853i 1.02970 0.843888i
\(378\) 0 0
\(379\) −15.7841 15.7841i −0.810775 0.810775i 0.173975 0.984750i \(-0.444339\pi\)
−0.984750 + 0.173975i \(0.944339\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 21.7432i 1.11102i 0.831508 + 0.555512i \(0.187478\pi\)
−0.831508 + 0.555512i \(0.812522\pi\)
\(384\) 0 0
\(385\) 13.3679 10.3191i 0.681290 0.525910i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −17.9227 −0.908718 −0.454359 0.890819i \(-0.650132\pi\)
−0.454359 + 0.890819i \(0.650132\pi\)
\(390\) 0 0
\(391\) 20.1648 1.01978
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.272581 2.11778i 0.0137151 0.106557i
\(396\) 0 0
\(397\) 33.9632i 1.70457i 0.523081 + 0.852283i \(0.324782\pi\)
−0.523081 + 0.852283i \(0.675218\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15.0857 15.0857i −0.753343 0.753343i 0.221758 0.975102i \(-0.428820\pi\)
−0.975102 + 0.221758i \(0.928820\pi\)
\(402\) 0 0
\(403\) 14.1501 + 1.40333i 0.704866 + 0.0699048i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −24.6193 + 24.6193i −1.22033 + 1.22033i
\(408\) 0 0
\(409\) 11.7141 + 11.7141i 0.579227 + 0.579227i 0.934690 0.355463i \(-0.115677\pi\)
−0.355463 + 0.934690i \(0.615677\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.23064 + 3.23064i 0.158970 + 0.158970i
\(414\) 0 0
\(415\) −1.46459 + 11.3789i −0.0718937 + 0.558568i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.2486i 0.647234i 0.946188 + 0.323617i \(0.104899\pi\)
−0.946188 + 0.323617i \(0.895101\pi\)
\(420\) 0 0
\(421\) −6.17729 + 6.17729i −0.301063 + 0.301063i −0.841430 0.540367i \(-0.818286\pi\)
0.540367 + 0.841430i \(0.318286\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 11.7933 6.90013i 0.572058 0.334706i
\(426\) 0 0
\(427\) 17.5358i 0.848619i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.25641 + 4.25641i −0.205024 + 0.205024i −0.802149 0.597124i \(-0.796310\pi\)
0.597124 + 0.802149i \(0.296310\pi\)
\(432\) 0 0
\(433\) −27.2579 27.2579i −1.30993 1.30993i −0.921463 0.388467i \(-0.873005\pi\)
−0.388467 0.921463i \(-0.626995\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 26.6272i 1.27375i
\(438\) 0 0
\(439\) −24.2063 −1.15531 −0.577653 0.816283i \(-0.696031\pi\)
−0.577653 + 0.816283i \(0.696031\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.84991 9.84991i 0.467983 0.467983i −0.433277 0.901261i \(-0.642643\pi\)
0.901261 + 0.433277i \(0.142643\pi\)
\(444\) 0 0
\(445\) −13.2952 + 10.2630i −0.630252 + 0.486512i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12.7067 + 12.7067i −0.599666 + 0.599666i −0.940224 0.340558i \(-0.889384\pi\)
0.340558 + 0.940224i \(0.389384\pi\)
\(450\) 0 0
\(451\) −11.2514 −0.529809
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.65659 + 5.40965i −0.405827 + 0.253608i
\(456\) 0 0
\(457\) 10.4226 0.487551 0.243775 0.969832i \(-0.421614\pi\)
0.243775 + 0.969832i \(0.421614\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 23.2616 23.2616i 1.08340 1.08340i 0.0872084 0.996190i \(-0.472205\pi\)
0.996190 0.0872084i \(-0.0277946\pi\)
\(462\) 0 0
\(463\) 2.36644 0.109978 0.0549888 0.998487i \(-0.482488\pi\)
