Properties

Label 2340.2.u.g
Level $2340$
Weight $2$
Character orbit 2340.u
Analytic conductor $18.685$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(73,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.u (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-2,0,0,0,0,0,-14,0,14,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.31678304256.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 8x^{5} + 32x^{4} - 20x^{3} + 8x^{2} + 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 260)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{6} - \beta_{3}) q^{5} + (\beta_{5} + \beta_{4}) q^{7} + (\beta_{7} - \beta_{6} + 2 \beta_{4} + \cdots - 2) q^{11} + ( - \beta_{7} - \beta_1 + 2) q^{13} + (\beta_{7} + \beta_{6} - 2 \beta_{3}) q^{17}+ \cdots + ( - 3 \beta_{3} - 2 \beta_{2} + 3 \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{5} - 14 q^{11} + 14 q^{13} + 2 q^{19} + 22 q^{23} + 12 q^{25} - 6 q^{31} + 4 q^{35} + 8 q^{41} - 14 q^{43} - 24 q^{49} + 8 q^{53} - 30 q^{55} - 2 q^{59} - 12 q^{61} - 32 q^{65} + 20 q^{67} + 22 q^{71}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2x^{7} + 2x^{6} + 8x^{5} + 32x^{4} - 20x^{3} + 8x^{2} + 8x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 97\nu^{7} - 173\nu^{6} + 220\nu^{5} + 316\nu^{4} + 4010\nu^{3} - 1148\nu^{2} - 1300\nu - 6130 ) / 2462 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 140\nu^{7} - 237\nu^{6} + 216\nu^{5} + 1116\nu^{4} + 5280\nu^{3} - 1530\nu^{2} + 738\nu + 696 ) / 2462 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 174\nu^{7} - 488\nu^{6} + 585\nu^{5} + 1176\nu^{4} + 4452\nu^{3} - 8760\nu^{2} + 2922\nu + 654 ) / 2462 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -382\nu^{7} + 1227\nu^{6} - 1539\nu^{5} - 2412\nu^{4} - 8076\nu^{3} + 22288\nu^{2} - 5566\nu - 1266 ) / 2462 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 452\nu^{7} - 730\nu^{6} + 416\nu^{5} + 4201\nu^{4} + 15640\nu^{3} - 4588\nu^{2} - 5144\nu + 4076 ) / 2462 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 605\nu^{7} - 1244\nu^{6} + 1461\nu^{5} + 4471\nu^{4} + 19300\nu^{3} - 11272\nu^{2} + 12070\nu + 2656 ) / 2462 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} - 3\beta_{4} + \beta_{3} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{7} - \beta_{6} - \beta_{5} - 2\beta_{4} + 8\beta_{3} - \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{6} + 12\beta_{3} - 8\beta_{2} - 12\beta _1 - 20 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 8\beta_{7} - 8\beta_{6} + 12\beta_{5} + 26\beta_{4} - 12\beta_{2} - 66\beta _1 - 26 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 24\beta_{7} + 66\beta_{5} + 158\beta_{4} - 120\beta_{3} - 120\beta_1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 66\beta_{7} + 66\beta_{6} + 120\beta_{5} + 270\beta_{4} - 572\beta_{3} + 120\beta_{2} + 270 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(-\beta_{4}\) \(\beta_{4}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
73.1
0.575868 0.575868i
−1.42497 + 1.42497i
2.13456 2.13456i
−0.285451 + 0.285451i
0.575868 + 0.575868i
−1.42497 1.42497i
2.13456 + 2.13456i
−0.285451 0.285451i
0 0 0 −2.16064 + 0.575868i 0 2.48849i 0 0 0
73.2 0 0 0 −1.72321 1.42497i 0 4.91106i 0 0 0
73.3 0 0 0 0.666078 + 2.13456i 0 2.84356i 0 0 0
73.4 0 0 0 2.21777 0.285451i 0 1.26613i 0 0 0
577.1 0 0 0 −2.16064 0.575868i 0 2.48849i 0 0 0
577.2 0 0 0 −1.72321 + 1.42497i 0 4.91106i 0 0 0
