Properties

Label 1300.2.m.c.593.3
Level $1300$
Weight $2$
Character 1300.593
Analytic conductor $10.381$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1300,2,Mod(57,1300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1300, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1300.57"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1300 = 2^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1300.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-2,0,0,0,0,0,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3805522628\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.31678304256.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 8x^{5} + 32x^{4} - 20x^{3} + 8x^{2} + 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 260)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 593.3
Root \(-0.285451 + 0.285451i\) of defining polynomial
Character \(\chi\) \(=\) 1300.593
Dual form 1300.2.m.c.57.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.285451 + 0.285451i) q^{3} +1.26613i q^{7} -2.83704i q^{9} +(4.21777 - 4.21777i) q^{11} +(-2.28545 + 2.78868i) q^{13} +(1.93232 + 1.93232i) q^{17} +(-2.55158 + 2.55158i) q^{19} +(-0.361419 + 0.361419i) q^{21} +(5.21777 - 5.21777i) q^{23} +(1.66619 - 1.66619i) q^{27} -7.16941i q^{29} +(2.78868 + 2.78868i) q^{31} +2.40794 q^{33} -5.83704i q^{37} +(-1.44842 + 0.143646i) q^{39} +(-1.33381 - 1.33381i) q^{41} +(-5.65332 + 5.65332i) q^{43} -10.8048i q^{47} +5.39691 q^{49} +1.10317i q^{51} +(9.27258 + 9.27258i) q^{53} -1.45671 q^{57} +(-2.55158 - 2.55158i) q^{59} +13.8499 q^{61} +3.59206 q^{63} -1.30477 q^{67} +2.97884 q^{69} +(8.72745 + 8.72745i) q^{71} +7.64360 q^{73} +(5.34026 + 5.34026i) q^{77} +0.954914i q^{79} -7.55987 q^{81} -5.13078i q^{83} +(2.04652 - 2.04652i) q^{87} +(5.31122 + 5.31122i) q^{89} +(-3.53083 - 2.89368i) q^{91} +1.59206i q^{93} -2.81956 q^{97} +(-11.9660 - 11.9660i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 14 q^{11} - 14 q^{13} + 2 q^{19} + 4 q^{21} + 22 q^{23} + 16 q^{27} - 6 q^{31} - 16 q^{33} - 34 q^{39} - 8 q^{41} + 14 q^{43} - 24 q^{49} + 8 q^{53} - 16 q^{57} + 2 q^{59} - 12 q^{61} + 64 q^{63}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1300\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(651\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.285451 + 0.285451i 0.164805 + 0.164805i 0.784692 0.619886i \(-0.212821\pi\)
−0.619886 + 0.784692i \(0.712821\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.26613i 0.478553i 0.970951 + 0.239277i \(0.0769103\pi\)
−0.970951 + 0.239277i \(0.923090\pi\)
\(8\) 0 0
\(9\) 2.83704i 0.945678i
\(10\) 0 0
\(11\) 4.21777 4.21777i 1.27171 1.27171i 0.326514 0.945192i \(-0.394126\pi\)
0.945192 0.326514i \(-0.105874\pi\)
\(12\) 0 0
\(13\) −2.28545 + 2.78868i −0.633870 + 0.773439i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.93232 + 1.93232i 0.468657 + 0.468657i 0.901479 0.432822i \(-0.142482\pi\)
−0.432822 + 0.901479i \(0.642482\pi\)
\(18\) 0 0
\(19\) −2.55158 + 2.55158i −0.585373 + 0.585373i −0.936375 0.351001i \(-0.885841\pi\)
0.351001 + 0.936375i \(0.385841\pi\)
\(20\) 0 0
\(21\) −0.361419 + 0.361419i −0.0788681 + 0.0788681i
\(22\) 0 0
\(23\) 5.21777 5.21777i 1.08798 1.08798i 0.0922445 0.995736i \(-0.470596\pi\)
0.995736 0.0922445i \(-0.0294041\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.66619 1.66619i 0.320658 0.320658i
\(28\) 0 0
\(29\) 7.16941i 1.33133i −0.746252 0.665663i \(-0.768149\pi\)
0.746252 0.665663i \(-0.231851\pi\)
\(30\) 0 0
\(31\) 2.78868 + 2.78868i 0.500861 + 0.500861i 0.911705 0.410844i \(-0.134766\pi\)
−0.410844 + 0.911705i \(0.634766\pi\)
\(32\) 0 0
\(33\) 2.40794 0.419168
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.83704i 0.959603i −0.877377 0.479801i \(-0.840709\pi\)
0.877377 0.479801i \(-0.159291\pi\)
\(38\) 0 0
\(39\) −1.44842 + 0.143646i −0.231932 + 0.0230018i
\(40\) 0 0
\(41\) −1.33381 1.33381i −0.208306 0.208306i 0.595241 0.803547i \(-0.297057\pi\)
−0.803547 + 0.595241i \(0.797057\pi\)
\(42\) 0 0
\(43\) −5.65332 + 5.65332i −0.862123 + 0.862123i −0.991584 0.129461i \(-0.958675\pi\)
0.129461 + 0.991584i \(0.458675\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.8048i 1.57605i −0.615644 0.788024i \(-0.711104\pi\)
0.615644 0.788024i \(-0.288896\pi\)
\(48\) 0 0
\(49\) 5.39691 0.770987
\(50\) 0 0
\(51\) 1.10317i 0.154474i
\(52\) 0 0
\(53\) 9.27258 + 9.27258i 1.27369 + 1.27369i 0.944139 + 0.329548i \(0.106896\pi\)
0.329548 + 0.944139i \(0.393104\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.45671 −0.192945
\(58\) 0 0
\(59\) −2.55158 2.55158i −0.332188 0.332188i 0.521229 0.853417i \(-0.325474\pi\)
−0.853417 + 0.521229i \(0.825474\pi\)
\(60\) 0 0
\(61\) 13.8499 1.77330 0.886651 0.462439i \(-0.153026\pi\)
0.886651 + 0.462439i \(0.153026\pi\)
\(62\) 0 0
\(63\) 3.59206 0.452557
