Properties

Label 2340.2.fo.a.1961.5
Level $2340$
Weight $2$
Character 2340.1961
Analytic conductor $18.685$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1241,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.fo (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1961.5
Character \(\chi\) \(=\) 2340.1961
Dual form 2340.2.fo.a.1241.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{5} +(1.29465 + 4.83171i) q^{7} +(1.26507 - 4.72131i) q^{11} +(3.20513 + 1.65141i) q^{13} +(1.47595 - 2.55642i) q^{17} +(3.97808 - 1.06592i) q^{19} +(0.451533 + 0.782079i) q^{23} -1.00000i q^{25} +(4.66272 - 2.69202i) q^{29} +(-4.05259 - 4.05259i) q^{31} +(-4.33199 - 2.50108i) q^{35} +(-4.50710 - 1.20767i) q^{37} +(6.53030 + 1.74979i) q^{41} +(5.10306 + 2.94625i) q^{43} +(3.65247 + 3.65247i) q^{47} +(-15.6071 + 9.01078i) q^{49} +9.56102i q^{53} +(2.44393 + 4.23301i) q^{55} +(8.99069 - 2.40905i) q^{59} +(2.81119 - 4.86913i) q^{61} +(-3.43409 + 1.09864i) q^{65} +(-1.99493 + 7.44517i) q^{67} +(-2.55892 - 9.55001i) q^{71} +(-3.73823 + 3.73823i) q^{73} +24.4498 q^{77} +9.42258 q^{79} +(-10.7770 + 10.7770i) q^{83} +(0.764007 + 2.85131i) q^{85} +(-2.43121 + 9.07341i) q^{89} +(-3.82963 + 17.6243i) q^{91} +(-2.05921 + 3.56665i) q^{95} +(-3.38946 + 0.908204i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 12 q^{13} - 20 q^{19} - 28 q^{31} + 12 q^{49} + 16 q^{55} + 48 q^{61} + 16 q^{67} - 20 q^{73} + 80 q^{79} + 20 q^{85} + 4 q^{91} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) 1.29465 + 4.83171i 0.489333 + 1.82622i 0.559702 + 0.828694i \(0.310916\pi\)
−0.0703687 + 0.997521i \(0.522418\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.26507 4.72131i 0.381433 1.42353i −0.462280 0.886734i \(-0.652969\pi\)
0.843713 0.536794i \(-0.180365\pi\)
\(12\) 0 0
\(13\) 3.20513 + 1.65141i 0.888942 + 0.458020i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.47595 2.55642i 0.357970 0.620022i −0.629652 0.776878i \(-0.716802\pi\)
0.987622 + 0.156856i \(0.0501357\pi\)
\(18\) 0 0
\(19\) 3.97808 1.06592i 0.912635 0.244540i 0.228200 0.973614i \(-0.426716\pi\)
0.684434 + 0.729075i \(0.260049\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.451533 + 0.782079i 0.0941512 + 0.163075i 0.909254 0.416242i \(-0.136653\pi\)
−0.815103 + 0.579316i \(0.803320\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.66272 2.69202i 0.865845 0.499896i −0.000120517 1.00000i \(-0.500038\pi\)
0.865965 + 0.500104i \(0.166705\pi\)
\(30\) 0 0
\(31\) −4.05259 4.05259i −0.727866 0.727866i 0.242328 0.970194i \(-0.422089\pi\)
−0.970194 + 0.242328i \(0.922089\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.33199 2.50108i −0.732241 0.422759i
\(36\) 0 0
\(37\) −4.50710 1.20767i −0.740963 0.198540i −0.131457 0.991322i \(-0.541966\pi\)
−0.609506 + 0.792781i \(0.708632\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.53030 + 1.74979i 1.01986 + 0.273271i 0.729744 0.683720i \(-0.239639\pi\)
0.290117 + 0.956991i \(0.406306\pi\)
\(42\) 0 0
\(43\) 5.10306 + 2.94625i 0.778209 + 0.449299i 0.835795 0.549041i \(-0.185007\pi\)
−0.0575863 + 0.998341i \(0.518340\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.65247 + 3.65247i 0.532767 + 0.532767i 0.921395 0.388628i \(-0.127051\pi\)
−0.388628 + 0.921395i \(0.627051\pi\)
\(48\) 0 0
\(49\) −15.6071 + 9.01078i −2.22959 + 1.28725i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.56102i 1.31331i 0.754192 + 0.656654i \(0.228029\pi\)
−0.754192 + 0.656654i \(0.771971\pi\)
\(54\) 0 0