0.0549888 + 0.998487i \(0.482488\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −22.6648 + 22.6648i −1.04880 + 1.04880i −0.0500547 + 0.998746i \(0.515940\pi\)
−0.998746 + 0.0500547i \(0.984060\pi\)
\(468\) 0 0
\(469\) 1.65201i 0.0762828i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 47.6888i 2.19274i
\(474\) 0 0
\(475\) −9.11146 15.5727i −0.418062 0.714526i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.74861 1.74861i 0.0798958 0.0798958i −0.666030 0.745925i \(-0.732008\pi\)
0.745925 + 0.666030i \(0.232008\pi\)
\(480\) 0 0
\(481\) 16.2776 13.3403i 0.742195 0.608263i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.25314 + 0.804846i 0.283940 + 0.0365462i
\(486\) 0 0
\(487\) −14.3822 −0.651720 −0.325860 0.945418i \(-0.605654\pi\)
−0.325860 + 0.945418i \(0.605654\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.4770i 0.608206i −0.952639 0.304103i \(-0.901643\pi\)
0.952639 0.304103i \(-0.0983568\pi\)
\(492\) 0 0
\(493\) −13.8536 13.8536i −0.623935 0.623935i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −11.0501 11.0501i −0.495665 0.495665i
\(498\) 0 0
\(499\) −19.7644 19.7644i −0.884775 0.884775i 0.109241 0.994015i \(-0.465158\pi\)
−0.994015 + 0.109241i \(0.965158\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.04181 6.04181i 0.269391 0.269391i −0.559464 0.828855i \(-0.688993\pi\)
0.828855 + 0.559464i \(0.188993\pi\)
\(504\) 0 0
\(505\) 0.364567 2.83245i 0.0162230 0.126043i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 13.1677 + 13.1677i 0.583648 + 0.583648i 0.935904 0.352256i \(-0.114585\pi\)
−0.352256 + 0.935904i \(0.614585\pi\)
\(510\) 0 0
\(511\) 9.67781i 0.428121i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.604932 + 0.783659i 0.0266565 + 0.0345321i
\(516\) 0 0
\(517\) 45.5724 45.5724i 2.00427 2.00427i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −11.8720 −0.520121 −0.260061 0.965592i \(-0.583743\pi\)
−0.260061 + 0.965592i \(0.583743\pi\)
\(522\) 0 0
\(523\) 28.9954 28.9954i 1.26788 1.26788i 0.320702 0.947180i \(-0.396081\pi\)
0.947180 0.320702i \(-0.103919\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.7772i 0.469464i
\(528\) 0 0
\(529\) 31.4503i 1.36740i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.76792 + 0.671206i 0.293151 + 0.0290732i
\(534\) 0 0
\(535\) −13.8937 17.9986i −0.600678 0.778147i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −22.7629 22.7629i −0.980469 0.980469i
\(540\) 0 0
\(541\) −4.93375 4.93375i −0.212119 0.212119i 0.593048 0.805167i \(-0.297924\pi\)
−0.805167 + 0.593048i \(0.797924\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.94020 + 7.69523i 0.254450 + 0.329627i
\(546\) 0 0
\(547\) −19.6257 19.6257i −0.839135 0.839135i 0.149610 0.988745i \(-0.452198\pi\)
−0.988745 + 0.149610i \(0.952198\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −18.2934 + 18.2934i −0.779323 + 0.779323i
\(552\) 0 0
\(553\) 1.20905 0.0514139
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 31.5792i 1.33805i 0.743238 + 0.669027i \(0.233289\pi\)
−0.743238 + 0.669027i \(0.766711\pi\)
\(558\) 0 0
\(559\) −2.84489 + 28.6857i −0.120326 + 1.21327i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 21.3660 + 21.3660i 0.900471 + 0.900471i 0.995477 0.0950060i \(-0.0302870\pi\)