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.30477 −0.159403 −0.0797015 0.996819i \(-0.525397\pi\)
−0.0797015 + 0.996819i \(0.525397\pi\)
\(68\) 0 0
\(69\) 2.97884 0.358610
\(70\) 0 0
\(71\) 8.72745 + 8.72745i 1.03576 + 1.03576i 0.999337 + 0.0364208i \(0.0115957\pi\)
0.0364208 + 0.999337i \(0.488404\pi\)
\(72\) 0 0
\(73\) 7.64360 0.894615 0.447308 0.894380i \(-0.352383\pi\)
0.447308 + 0.894380i \(0.352383\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.34026 + 5.34026i 0.608579 + 0.608579i
\(78\) 0 0
\(79\) 0.954914i 0.107436i 0.998556 + 0.0537181i \(0.0171072\pi\)
−0.998556 + 0.0537181i \(0.982893\pi\)
\(80\) 0 0
\(81\) −7.55987 −0.839986
\(82\) 0 0
\(83\) 5.13078i 0.563176i −0.959535 0.281588i \(-0.909139\pi\)
0.959535 0.281588i \(-0.0908611\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.04652 2.04652i 0.219410 0.219410i
\(88\) 0 0
\(89\) 5.31122 + 5.31122i 0.562988 + 0.562988i 0.930155 0.367167i \(-0.119672\pi\)
−0.367167 + 0.930155i \(0.619672\pi\)
\(90\) 0 0
\(91\) −3.53083 2.89368i −0.370132 0.303341i
\(92\) 0 0
\(93\) 1.59206i 0.165089i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.81956 −0.286283 −0.143141 0.989702i \(-0.545720\pi\)
−0.143141 + 0.989702i \(0.545720\pi\)
\(98\) 0 0
\(99\) −11.9660 11.9660i −1.20263 1.20263i
\(100\) 0 0
\(101\) 1.27716i 0.127082i −0.997979 0.0635412i \(-0.979761\pi\)
0.997979 0.0635412i \(-0.0202394\pi\)
\(102\) 0 0
\(103\) −0.313060 + 0.313060i −0.0308467 + 0.0308467i −0.722362 0.691515i \(-0.756943\pi\)
0.691515 + 0.722362i \(0.256943\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.19016 + 7.19016i −0.695099 + 0.695099i −0.963349 0.268250i \(-0.913555\pi\)
0.268250 + 0.963349i \(0.413555\pi\)
\(108\) 0 0
\(109\) 3.07413 3.07413i 0.294448 0.294448i −0.544387 0.838834i \(-0.683238\pi\)
0.838834 + 0.544387i \(0.183238\pi\)
\(110\) 0 0
\(111\) 1.66619 1.66619i 0.158148 0.158148i
\(112\) 0 0
\(113\) −9.06310 9.06310i −0.852585 0.852585i 0.137866 0.990451i \(-0.455976\pi\)
−0.990451 + 0.137866i \(0.955976\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 7.91157 + 6.48391i 0.731425 + 0.599437i
\(118\) 0 0
\(119\) −2.44658 + 2.44658i −0.224277 + 0.224277i
\(120\) 0 0
\(121\) 24.5792i 2.23447i
\(122\) 0 0
\(123\) 0.761476i 0.0686600i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −6.88396 6.88396i −0.610853 0.610853i 0.332315 0.943168i \(-0.392170\pi\)
−0.943168 + 0.332315i \(0.892170\pi\)
\(128\) 0 0
\(129\) −3.22749 −0.284165
\(130\) 0 0
\(131\) 0.193437 0.0169007 0.00845036 0.999964i \(-0.497310\pi\)
0.00845036 + 0.999964i \(0.497310\pi\)
\(132\) 0 0
\(133\) −3.23064 3.23064i −0.280132 0.280132i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.03864i 0.345044i 0.985006 + 0.172522i \(0.0551916\pi\)
−0.985006 + 0.172522i \(0.944808\pi\)
\(138\) 0 0
\(139\) 2.57090i 0.218061i 0.994038 + 0.109031i \(0.0347746\pi\)
−0.994038 + 0.109031i \(0.965225\pi\)
\(140\) 0 0
\(141\) 3.08426 3.08426i 0.259741 0.259741i
\(142\) 0 0
\(143\) 2.12249 + 21.4015i 0.177491 + 1.78968i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.54055 + 1.54055i 0.127063 + 0.127063i
\(148\) 0 0
\(149\) 0.898264 0.898264i 0.0735887 0.0735887i −0.669354 0.742943i \(-0.733429\pi\)
0.742943 + 0.669354i \(0.233429\pi\)
\(150\) 0 0
\(151\) −7.58564 + 7.58564i −0.617311 + 0.617311i −0.944841 0.327530i \(-0.893784\pi\)
0.327530 + 0.944841i \(0.393784\pi\)
\(152\) 0 0
\(153\) 5.48206 5.48206i 0.443199 0.443199i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.36142 5.36142i 0.427888 0.427888i −0.460020 0.887908i \(-0.652158\pi\)
0.887908 + 0.460020i \(0.152158\pi\)
\(158\) 0 0
\(159\) 5.29374i 0.419821i
\(160\) 0 0
\(161\) 6.60639 + 6.60639i 0.520657 + 0.520657i
\(162\) 0 0
\(163\) −16.7883 −1.31496 −0.657479 0.753473i \(-0.728377\pi\)
−0.657479 + 0.753473i \(0.728377\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.2790i 1.33709i 0.743671 + 0.668546i \(0.233083\pi\)
−0.743671 + 0.668546i \(0.766917\pi\)
\(168\) 0 0
\(169\) −2.55342 12.7468i −0.196417 0.980520i
\(170\) 0 0
\(171\) 7.23893 + 7.23893i 0.553575 + 0.553575i
\(172\) 0 0
\(173\) 4.52582 4.52582i 0.344091 0.344091i −0.513812 0.857903i \(-0.671767\pi\)
0.857903 + 0.513812i \(0.171767\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.45671i 0.109493i
\(178\) 0 0
\(179\) −7.01935 −0.524651 −0.262325 0.964980i \(-0.584489\pi\)
−0.262325 + 0.964980i \(0.584489\pi\)
\(180\) 0 0
\(181\) 3.02116i 0.224561i 0.993677 + 0.112281i \(0.0358155\pi\)
−0.993677 + 0.112281i \(0.964184\pi\)
\(182\) 0 0
\(183\) 3.95348 + 3.95348i 0.292250 + 0.292250i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 16.3002 1.19199
\(188\) 0 0
\(189\) 2.10962 + 2.10962i 0.153452 + 0.153452i
\(190\) 0 0
\(191\) −0.916276 −0.0662994 −0.0331497 0.999450i \(-0.510554\pi\)
−0.0331497 + 0.999450i \(0.510554\pi\)
\(192\) 0 0
\(193\) −15.0580 −1.08390 −0.541949 0.840412i \(-0.682313\pi\)