577.3 0 0 0 0.666078 2.13456i 0 2.84356i 0 0 0
577.4 0 0 0 2.21777 + 0.285451i 0 1.26613i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 73.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2340.2.u.g 8
3.b odd 2 1 260.2.m.c 8
5.c odd 4 1 2340.2.bp.g 8
12.b even 2 1 1040.2.bg.m 8
13.d odd 4 1 2340.2.bp.g 8
15.d odd 2 1 1300.2.m.c 8
15.e even 4 1 260.2.r.c yes 8
15.e even 4 1 1300.2.r.c 8
39.f even 4 1 260.2.r.c yes 8
60.l odd 4 1 1040.2.cd.m 8
65.k even 4 1 inner 2340.2.u.g 8
156.l odd 4 1 1040.2.cd.m 8
195.j odd 4 1 260.2.m.c 8
195.n even 4 1 1300.2.r.c 8
195.u odd 4 1 1300.2.m.c 8
780.bn even 4 1 1040.2.bg.m 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
260.2.m.c 8 3.b odd 2 1
260.2.m.c 8 195.j odd 4 1
260.2.r.c yes 8 15.e even 4 1
260.2.r.c yes 8 39.f even 4 1
1040.2.bg.m 8 12.b even 2 1
1040.2.bg.m 8 780.bn even 4 1
1040.2.cd.m 8 60.l odd 4 1
1040.2.cd.m 8 156.l odd 4 1
1300.2.m.c 8 15.d odd 2 1
1300.2.m.c 8 195.u odd 4 1
1300.2.r.c 8 15.e even 4 1
1300.2.r.c 8 195.n even 4 1
2340.2.u.g 8 1.a even 1 1 trivial
2340.2.u.g 8 65.k even 4 1 inner
2340.2.bp.g 8 5.c odd 4 1
2340.2.bp.g 8 13.d odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2340, [\chi])\):

\( T_{7}^{8} + 40T_{7}^{6} + 456T_{7}^{4} + 1840T_{7}^{2} + 1936 \) Copy content Toggle raw display
\( T_{11}^{8} + 14T_{11}^{7} + 98T_{11}^{6} + 332T_{11}^{5} + 580T_{11}^{4} + 124T_{11}^{3} + 8T_{11}^{2} - 8T_{11} + 4 \) Copy content Toggle raw display
\( T_{17}^{8} - 8T_{17}^{5} + 360T_{17}^{4} - 192T_{17}^{3} + 32T_{17}^{2} + 864T_{17} + 11664 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 2 T^{7} + \cdots + 625 \) Copy content Toggle raw display
$7$ \( T^{8} + 40 T^{6} + \cdots + 1936 \) Copy content Toggle raw display
$11$ \( T^{8} + 14 T^{7} + \cdots + 4 \) Copy content Toggle raw display
$13$ \( T^{8} - 14 T^{7} + \cdots + 28561 \) Copy content Toggle raw display
$17$ \( T^{8} - 8 T^{5} + \cdots + 11664 \) Copy content Toggle raw display
$19$ \( T^{8} - 2 T^{7} + \cdots + 86436 \) Copy content Toggle raw display
$23$ \( T^{8} - 22 T^{7} + \cdots + 6724 \) Copy content Toggle raw display
$29$ \( T^{8} + 156 T^{6} + \cdots + 810000 \) Copy content Toggle raw display
$31$ \( T^{8} + 6 T^{7} + \cdots + 22500 \) Copy content Toggle raw display
$37$ \( T^{8} + 76 T^{6} + \cdots + 35344 \) Copy content Toggle raw display
$41$ \( T^{8} - 8 T^{7} + \cdots + 784 \) Copy content Toggle raw display
$43$ \( T^{8} + 14 T^{7} + \cdots + 1085764 \) Copy content Toggle raw display
$47$ \( T^{8} + 400 T^{6} + \cdots + 29637136 \) Copy content Toggle raw display
$53$ \( T^{8} - 8 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$59$ \( T^{8} + 2 T^{7} + \cdots + 86436 \) Copy content Toggle raw display
$61$ \( (T^{4} + 6 T^{3} + \cdots - 1452)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 10 T^{3} + \cdots - 12)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} - 22 T^{7} + \cdots + 46321636 \) Copy content Toggle raw display
$73$ \( (T^{4} + 14 T^{3} + \cdots - 13212)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} + 340 T^{6} + \cdots + 440896 \) Copy content Toggle raw display
$83$ \( T^{8} + 160 T^{6} + \cdots + 11664 \) Copy content Toggle raw display
$89$ \( T^{8} + 4 T^{7} + \cdots + 22391824 \) Copy content Toggle raw display
$97$ \( (T^{4} - 6 T^{3} + \cdots - 4392)^{2} \) Copy content Toggle raw display
show more
show less