−0.0950060 + 0.995477i \(0.530287\pi\)
\(564\) 0 0
\(565\) −22.6870 + 17.5128i −0.954448 + 0.736770i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −41.8436 −1.75418 −0.877088 0.480329i \(-0.840517\pi\)
−0.877088 + 0.480329i \(0.840517\pi\)
\(570\) 0 0
\(571\) 22.5809i 0.944983i −0.881335 0.472491i \(-0.843355\pi\)
0.881335 0.472491i \(-0.156645\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.6322 + 31.8449i 0.777015 + 1.32803i
\(576\) 0 0
\(577\) −23.6436 −0.984296 −0.492148 0.870512i \(-0.663788\pi\)
−0.492148 + 0.870512i \(0.663788\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6.49624 −0.269510
\(582\) 0 0
\(583\) −78.2193 −3.23951
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 37.8370 1.56170 0.780851 0.624718i \(-0.214786\pi\)
0.780851 + 0.624718i \(0.214786\pi\)
\(588\) 0 0
\(589\) −14.2311 −0.586381
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.64547 −0.149701 −0.0748507 0.997195i \(-0.523848\pi\)
−0.0748507 + 0.997195i \(0.523848\pi\)
\(594\) 0 0
\(595\) 4.72757 + 6.12433i 0.193812 + 0.251073i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 25.0451i 1.02331i 0.859190 + 0.511657i \(0.170968\pi\)
−0.859190 + 0.511657i \(0.829032\pi\)
\(600\) 0 0
\(601\) 4.47132 0.182389 0.0911945 0.995833i \(-0.470932\pi\)
0.0911945 + 0.995833i \(0.470932\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.01617 + 54.5111i −0.285248 + 2.21619i
\(606\) 0 0
\(607\) −3.24538 3.24538i −0.131726 0.131726i 0.638170 0.769896i \(-0.279692\pi\)
−0.769896 + 0.638170i \(0.779692\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −30.1312 + 24.6940i −1.21898 + 0.999010i
\(612\) 0 0
\(613\) 47.3997i 1.91445i 0.289337 + 0.957227i \(0.406565\pi\)
−0.289337 + 0.957227i \(0.593435\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.45402 −0.0585366 −0.0292683 0.999572i \(-0.509318\pi\)
−0.0292683 + 0.999572i \(0.509318\pi\)
\(618\) 0 0
\(619\) 11.7229 11.7229i 0.471182 0.471182i −0.431115 0.902297i \(-0.641880\pi\)
0.902297 + 0.431115i \(0.141880\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.72471 6.72471i −0.269420 0.269420i
\(624\) 0 0
\(625\) 21.7938 + 12.2487i 0.871753 + 0.489946i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −11.2790 11.2790i −0.449724 0.449724i
\(630\) 0 0
\(631\) 21.2758 + 21.2758i 0.846975 + 0.846975i 0.989754 0.142780i \(-0.0456041\pi\)
−0.142780 + 0.989754i \(0.545604\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.2321 13.3020i 0.683835 0.527875i
\(636\) 0 0
\(637\) 12.3344 + 15.0502i 0.488706 + 0.596312i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18.2716i 0.721684i 0.932627 + 0.360842i \(0.117511\pi\)
−0.932627 + 0.360842i \(0.882489\pi\)
\(642\) 0 0
\(643\) 27.6308i 1.08965i 0.838550 + 0.544825i \(0.183404\pi\)
−0.838550 + 0.544825i \(0.816596\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.6648 22.6648i 0.891045 0.891045i −0.103577 0.994621i \(-0.533029\pi\)
0.994621 + 0.103577i \(0.0330288\pi\)
\(648\) 0 0
\(649\) −21.5240 −0.844891
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.3338 + 17.3338i −0.678324 + 0.678324i −0.959621 0.281296i \(-0.909236\pi\)