−0.541949 + 0.840412i \(0.682313\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.56445 0.396451 0.198225 0.980156i \(-0.436482\pi\)
0.198225 + 0.980156i \(0.436482\pi\)
\(198\) 0 0
\(199\) 16.2616 1.15275 0.576375 0.817185i \(-0.304467\pi\)
0.576375 + 0.817185i \(0.304467\pi\)
\(200\) 0 0
\(201\) −0.372448 0.372448i −0.0262705 0.0262705i
\(202\) 0 0
\(203\) 9.07743 0.637111
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −14.8030 14.8030i −1.02888 1.02888i
\(208\) 0 0
\(209\) 21.5240i 1.48885i
\(210\) 0 0
\(211\) −19.4383 −1.33819 −0.669094 0.743177i \(-0.733318\pi\)
−0.669094 + 0.743177i \(0.733318\pi\)
\(212\) 0 0
\(213\) 4.98252i 0.341397i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −3.53083 + 3.53083i −0.239689 + 0.239689i
\(218\) 0 0
\(219\) 2.18187 + 2.18187i 0.147437 + 0.147437i
\(220\) 0 0
\(221\) −9.80485 + 0.972392i −0.659545 + 0.0654101i
\(222\) 0 0
\(223\) 3.60496i 0.241406i −0.992689 0.120703i \(-0.961485\pi\)
0.992689 0.120703i \(-0.0385149\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −24.4374 −1.62197 −0.810984 0.585068i \(-0.801068\pi\)
−0.810984 + 0.585068i \(0.801068\pi\)
\(228\) 0 0
\(229\) 9.46315 + 9.46315i 0.625343 + 0.625343i 0.946893 0.321550i \(-0.104204\pi\)
−0.321550 + 0.946893i \(0.604204\pi\)
\(230\) 0 0
\(231\) 3.04877i 0.200594i
\(232\) 0 0
\(233\) 1.80011 1.80011i 0.117929 0.117929i −0.645679 0.763609i \(-0.723426\pi\)
0.763609 + 0.645679i \(0.223426\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −0.272581 + 0.272581i −0.0177061 + 0.0177061i
\(238\) 0 0
\(239\) −13.0999 + 13.0999i −0.847362 + 0.847362i −0.989803 0.142441i \(-0.954505\pi\)
0.142441 + 0.989803i \(0.454505\pi\)
\(240\) 0 0
\(241\) −13.2371 + 13.2371i −0.852676 + 0.852676i −0.990462 0.137786i \(-0.956001\pi\)
0.137786 + 0.990462i \(0.456001\pi\)
\(242\) 0 0
\(243\) −7.15654 7.15654i −0.459092 0.459092i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.28402 12.9471i −0.0817002 0.823802i
\(248\) 0 0
\(249\) 1.46459 1.46459i 0.0928144 0.0928144i
\(250\) 0 0
\(251\) 4.62612i 0.291998i −0.989285 0.145999i \(-0.953360\pi\)
0.989285 0.145999i \(-0.0466396\pi\)
\(252\) 0 0
\(253\) 44.0148i 2.76718i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.55342 + 4.55342i 0.284035 + 0.284035i 0.834716 0.550681i \(-0.185632\pi\)
−0.550681 + 0.834716i \(0.685632\pi\)
\(258\) 0 0
\(259\) 7.39046 0.459221
\(260\) 0 0
\(261\) −20.3399 −1.25901
\(262\) 0 0
\(263\) 2.72100 + 2.72100i 0.167784 + 0.167784i 0.786005 0.618221i \(-0.212146\pi\)
−0.618221 + 0.786005i \(0.712146\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 3.03219i 0.185567i
\(268\) 0 0
\(269\) 11.6870i 0.712567i 0.934378 + 0.356284i \(0.115956\pi\)
−0.934378 + 0.356284i \(0.884044\pi\)
\(270\) 0 0
\(271\) −13.9660 + 13.9660i −0.848372 + 0.848372i −0.989930 0.141558i \(-0.954789\pi\)
0.141558 + 0.989930i \(0.454789\pi\)
\(272\) 0 0
\(273\) −0.181875 1.83389i −0.0110076 0.110992i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.09672 1.09672i −0.0658954 0.0658954i 0.673391 0.739286i \(-0.264837\pi\)
−0.739286 + 0.673391i \(0.764837\pi\)
\(278\) 0 0
\(279\) 7.91157 7.91157i 0.473653 0.473653i
\(280\) 0 0
\(281\) −8.62755 + 8.62755i −0.514677 + 0.514677i −0.915956 0.401279i \(-0.868566\pi\)
0.401279 + 0.915956i \(0.368566\pi\)
\(282\) 0 0
\(283\) −7.50507 + 7.50507i −0.446130 + 0.446130i −0.894066 0.447936i \(-0.852159\pi\)
0.447936 + 0.894066i \(0.352159\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.68878 1.68878i 0.0996856 0.0996856i
\(288\) 0 0
\(289\) 9.53226i 0.560721i
\(290\) 0 0
\(291\) −0.804846 0.804846i −0.0471809 0.0471809i
\(292\) 0 0
\(293\) −21.0341 −1.22882 −0.614411 0.788986i \(-0.710606\pi\)
−0.614411 + 0.788986i \(0.710606\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 14.0552i 0.815566i
\(298\) 0 0
\(299\) 2.62571 + 26.4756i 0.151849 + 1.53113i
\(300\) 0 0
\(301\) −7.15785 7.15785i −0.412572 0.412572i
\(302\) 0 0
\(303\) 0.364567 0.364567i 0.0209439 0.0209439i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 13.7984i 0.787516i 0.919214 + 0.393758i \(0.128825\pi\)
−0.919214 + 0.393758i \(0.871175\pi\)
\(308\) 0 0
\(309\) −0.178727 −0.0101674
\(310\) 0 0
\(311\) 19.9743i 1.13264i −0.824187 0.566318i \(-0.808367\pi\)
0.824187 0.566318i \(-0.191633\pi\)
\(312\) 0 0
\(313\) 4.92587 + 4.92587i 0.278427 + 0.278427i 0.832481 0.554054i \(-0.186920\pi\)
−0.554054 + 0.832481i \(0.686920\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.7146 −0.657956 −0.328978 0.944338i \(-0.606704\pi\)
−0.328978 + 0.944338i \(0.606704\pi\)
\(318\) 0 0
\(319\) −30.2390 30.2390i −1.69306 1.69306i
\(320\) 0 0
\(321\) −4.10488 −0.229112
\(322\) 0 0
\(323\) −9.86096 −0.548679
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.75503 0.0970532
\(328\) 0 0
\(329\) 13.6804 0.754223
\(330\) 0 0
\(331\) −4.94061 4.94061i −0.271561 0.271561i 0.558168 0.829728i \(-0.311505\pi\)
−0.829728 + 0.558168i \(0.811505\pi\)
\(332\) 0 0
\(333\) −16.5599 −0.907475
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8.67909 + 8.67909i 0.472780 + 0.472780i 0.902813 0.430033i \(-0.141498\pi\)
−0.430033 + 0.902813i \(0.641498\pi\)
\(338\) 0 0
\(339\) 5.17415i 0.281021i
\(340\) 0 0
\(341\) 23.5240 1.27390
\(342\) 0 0
\(343\) 15.6961i 0.847511i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −19.0627 + 19.0627i −1.02334 + 1.02334i −0.0236177 + 0.999721i \(0.507518\pi\)
−0.999721 + 0.0236177i \(0.992482\pi\)
\(348\) 0 0
\(349\) 2.00645 + 2.00645i 0.107403 + 0.107403i 0.758766 0.651363i \(-0.225803\pi\)
−0.651363 + 0.758766i \(0.725803\pi\)
\(350\) 0 0
\(351\) 0.838467 + 8.45446i 0.0447541 + 0.451265i
\(352\) 0 0
\(353\) 2.41162i 0.128358i 0.997938 + 0.0641788i \(0.0204428\pi\)
−0.997938 + 0.0641788i \(0.979557\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1.39676 −0.0739242
\(358\) 0 0
\(359\) 1.92546 + 1.92546i 0.101622 + 0.101622i 0.756090 0.654468i \(-0.227107\pi\)
−0.654468 + 0.756090i \(0.727107\pi\)
\(360\) 0 0
\(361\) 5.97884i 0.314676i
\(362\) 0 0
\(363\) 7.01617 7.01617i 0.368253 0.368253i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 16.8435 16.8435i 0.879224 0.879224i −0.114230 0.993454i \(-0.536440\pi\)
0.993454 + 0.114230i \(0.0364401\pi\)
\(368\) 0 0
\(369\) −3.78407 + 3.78407i −0.196991 + 0.196991i
\(370\) 0 0
\(371\) −11.7403 + 11.7403i −0.609527 + 0.609527i
\(372\) 0 0
\(373\) 20.4388 + 20.4388i 1.05828 + 1.05828i 0.998193 + 0.0600904i \(0.0191389\pi\)
0.0600904 + 0.998193i \(0.480861\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.9932 + 16.3853i 1.02970 + 0.843888i
\(378\) 0 0
\(379\) −15.7841 + 15.7841i −0.810775 + 0.810775i −0.984750 0.173975i \(-0.944339\pi\)
0.173975 + 0.984750i \(0.444339\pi\)
\(380\) 0 0
\(381\) 3.93007i 0.201344i
\(382\) 0 0
\(383\) 21.7432i 1.11102i −0.831508 0.555512i \(-0.812522\pi\)
0.831508 0.555512i \(-0.187478\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 16.0387 + 16.0387i 0.815291 + 0.815291i
\(388\) 0 0
\(389\) 17.9227 0.908718 0.454359 0.890819i \(-0.349868\pi\)
0.454359 + 0.890819i \(0.349868\pi\)
\(390\) 0 0
\(391\) 20.1648 1.01978
\(392\) 0 0
\(393\) 0.0552170 + 0.0552170i 0.00278533 + 0.00278533i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 33.9632i 1.70457i 0.523081 + 0.852283i \(0.324782\pi\)
−0.523081 + 0.852283i \(0.675218\pi\)
\(398\) 0 0
\(399\) 1.84438i 0.0923346i
\(400\) 0 0
\(401\) 15.0857 15.0857i 0.753343 0.753343i −0.221758 0.975102i \(-0.571180\pi\)
0.975102 + 0.221758i \(0.0711796\pi\)
\(402\) 0 0
\(403\) −14.1501 + 1.40333i −0.704866 + 0.0699048i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −24.6193 24.6193i −1.22033 1.22033i
\(408\) 0 0
\(409\) 11.7141 11.7141i 0.579227 0.579227i −0.355463 0.934690i \(-0.615677\pi\)
0.934690 + 0.355463i \(0.115677\pi\)
\(410\) 0 0
\(411\) −1.15283 + 1.15283i −0.0568651 + 0.0568651i
\(412\) 0 0
\(413\) 3.23064 3.23064i 0.158970 0.158970i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.733868 + 0.733868i −0.0359376 + 0.0359376i
\(418\) 0 0
\(419\) 13.2486i 0.647234i 0.946188 + 0.323617i \(0.104899\pi\)
−0.946188 + 0.323617i \(0.895101\pi\)
\(420\) 0 0
\(421\) −6.17729 6.17729i −0.301063 0.301063i 0.540367 0.841430i \(-0.318286\pi\)
−0.841430 + 0.540367i \(0.818286\pi\)
\(422\) 0 0
\(423\) −30.6537 −1.49044
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 17.5358i 0.848619i
\(428\) 0 0
\(429\) −5.50322 + 6.71496i −0.265698 + 0.324201i
\(430\) 0 0
\(431\) 4.25641 + 4.25641i 0.205024 + 0.205024i 0.802149 0.597124i \(-0.203690\pi\)
−0.597124 + 0.802149i \(0.703690\pi\)
\(432\) 0 0
\(433\) 27.2579 27.2579i 1.30993 1.30993i 0.388467 0.921463i \(-0.373005\pi\)
0.921463 0.388467i \(-0.126995\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 26.6272i 1.27375i
\(438\) 0 0
\(439\) −24.2063 −1.15531 −0.577653 0.816283i \(-0.696031\pi\)
−0.577653 + 0.816283i \(0.696031\pi\)
\(440\) 0 0
\(441\) 15.3112i 0.729106i
\(442\) 0 0
\(443\) 9.84991 + 9.84991i 0.467983 + 0.467983i 0.901261 0.433277i \(-0.142643\pi\)
−0.433277 + 0.901261i \(0.642643\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0.512822 0.0242556
\(448\) 0 0
\(449\) 12.7067 + 12.7067i 0.599666 + 0.599666i 0.940224 0.340558i \(-0.110616\pi\)
−0.340558 + 0.940224i \(0.610616\pi\)
\(450\) 0 0
\(451\) −11.2514 −0.529809
\(452\) 0 0
\(453\) −4.33066 −0.203472
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −10.4226 −0.487551 −0.243775 0.969832i \(-0.578386\pi\)
−0.243775 + 0.969832i \(0.578386\pi\)
\(458\) 0 0
\(459\) 6.43923 0.300557
\(460\) 0 0
\(461\) −23.2616 23.2616i −1.08340 1.08340i −0.996190 0.0872084i \(-0.972205\pi\)
−0.0872084 0.996190i \(-0.527795\pi\)
\(462\) 0 0
\(463\) −2.36644 −0.109978 −0.0549888 0.998487i \(-0.517512\pi\)