0.281296 + 0.959621i \(0.409236\pi\)
\(654\) 0 0
\(655\) −0.429000 0.0552170i −0.0167624 0.00215751i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 22.5065i 0.876730i 0.898797 + 0.438365i \(0.144442\pi\)
−0.898797 + 0.438365i \(0.855558\pi\)
\(660\) 0 0
\(661\) −8.66806 8.66806i −0.337148 0.337148i 0.518145 0.855293i \(-0.326623\pi\)
−0.855293 + 0.518145i \(0.826623\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.08702 6.24264i 0.313601 0.242079i
\(666\) 0 0
\(667\) 37.4084 37.4084i 1.44846 1.44846i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −58.4159 58.4159i −2.25512 2.25512i
\(672\) 0 0
\(673\) 9.10360 + 9.10360i 0.350918 + 0.350918i 0.860451 0.509533i \(-0.170182\pi\)
−0.509533 + 0.860451i \(0.670182\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.29832 + 9.29832i 0.357364 + 0.357364i 0.862840 0.505477i \(-0.168683\pi\)
−0.505477 + 0.862840i \(0.668683\pi\)
\(678\) 0 0
\(679\) 3.56993i 0.137001i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −10.8177 −0.413927 −0.206964 0.978349i \(-0.566358\pi\)
−0.206964 + 0.978349i \(0.566358\pi\)
\(684\) 0 0
\(685\) 1.15283 8.95678i 0.0440475 0.342221i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 47.0503 + 4.66619i 1.79247 + 0.177768i
\(690\) 0 0
\(691\) −0.121054 + 0.121054i −0.00460512 + 0.00460512i −0.709406 0.704800i \(-0.751037\pi\)
0.704800 + 0.709406i \(0.251037\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.733868 5.70168i 0.0278372 0.216277i
\(696\) 0 0
\(697\) 5.15470i 0.195248i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.15470i 0.0436125i 0.999762 + 0.0218063i \(0.00694170\pi\)
−0.999762 + 0.0218063i \(0.993058\pi\)
\(702\) 0 0
\(703\) −14.8937 + 14.8937i −0.561726 + 0.561726i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.61706 0.0608156
\(708\) 0 0
\(709\) −37.1464 + 37.1464i −1.39506 + 1.39506i −0.581561 + 0.813503i \(0.697558\pi\)
−0.813503 + 0.581561i \(0.802442\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 29.1014 1.08985
\(714\) 0 0
\(715\) 10.8163 46.8578i 0.404506 1.75238i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 13.4383 0.501165 0.250582 0.968095i \(-0.419378\pi\)
0.250582 + 0.968095i \(0.419378\pi\)
\(720\) 0 0
\(721\) −0.396375 + 0.396375i −0.0147618 + 0.0147618i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 9.07743 34.6787i 0.337127 1.28793i
\(726\) 0 0
\(727\) −28.7860 + 28.7860i −1.06761 + 1.06761i −0.0700702 + 0.997542i \(0.522322\pi\)
−0.997542 + 0.0700702i \(0.977678\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 21.8481 0.808080
\(732\) 0 0
\(733\) 28.5996i 1.05635i −0.849136 0.528174i \(-0.822877\pi\)
0.849136 0.528174i \(-0.177123\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.50322 5.50322i −0.202714 0.202714i
\(738\) 0 0
\(739\) 11.0484 11.0484i 0.406420 0.406420i −0.474068 0.880488i \(-0.657215\pi\)
0.880488 + 0.474068i \(0.157215\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.7882i 0.432466i −0.976342 0.216233i \(-0.930623\pi\)
0.976342 0.216233i \(-0.0693771\pi\)
\(744\) 0 0