−0.0549888 + 0.998487i \(0.517512\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −22.6648 22.6648i −1.04880 1.04880i −0.998746 0.0500547i \(-0.984060\pi\)
−0.0500547 0.998746i \(-0.515940\pi\)
\(468\) 0 0
\(469\) 1.65201i 0.0762828i
\(470\) 0 0
\(471\) 3.06085 0.141036
\(472\) 0 0
\(473\) 47.6888i 2.19274i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 26.3066 26.3066i 1.20450 1.20450i
\(478\) 0 0
\(479\) −1.74861 1.74861i −0.0798958 0.0798958i 0.666030 0.745925i \(-0.267992\pi\)
−0.745925 + 0.666030i \(0.767992\pi\)
\(480\) 0 0
\(481\) 16.2776 + 13.3403i 0.742195 + 0.608263i
\(482\) 0 0
\(483\) 3.77161i 0.171614i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 14.3822 0.651720 0.325860 0.945418i \(-0.394346\pi\)
0.325860 + 0.945418i \(0.394346\pi\)
\(488\) 0 0
\(489\) −4.79223 4.79223i −0.216712 0.216712i
\(490\) 0 0
\(491\) 13.4770i 0.608206i −0.952639 0.304103i \(-0.901643\pi\)
0.952639 0.304103i \(-0.0983568\pi\)
\(492\) 0 0
\(493\) 13.8536 13.8536i 0.623935 0.623935i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −11.0501 + 11.0501i −0.495665 + 0.495665i
\(498\) 0 0
\(499\) −19.7644 + 19.7644i −0.884775 + 0.884775i −0.994015 0.109241i \(-0.965158\pi\)
0.109241 + 0.994015i \(0.465158\pi\)
\(500\) 0 0
\(501\) −4.93232 + 4.93232i −0.220360 + 0.220360i
\(502\) 0 0
\(503\) 6.04181 + 6.04181i 0.269391 + 0.269391i 0.828855 0.559464i \(-0.188993\pi\)
−0.559464 + 0.828855i \(0.688993\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.90970 4.36746i 0.129224 0.193966i
\(508\) 0 0
\(509\) −13.1677 + 13.1677i −0.583648 + 0.583648i −0.935904 0.352256i \(-0.885415\pi\)
0.352256 + 0.935904i \(0.385415\pi\)
\(510\) 0 0
\(511\) 9.67781i 0.428121i
\(512\) 0 0
\(513\) 8.50284i 0.375410i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −45.5724 45.5724i −2.00427 2.00427i
\(518\) 0 0
\(519\) 2.58380 0.113416
\(520\) 0 0
\(521\) 11.8720 0.520121 0.260061 0.965592i \(-0.416257\pi\)
0.260061 + 0.965592i \(0.416257\pi\)
\(522\) 0 0
\(523\) −28.9954 28.9954i −1.26788 1.26788i −0.947180 0.320702i \(-0.896081\pi\)
−0.320702 0.947180i \(-0.603919\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.7772i 0.469464i
\(528\) 0 0
\(529\) 31.4503i 1.36740i
\(530\) 0 0
\(531\) −7.23893 + 7.23893i −0.314143 + 0.314143i
\(532\) 0 0
\(533\) 6.76792 0.671206i 0.293151 0.0290732i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2.00368 2.00368i −0.0864652 0.0864652i
\(538\) 0 0
\(539\) 22.7629 22.7629i 0.980469 0.980469i
\(540\) 0 0
\(541\) −4.93375 + 4.93375i −0.212119 + 0.212119i −0.805167 0.593048i \(-0.797924\pi\)
0.593048 + 0.805167i \(0.297924\pi\)
\(542\) 0 0
\(543\) −0.862394 + 0.862394i −0.0370089 + 0.0370089i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 19.6257 19.6257i 0.839135 0.839135i −0.149610 0.988745i \(-0.547802\pi\)
0.988745 + 0.149610i \(0.0478019\pi\)
\(548\) 0 0
\(549\) 39.2927i 1.67697i
\(550\) 0 0
\(551\) 18.2934 + 18.2934i 0.779323 + 0.779323i
\(552\) 0 0
\(553\) −1.20905 −0.0514139
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 31.5792i 1.33805i −0.743238 0.669027i \(-0.766711\pi\)
0.743238 0.669027i \(-0.233289\pi\)
\(558\) 0 0
\(559\) −2.84489 28.6857i −0.120326 1.21327i
\(560\) 0 0
\(561\) 4.65291 + 4.65291i 0.196446 + 0.196446i
\(562\) 0 0
\(563\) 21.3660 21.3660i 0.900471 0.900471i −0.0950060 0.995477i \(-0.530287\pi\)
0.995477 + 0.0950060i \(0.0302870\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 9.57180i 0.401978i
\(568\) 0 0
\(569\) 41.8436 1.75418 0.877088 0.480329i \(-0.159483\pi\)
0.877088 + 0.480329i \(0.159483\pi\)
\(570\) 0 0
\(571\) 22.5809i 0.944983i 0.881335 + 0.472491i \(0.156645\pi\)
−0.881335 + 0.472491i \(0.843355\pi\)
\(572\) 0 0
\(573\) −0.261552 0.261552i −0.0109265 0.0109265i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 23.6436 0.984296 0.492148 0.870512i \(-0.336212\pi\)
0.492148 + 0.870512i \(0.336212\pi\)
\(578\) 0 0
\(579\) −4.29832 4.29832i −0.178632 0.178632i
\(580\) 0 0
\(581\) 6.49624 0.269510
\(582\) 0 0
\(583\) 78.2193 3.23951
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 37.8370 1.56170 0.780851 0.624718i \(-0.214786\pi\)
0.780851 + 0.624718i \(0.214786\pi\)
\(588\) 0 0
\(589\) −14.2311 −0.586381
\(590\) 0 0
\(591\) 1.58838 + 1.58838i 0.0653372 + 0.0653372i
\(592\) 0 0
\(593\) −3.64547 −0.149701 −0.0748507 0.997195i \(-0.523848\pi\)
−0.0748507 + 0.997195i \(0.523848\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.64188 + 4.64188i 0.189980 + 0.189980i
\(598\) 0 0
\(599\) 25.0451i 1.02331i 0.859190 + 0.511657i \(0.170968\pi\)
−0.859190 + 0.511657i \(0.829032\pi\)
\(600\) 0 0
\(601\) 4.47132 0.182389 0.0911945 0.995833i \(-0.470932\pi\)
0.0911945 + 0.995833i \(0.470932\pi\)
\(602\) 0 0
\(603\) 3.70168i 0.150744i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 3.24538 3.24538i 0.131726 0.131726i −0.638170 0.769896i \(-0.720308\pi\)