\(745\) −1.73574 2.24856i −0.0635924 0.0823808i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.10370 9.10370i 0.332642 0.332642i
\(750\) 0 0
\(751\) 30.3583i 1.10779i 0.832587 + 0.553895i \(0.186859\pi\)
−0.832587 + 0.553895i \(0.813141\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −14.6579 18.9886i −0.533456 0.691065i
\(756\) 0 0
\(757\) 19.1677 + 19.1677i 0.696662 + 0.696662i 0.963689 0.267027i \(-0.0860414\pi\)
−0.267027 + 0.963689i \(0.586041\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12.2165 12.2165i −0.442847 0.442847i 0.450121 0.892968i \(-0.351381\pi\)
−0.892968 + 0.450121i \(0.851381\pi\)
\(762\) 0 0
\(763\) −3.89225 + 3.89225i −0.140909 + 0.140909i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.9471 + 1.28402i 0.467491 + 0.0463632i
\(768\) 0 0
\(769\) −23.5875 23.5875i −0.850586 0.850586i 0.139619 0.990205i \(-0.455412\pi\)
−0.990205 + 0.139619i \(0.955412\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 31.8600i 1.14592i −0.819582 0.572962i \(-0.805794\pi\)
0.819582 0.572962i \(-0.194206\pi\)
\(774\) 0 0
\(775\) 17.0198 9.95809i 0.611368 0.357705i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.80666 −0.243874
\(780\) 0 0
\(781\) 73.6208 2.63436
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10.3600 13.4208i −0.369764 0.479010i
\(786\) 0 0
\(787\) 28.3333i 1.00997i 0.863127 + 0.504987i \(0.168503\pi\)
−0.863127 + 0.504987i \(0.831497\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −11.4751 11.4751i −0.408007 0.408007i
\(792\) 0 0
\(793\) 31.6533 + 38.6230i 1.12404 + 1.37154i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 21.2610 21.2610i 0.753104 0.753104i −0.221953 0.975057i \(-0.571243\pi\)
0.975057 + 0.221953i \(0.0712433\pi\)
\(798\) 0 0
\(799\) 20.8784 + 20.8784i 0.738626 + 0.738626i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 32.2390 + 32.2390i 1.13769 + 1.13769i
\(804\) 0 0
\(805\) −16.5373 + 12.7657i −0.582863 + 0.449931i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 22.8766i 0.804300i −0.915574 0.402150i \(-0.868263\pi\)
0.915574 0.402150i \(-0.131737\pi\)
\(810\) 0 0
\(811\) −20.7214 + 20.7214i −0.727628 + 0.727628i −0.970147 0.242519i \(-0.922026\pi\)
0.242519 + 0.970147i \(0.422026\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 37.2326 + 4.79223i 1.30420 + 0.167865i
\(816\) 0 0
\(817\) 28.8498i 1.00933i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −28.2951 + 28.2951i −0.987505 + 0.987505i −0.999923 0.0124179i \(-0.996047\pi\)
0.0124179 + 0.999923i \(0.496047\pi\)
\(822\) 0 0
\(823\) −13.8518 13.8518i −0.482842 0.482842i 0.423196 0.906038i \(-0.360908\pi\)
−0.906038 + 0.423196i \(0.860908\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.5533i 0.366975i −0.983022 0.183488i \(-0.941261\pi\)
0.983022 0.183488i \(-0.0587387\pi\)
\(828\) 0 0
\(829\) 35.3056 1.22622 0.613108 0.789999i \(-0.289919\pi\)
0.613108 + 0.789999i \(0.289919\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 10.4286 10.4286i 0.361328 0.361328i
\(834\) 0 0
\(835\) 4.93232 38.3210i 0.170690 1.32615i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.46456 2.46456i 0.0850860 0.0850860i −0.663283 0.748369i \(-0.730837\pi\)