0.769896 + 0.638170i \(0.220308\pi\)
\(608\) 0 0
\(609\) 2.59116 + 2.59116i 0.104999 + 0.104999i
\(610\) 0 0
\(611\) 30.1312 + 24.6940i 1.21898 + 0.999010i
\(612\) 0 0
\(613\) 47.3997i 1.91445i 0.289337 + 0.957227i \(0.406565\pi\)
−0.289337 + 0.957227i \(0.593435\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.45402 −0.0585366 −0.0292683 0.999572i \(-0.509318\pi\)
−0.0292683 + 0.999572i \(0.509318\pi\)
\(618\) 0 0
\(619\) 11.7229 + 11.7229i 0.471182 + 0.471182i 0.902297 0.431115i \(-0.141880\pi\)
−0.431115 + 0.902297i \(0.641880\pi\)
\(620\) 0 0
\(621\) 17.3876i 0.697740i
\(622\) 0 0
\(623\) −6.72471 + 6.72471i −0.269420 + 0.269420i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −6.14405 + 6.14405i −0.245370 + 0.245370i
\(628\) 0 0
\(629\) 11.2790 11.2790i 0.449724 0.449724i
\(630\) 0 0
\(631\) 21.2758 21.2758i 0.846975 0.846975i −0.142780 0.989754i \(-0.545604\pi\)
0.989754 + 0.142780i \(0.0456041\pi\)
\(632\) 0 0
\(633\) −5.54869 5.54869i −0.220541 0.220541i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −12.3344 + 15.0502i −0.488706 + 0.596312i
\(638\) 0 0
\(639\) 24.7601 24.7601i 0.979493 0.979493i
\(640\) 0 0
\(641\) 18.2716i 0.721684i 0.932627 + 0.360842i \(0.117511\pi\)
−0.932627 + 0.360842i \(0.882489\pi\)
\(642\) 0 0
\(643\) 27.6308i 1.08965i 0.838550 + 0.544825i \(0.183404\pi\)
−0.838550 + 0.544825i \(0.816596\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.6648 + 22.6648i 0.891045 + 0.891045i 0.994621 0.103577i \(-0.0330288\pi\)
−0.103577 + 0.994621i \(0.533029\pi\)
\(648\) 0 0
\(649\) −21.5240 −0.844891
\(650\) 0 0
\(651\) −2.01576 −0.0790039
\(652\) 0 0
\(653\) −17.3338 17.3338i −0.678324 0.678324i 0.281296 0.959621i \(-0.409236\pi\)
−0.959621 + 0.281296i \(0.909236\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 21.6852i 0.846018i
\(658\) 0 0
\(659\) 22.5065i 0.876730i 0.898797 + 0.438365i \(0.144442\pi\)
−0.898797 + 0.438365i \(0.855558\pi\)
\(660\) 0 0
\(661\) −8.66806 + 8.66806i −0.337148 + 0.337148i −0.855293 0.518145i \(-0.826623\pi\)
0.518145 + 0.855293i \(0.326623\pi\)
\(662\) 0 0
\(663\) −3.07638 2.52124i −0.119477 0.0979167i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −37.4084 37.4084i −1.44846 1.44846i
\(668\) 0 0
\(669\) 1.02904 1.02904i 0.0397850 0.0397850i
\(670\) 0 0
\(671\) 58.4159 58.4159i 2.25512 2.25512i
\(672\) 0 0
\(673\) −9.10360 + 9.10360i −0.350918 + 0.350918i −0.860451 0.509533i \(-0.829818\pi\)
0.509533 + 0.860451i \(0.329818\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.29832 9.29832i 0.357364 0.357364i −0.505477 0.862840i \(-0.668683\pi\)
0.862840 + 0.505477i \(0.168683\pi\)
\(678\) 0 0
\(679\) 3.56993i 0.137001i
\(680\) 0 0
\(681\) −6.97569 6.97569i −0.267309 0.267309i
\(682\) 0 0
\(683\) −10.8177 −0.413927 −0.206964 0.978349i \(-0.566358\pi\)
−0.206964 + 0.978349i \(0.566358\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 5.40254i 0.206120i
\(688\) 0 0
\(689\) −47.0503 + 4.66619i −1.79247 + 0.177768i
\(690\) 0 0
\(691\) −0.121054 0.121054i −0.00460512 0.00460512i 0.704800 0.709406i \(-0.251037\pi\)
−0.709406 + 0.704800i \(0.751037\pi\)
\(692\) 0 0
\(693\) 15.1505 15.1505i 0.575520 0.575520i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 5.15470i 0.195248i
\(698\) 0 0
\(699\) 1.02769 0.0388708
\(700\) 0 0
\(701\) 1.15470i 0.0436125i 0.999762 + 0.0218063i \(0.00694170\pi\)
−0.999762 + 0.0218063i \(0.993058\pi\)
\(702\) 0 0
\(703\) 14.8937 + 14.8937i 0.561726 + 0.561726i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.61706 0.0608156
\(708\) 0 0
\(709\) −37.1464 37.1464i −1.39506 1.39506i −0.813503 0.581561i \(-0.802442\pi\)
−0.581561 0.813503i \(-0.697558\pi\)
\(710\) 0 0
\(711\) 2.70912 0.101600
\(712\) 0 0
\(713\) 29.1014 1.08985
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −7.47876 −0.279300
\(718\) 0 0
\(719\) −13.4383 −0.501165 −0.250582 0.968095i \(-0.580622\pi\)
−0.250582 + 0.968095i \(0.580622\pi\)
\(720\) 0 0
\(721\) −0.396375 0.396375i −0.0147618 0.0147618i
\(722\) 0 0
\(723\) −7.55709 −0.281051
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 28.7860 + 28.7860i 1.06761 + 1.06761i 0.997542 + 0.0700702i \(0.0223223\pi\)
0.0700702 + 0.997542i \(0.477678\pi\)
\(728\) 0 0
\(729\) 18.5939i 0.688664i
\(730\) 0 0
\(731\) −21.8481 −0.808080
\(732\) 0 0
\(733\) 28.5996i 1.05635i −0.849136 0.528174i \(-0.822877\pi\)
0.849136 0.528174i \(-0.177123\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.50322 + 5.50322i −0.202714 + 0.202714i
\(738\) 0 0
\(739\) 11.0484 + 11.0484i 0.406420 + 0.406420i 0.880488 0.474068i \(-0.157215\pi\)
−0.474068 + 0.880488i \(0.657215\pi\)
\(740\) 0 0
\(741\) 3.32923 4.06228i 0.122302 0.149232i
\(742\) 0 0
\(743\) 11.7882i 0.432466i 0.976342 + 0.216233i \(0.0693771\pi\)
−0.976342 + 0.216233i \(0.930623\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −14.5562 −0.532583