0.748369 + 0.663283i \(0.230837\pi\)
\(840\) 0 0
\(841\) −22.4005 −0.772431
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −9.30150 + 27.5406i −0.319981 + 0.947424i
\(846\) 0 0
\(847\) −31.1205 −1.06931
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 30.4563 30.4563i 1.04403 1.04403i
\(852\) 0 0
\(853\) 26.8214 0.918348 0.459174 0.888346i \(-0.348145\pi\)
0.459174 + 0.888346i \(0.348145\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20.6207 + 20.6207i −0.704390 + 0.704390i −0.965350 0.260959i \(-0.915961\pi\)
0.260959 + 0.965350i \(0.415961\pi\)
\(858\) 0 0
\(859\) 15.3195i 0.522696i 0.965245 + 0.261348i \(0.0841670\pi\)
−0.965245 + 0.261348i \(0.915833\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 19.7984i 0.673945i −0.941514 0.336973i \(-0.890597\pi\)
0.941514 0.336973i \(-0.109403\pi\)
\(864\) 0 0
\(865\) 8.74533 + 11.3291i 0.297350 + 0.385202i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.02761 + 4.02761i −0.136627 + 0.136627i
\(870\) 0 0
\(871\) 2.98199 + 3.63858i 0.101041 + 0.123289i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −5.30349 + 13.1248i −0.179291 + 0.443698i
\(876\) 0 0
\(877\) −36.4393 −1.23047 −0.615234 0.788345i \(-0.710938\pi\)
−0.615234 + 0.788345i \(0.710938\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 39.4236i 1.32821i 0.747637 + 0.664107i \(0.231188\pi\)
−0.747637 + 0.664107i \(0.768812\pi\)
\(882\) 0 0
\(883\) −23.9341 23.9341i −0.805445 0.805445i 0.178495 0.983941i \(-0.442877\pi\)
−0.983941 + 0.178495i \(0.942877\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −28.8887 28.8887i −0.969987 0.969987i 0.0295751 0.999563i \(-0.490585\pi\)
−0.999563 + 0.0295751i \(0.990585\pi\)
\(888\) 0 0
\(889\) 8.71601 + 8.71601i 0.292326 + 0.292326i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 27.5695 27.5695i 0.922577 0.922577i
\(894\) 0 0
\(895\) 15.5673 + 2.00368i 0.520358 + 0.0669757i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −19.9932 19.9932i −0.666810 0.666810i
\(900\) 0 0
\(901\) 35.8352i 1.19384i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.862394 6.70025i 0.0286669 0.222724i
\(906\) 0 0
\(907\) 22.9907 22.9907i 0.763394 0.763394i −0.213540 0.976934i \(-0.568499\pi\)
0.976934 + 0.213540i \(0.0684994\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −37.1427 −1.23059 −0.615296 0.788296i \(-0.710963\pi\)
−0.615296 + 0.788296i \(0.710963\pi\)
\(912\) 0 0
\(913\) 21.6404 21.6404i 0.716194 0.716194i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.244917i 0.00808789i
\(918\) 0 0
\(919\) 46.7810i 1.54316i 0.636131 + 0.771581i \(0.280534\pi\)
−0.636131 + 0.771581i \(0.719466\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −44.2842 4.39186i −1.45763 0.144560i
\(924\) 0 0
\(925\) 7.39046 28.2339i 0.242997 0.928326i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 29.4287 + 29.4287i 0.965525 + 0.965525i 0.999425 0.0339004i \(-0.0107929\pi\)
−0.0339004 + 0.999425i \(0.510793\pi\)
\(930\) 0 0
\(931\) −13.7707 13.7707i −0.451315 0.451315i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −36.1501 4.65291i −1.18224 0.152166i
\(936\) 0 0
\(937\) −29.2450 29.2450i −0.955392 0.955392i 0.0436550 0.999047i \(-0.486100\pi\)
−0.999047 + 0.0436550i \(0.986100\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −15.1015 + 15.1015i −0.492293 + 0.492293i −0.909028 0.416735i \(-0.863174\pi\)
0.416735 + 0.909028i \(0.363174\pi\)
\(942\) 0 0
\(943\) 13.9190 0.453266
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.1180i 1.23867i 0.785127 + 0.619335i \(0.212598\pi\)
−0.785127 + 0.619335i \(0.787402\pi\)
\(948\) 0 0
\(949\) −17.4691 21.3155i −0.567070 0.691931i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 35.8177 + 35.8177i 1.16025 + 1.16025i 0.984421 + 0.175830i \(0.0562609\pi\)
0.175830 + 0.984421i \(0.443739\pi\)
\(954\) 0 0
\(955\) 2.03209 + 0.261552i 0.0657570 + 0.00846363i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.11345 0.165122
\(960\) 0 0
\(961\) 15.4466i 0.498277i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 33.3952 + 4.29832i 1.07503 + 0.138368i
\(966\) 0 0
\(967\) −15.1852 −0.488322 −0.244161 0.969735i \(-0.578513\pi\)
−0.244161 + 0.969735i \(0.578513\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 52.5959 1.68788 0.843941 0.536436i \(-0.180230\pi\)
0.843941 + 0.536436i \(0.180230\pi\)
\(972\) 0 0
\(973\) 3.25510 0.104354
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −40.6014 −1.29895 −0.649477 0.760381i \(-0.725012\pi\)
−0.649477 + 0.760381i \(0.725012\pi\)
\(978\) 0 0
\(979\) 44.8030 1.43191
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −12.2368 −0.390294 −0.195147 0.980774i \(-0.562518\pi\)
−0.195147 + 0.980774i \(0.562518\pi\)
\(984\) 0 0
\(985\) 12.3407 + 1.58838i 0.393207 + 0.0506100i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 58.9955i 1.87595i
\(990\) 0 0
\(991\) −20.9218 −0.664603 −0.332302 0.943173i \(-0.607825\pi\)
−0.332302 + 0.943173i \(0.607825\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 36.0644 + 4.64188i 1.14332 + 0.147158i
\(996\) 0 0
\(997\) 9.72732 + 9.72732i 0.308067 + 0.308067i 0.844159 0.536092i \(-0.180100\pi\)
−0.536092 + 0.844159i \(0.680100\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.u.g.577.4 8
3.2 odd 2 260.2.m.c.57.2 8
5.3 odd 4 2340.2.bp.g.1513.2 8
12.11 even 2 1040.2.bg.m.577.3 8
13.8 odd 4 2340.2.bp.g.1477.2 8
15.2 even 4 1300.2.r.c.993.3 8
15.8 even 4 260.2.r.c.213.2 yes 8
15.14 odd 2 1300.2.m.c.57.3 8
39.8 even 4 260.2.r.c.177.2 yes 8
60.23 odd 4 1040.2.cd.m.993.3 8
65.8 even 4 inner 2340.2.u.g.73.4 8
156.47 odd 4 1040.2.cd.m.177.3 8
195.8 odd 4 260.2.m.c.73.2 yes 8
195.47 odd 4 1300.2.m.c.593.3 8
195.164 even 4 1300.2.r.c.957.3 8
780.203 even 4 1040.2.bg.m.593.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.2.m.c.57.2 8 3.2 odd 2
260.2.m.c.73.2 yes 8 195.8 odd 4
260.2.r.c.177.2 yes 8 39.8 even 4
260.2.r.c.213.2 yes 8 15.8 even 4
1040.2.bg.m.577.3 8 12.11 even 2
1040.2.bg.m.593.3 8 780.203 even 4
1040.2.cd.m.177.3 8 156.47 odd 4
1040.2.cd.m.993.3 8 60.23 odd 4
1300.2.m.c.57.3 8 15.14 odd 2
1300.2.m.c.593.3 8 195.47 odd 4
1300.2.r.c.957.3 8 195.164 even 4
1300.2.r.c.993.3 8 15.2 even 4
2340.2.u.g.73.4 8 65.8 even 4 inner
2340.2.u.g.577.4 8 1.1 even 1 trivial
2340.2.bp.g.1477.2 8 13.8 odd 4
2340.2.bp.g.1513.2 8 5.3 odd 4