\(748\) 0 0
\(749\) −9.10370 9.10370i −0.332642 0.332642i
\(750\) 0 0
\(751\) 30.3583i 1.10779i −0.832587 0.553895i \(-0.813141\pi\)
0.832587 0.553895i \(-0.186859\pi\)
\(752\) 0 0
\(753\) 1.32053 1.32053i 0.0481229 0.0481229i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −19.1677 + 19.1677i −0.696662 + 0.696662i −0.963689 0.267027i \(-0.913959\pi\)
0.267027 + 0.963689i \(0.413959\pi\)
\(758\) 0 0
\(759\) 12.5641 12.5641i 0.456047 0.456047i
\(760\) 0 0
\(761\) 12.2165 12.2165i 0.442847 0.442847i −0.450121 0.892968i \(-0.648619\pi\)
0.892968 + 0.450121i \(0.148619\pi\)
\(762\) 0 0
\(763\) 3.89225 + 3.89225i 0.140909 + 0.140909i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.9471 1.28402i 0.467491 0.0463632i
\(768\) 0 0
\(769\) −23.5875 + 23.5875i −0.850586 + 0.850586i −0.990205 0.139619i \(-0.955412\pi\)
0.139619 + 0.990205i \(0.455412\pi\)
\(770\) 0 0
\(771\) 2.59956i 0.0936209i
\(772\) 0 0
\(773\) 31.8600i 1.14592i 0.819582 + 0.572962i \(0.194206\pi\)
−0.819582 + 0.572962i \(0.805794\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2.10962 + 2.10962i 0.0756821 + 0.0756821i
\(778\) 0 0
\(779\) 6.80666 0.243874
\(780\) 0 0
\(781\) 73.6208 2.63436
\(782\) 0 0
\(783\) −11.9456 11.9456i −0.426901 0.426901i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 28.3333i 1.00997i 0.863127 + 0.504987i \(0.168503\pi\)
−0.863127 + 0.504987i \(0.831497\pi\)
\(788\) 0 0
\(789\) 1.55342i 0.0553034i
\(790\) 0 0
\(791\) 11.4751 11.4751i 0.408007 0.408007i
\(792\) 0 0
\(793\) −31.6533 + 38.6230i −1.12404 + 1.37154i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 21.2610 + 21.2610i 0.753104 + 0.753104i 0.975057 0.221953i \(-0.0712433\pi\)
−0.221953 + 0.975057i \(0.571243\pi\)
\(798\) 0 0
\(799\) 20.8784 20.8784i 0.738626 0.738626i
\(800\) 0 0
\(801\) 15.0681 15.0681i 0.532406 0.532406i
\(802\) 0 0
\(803\) 32.2390 32.2390i 1.13769 1.13769i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −3.33606 + 3.33606i −0.117435 + 0.117435i
\(808\) 0 0
\(809\) 22.8766i 0.804300i −0.915574 0.402150i \(-0.868263\pi\)
0.915574 0.402150i \(-0.131737\pi\)
\(810\) 0 0
\(811\) −20.7214 20.7214i −0.727628 0.727628i 0.242519 0.970147i \(-0.422026\pi\)
−0.970147 + 0.242519i \(0.922026\pi\)
\(812\) 0 0
\(813\) −7.97321 −0.279633
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 28.8498i 1.00933i
\(818\) 0 0
\(819\) −8.20948 + 10.0171i −0.286863 + 0.350026i
\(820\) 0 0
\(821\) 28.2951 + 28.2951i 0.987505 + 0.987505i 0.999923 0.0124179i \(-0.00395285\pi\)
−0.0124179 + 0.999923i \(0.503953\pi\)
\(822\) 0 0
\(823\) 13.8518 13.8518i 0.482842 0.482842i −0.423196 0.906038i \(-0.639092\pi\)
0.906038 + 0.423196i \(0.139092\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.5533i 0.366975i 0.983022 + 0.183488i \(0.0587387\pi\)
−0.983022 + 0.183488i \(0.941261\pi\)
\(828\) 0 0
\(829\) 35.3056 1.22622 0.613108 0.789999i \(-0.289919\pi\)
0.613108 + 0.789999i \(0.289919\pi\)
\(830\) 0 0
\(831\) 0.626120i 0.0217198i
\(832\) 0 0
\(833\) 10.4286 + 10.4286i 0.361328 + 0.361328i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 9.29292 0.321210
\(838\) 0 0
\(839\) −2.46456 2.46456i −0.0850860 0.0850860i 0.663283 0.748369i \(-0.269163\pi\)
−0.748369 + 0.663283i \(0.769163\pi\)
\(840\) 0 0
\(841\) −22.4005 −0.772431
\(842\) 0 0
\(843\) −4.92549 −0.169643
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 31.1205 1.06931
\(848\) 0 0
\(849\) −4.28466 −0.147049
\(850\) 0 0
\(851\) −30.4563 30.4563i −1.04403 1.04403i
\(852\) 0 0
\(853\) −26.8214 −0.918348 −0.459174 0.888346i \(-0.651855\pi\)
−0.459174 + 0.888346i \(0.651855\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20.6207 20.6207i −0.704390 0.704390i 0.260959 0.965350i \(-0.415961\pi\)
−0.965350 + 0.260959i \(0.915961\pi\)
\(858\) 0 0
\(859\) 15.3195i 0.522696i −0.965245 0.261348i \(-0.915833\pi\)
0.965245 0.261348i \(-0.0841670\pi\)
\(860\) 0 0
\(861\) 0.964130 0.0328574
\(862\) 0 0
\(863\) 19.7984i 0.673945i 0.941514 + 0.336973i \(0.109403\pi\)
−0.941514 + 0.336973i \(0.890597\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 2.72100 2.72100i 0.0924099 0.0924099i
\(868\) 0 0
\(869\) 4.02761 + 4.02761i 0.136627 + 0.136627i
\(870\) 0 0
\(871\) 2.98199 3.63858i 0.101041 0.123289i
\(872\) 0 0
\(873\) 7.99918i 0.270731i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 36.4393 1.23047 0.615234 0.788345i \(-0.289062\pi\)
0.615234 + 0.788345i \(0.289062\pi\)
\(878\) 0 0
\(879\) −6.00420 6.00420i −0.202517 0.202517i
\(880\) 0 0
\(881\) 39.4236i 1.32821i 0.747637 + 0.664107i \(0.231188\pi\)
−0.747637 + 0.664107i \(0.768812\pi\)
\(882\) 0 0
\(883\) 23.9341 23.9341i 0.805445 0.805445i −0.178495 0.983941i \(-0.557123\pi\)
0.983941 + 0.178495i \(0.0571229\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −28.8887 + 28.8887i −0.969987 + 0.969987i −0.999563 0.0295751i \(-0.990585\pi\)
0.0295751 + 0.999563i \(0.490585\pi\)
\(888\) 0 0
\(889\) 8.71601 8.71601i 0.292326 0.292326i
\(890\) 0 0
\(891\) −31.8858 + 31.8858i −1.06822 + 1.06822i
\(892\) 0 0
\(893\) 27.5695 + 27.5695i 0.922577 + 0.922577i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −6.80799 + 8.30702i −0.227312 + 0.277363i
\(898\) 0 0
\(899\) 19.9932 19.9932i 0.666810 0.666810i
\(900\) 0 0
\(901\) 35.8352i 1.19384i
\(902\) 0 0
\(903\) 4.08644i 0.135988i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −22.9907 22.9907i −0.763394 0.763394i 0.213540 0.976934i \(-0.431501\pi\)
−0.976934 + 0.213540i \(0.931501\pi\)
\(908\) 0 0
\(909\) −3.62335 −0.120179
\(910\) 0 0
\(911\) 37.1427 1.23059 0.615296 0.788296i \(-0.289037\pi\)
0.615296 + 0.788296i \(0.289037\pi\)
\(912\) 0 0
\(913\) −21.6404 21.6404i −0.716194 0.716194i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.244917i 0.00808789i
\(918\) 0 0
\(919\) 46.7810i 1.54316i −0.636131 0.771581i \(-0.719466\pi\)
0.636131 0.771581i \(-0.280534\pi\)
\(920\) 0 0
\(921\) −3.93877 + 3.93877i −0.129787 + 0.129787i
\(922\) 0 0
\(923\) −44.2842 + 4.39186i −1.45763 + 0.144560i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0.888162 + 0.888162i 0.0291711 + 0.0291711i
\(928\) 0 0
\(929\) −29.4287 + 29.4287i −0.965525 + 0.965525i −0.999425 0.0339004i \(-0.989207\pi\)
0.0339004 + 0.999425i \(0.489207\pi\)
\(930\) 0 0
\(931\) −13.7707 + 13.7707i −0.451315 + 0.451315i
\(932\) 0 0
\(933\) 5.70168 5.70168i 0.186665 0.186665i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 29.2450 29.2450i 0.955392 0.955392i −0.0436550 0.999047i \(-0.513900\pi\)
0.999047 + 0.0436550i \(0.0139003\pi\)
\(938\) 0 0
\(939\) 2.81219i 0.0917725i
\(940\) 0 0
\(941\) 15.1015 + 15.1015i 0.492293 + 0.492293i 0.909028 0.416735i \(-0.136826\pi\)
−0.416735 + 0.909028i \(0.636826\pi\)
\(942\) 0 0
\(943\) −13.9190 −0.453266
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.1180i 1.23867i −0.785127 0.619335i \(-0.787402\pi\)
0.785127 0.619335i \(-0.212598\pi\)
\(948\) 0 0
\(949\) −17.4691 + 21.3155i −0.567070 + 0.691931i
\(950\) 0 0
\(951\) −3.34394 3.34394i −0.108435 0.108435i
\(952\) 0 0
\(953\) 35.8177 35.8177i 1.16025 1.16025i 0.175830 0.984421i \(-0.443739\pi\)
0.984421 0.175830i \(-0.0562609\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 17.2635i 0.558050i
\(958\) 0 0
\(959\) −5.11345 −0.165122
\(960\) 0 0
\(961\) 15.4466i 0.498277i
\(962\) 0 0
\(963\) 20.3987 + 20.3987i 0.657341 + 0.657341i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 15.1852 0.488322 0.244161 0.969735i \(-0.421487\pi\)
0.244161 + 0.969735i \(0.421487\pi\)
\(968\) 0 0
\(969\) −2.81482 2.81482i −0.0904252 0.0904252i
\(970\) 0 0
\(971\) −52.5959 −1.68788 −0.843941 0.536436i \(-0.819770\pi\)
−0.843941 + 0.536436i \(0.819770\pi\)
\(972\) 0 0
\(973\) −3.25510 −0.104354
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −40.6014 −1.29895 −0.649477 0.760381i \(-0.725012\pi\)
−0.649477 + 0.760381i \(0.725012\pi\)
\(978\) 0 0
\(979\) 44.8030 1.43191
\(980\) 0 0
\(981\) −8.72141 8.72141i −0.278453 0.278453i
\(982\) 0 0
\(983\) −12.2368 −0.390294 −0.195147 0.980774i \(-0.562518\pi\)
−0.195147 + 0.980774i \(0.562518\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 3.90508 + 3.90508i 0.124300 + 0.124300i
\(988\) 0 0
\(989\) 58.9955i 1.87595i
\(990\) 0 0
\(991\) −20.9218 −0.664603 −0.332302 0.943173i \(-0.607825\pi\)
−0.332302 + 0.943173i \(0.607825\pi\)
\(992\) 0 0
\(993\) 2.82061i 0.0895093i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −9.72732 + 9.72732i −0.308067 + 0.308067i −0.844159 0.536092i \(-0.819900\pi\)
0.536092 + 0.844159i \(0.319900\pi\)
\(998\) 0 0
\(999\) −9.72561 9.72561i −0.307705 0.307705i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1300.2.m.c.593.3 8
5.2 odd 4 1300.2.r.c.957.3 8
5.3 odd 4 260.2.r.c.177.2 yes 8
5.4 even 2 260.2.m.c.73.2 yes 8
13.5 odd 4 1300.2.r.c.993.3 8
15.8 even 4 2340.2.bp.g.1477.2 8
15.14 odd 2 2340.2.u.g.73.4 8
20.3 even 4 1040.2.cd.m.177.3 8
20.19 odd 2 1040.2.bg.m.593.3 8
65.18 even 4 260.2.m.c.57.2 8
65.44 odd 4 260.2.r.c.213.2 yes 8
65.57 even 4 inner 1300.2.m.c.57.3 8
195.44 even 4 2340.2.bp.g.1513.2 8
195.83 odd 4 2340.2.u.g.577.4 8
260.83 odd 4 1040.2.bg.m.577.3 8
260.239 even 4 1040.2.cd.m.993.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.2.m.c.57.2 8 65.18 even 4
260.2.m.c.73.2 yes 8 5.4 even 2
260.2.r.c.177.2 yes 8 5.3 odd 4
260.2.r.c.213.2 yes 8 65.44 odd 4
1040.2.bg.m.577.3 8 260.83 odd 4
1040.2.bg.m.593.3 8 20.19 odd 2
1040.2.cd.m.177.3 8 20.3 even 4
1040.2.cd.m.993.3 8 260.239 even 4
1300.2.m.c.57.3 8 65.57 even 4 inner
1300.2.m.c.593.3 8 1.1 even 1 trivial
1300.2.r.c.957.3 8 5.2 odd 4
1300.2.r.c.993.3 8 13.5 odd 4
2340.2.u.g.73.4 8 15.14 odd 2
2340.2.u.g.577.4 8 195.83 odd 4
2340.2.bp.g.1477.2 8 15.8 even 4
2340.2.bp.g.1513.2 8 195.44 even 4