\(55\) 2.44393 + 4.23301i 0.329539 + 0.570779i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.99069 2.40905i 1.17049 0.313631i 0.379341 0.925257i \(-0.376151\pi\)
0.791148 + 0.611625i \(0.209484\pi\)
\(60\) 0 0
\(61\) 2.81119 4.86913i 0.359936 0.623428i −0.628013 0.778203i \(-0.716132\pi\)
0.987950 + 0.154774i \(0.0494650\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.43409 + 1.09864i −0.425947 + 0.136270i
\(66\) 0 0
\(67\) −1.99493 + 7.44517i −0.243719 + 0.909573i 0.730303 + 0.683123i \(0.239379\pi\)
−0.974023 + 0.226450i \(0.927288\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.55892 9.55001i −0.303687 1.13338i −0.934069 0.357092i \(-0.883768\pi\)
0.630382 0.776285i \(-0.282898\pi\)
\(72\) 0 0
\(73\) −3.73823 + 3.73823i −0.437527 + 0.437527i −0.891179 0.453652i \(-0.850121\pi\)
0.453652 + 0.891179i \(0.350121\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 24.4498 2.78632
\(78\) 0 0
\(79\) 9.42258 1.06012 0.530061 0.847959i \(-0.322169\pi\)
0.530061 + 0.847959i \(0.322169\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.7770 + 10.7770i −1.18293 + 1.18293i −0.203943 + 0.978983i \(0.565376\pi\)
−0.978983 + 0.203943i \(0.934624\pi\)
\(84\) 0 0
\(85\) 0.764007 + 2.85131i 0.0828682 + 0.309268i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.43121 + 9.07341i −0.257708 + 0.961780i 0.708856 + 0.705353i \(0.249212\pi\)
−0.966564 + 0.256426i \(0.917455\pi\)
\(90\) 0 0
\(91\) −3.82963 + 17.6243i −0.401454 + 1.84752i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.05921 + 3.56665i −0.211270 + 0.365931i
\(96\) 0 0
\(97\) −3.38946 + 0.908204i −0.344148 + 0.0922142i −0.426753 0.904368i \(-0.640343\pi\)
0.0826051 + 0.996582i \(0.473676\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.61150 7.98736i −0.458862 0.794772i 0.540039 0.841640i \(-0.318409\pi\)
−0.998901 + 0.0468678i \(0.985076\pi\)
\(102\) 0 0
\(103\) 13.7230i 1.35217i 0.736824 + 0.676084i \(0.236324\pi\)
−0.736824 + 0.676084i \(0.763676\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.43001 + 4.86707i −0.814960 + 0.470517i −0.848675 0.528914i \(-0.822599\pi\)
0.0337157 + 0.999431i \(0.489266\pi\)
\(108\) 0 0
\(109\) 6.71837 + 6.71837i 0.643503 + 0.643503i 0.951415 0.307912i \(-0.0996301\pi\)
−0.307912 + 0.951415i \(0.599630\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.17334 4.14153i −0.674811 0.389602i 0.123086 0.992396i \(-0.460721\pi\)
−0.797897 + 0.602794i \(0.794054\pi\)
\(114\) 0 0
\(115\) −0.872295 0.233731i −0.0813420 0.0217955i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 14.2627 + 3.82168i 1.30746 + 0.350333i
\(120\) 0 0
\(121\) −11.1641 6.44557i −1.01491 0.585961i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 12.3999 7.15909i 1.10031 0.635267i 0.164011 0.986459i \(-0.447557\pi\)
0.936304 + 0.351192i \(0.114223\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.82649i 0.683804i −0.939736 0.341902i \(-0.888929\pi\)
0.939736 0.341902i \(-0.111071\pi\)
\(132\) 0 0
\(133\) 10.3005 + 17.8409i 0.893164 + 1.54701i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.705335 0.188994i 0.0602609 0.0161469i −0.228563 0.973529i \(-0.573403\pi\)
0.288824 + 0.957382i \(0.406736\pi\)
\(138\) 0 0
\(139\) 9.88757 17.1258i 0.838653 1.45259i −0.0523682 0.998628i \(-0.516677\pi\)
0.891021 0.453962i \(-0.149990\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 11.8515 13.0432i 0.991076 1.09073i
\(144\) 0 0
\(145\) −1.39349 + 5.20058i −0.115723 + 0.431885i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.31873 + 12.3857i 0.271881 + 1.01467i 0.957903 + 0.287093i \(0.0926888\pi\)
−0.686022 + 0.727581i \(0.740645\pi\)
\(150\) 0 0
\(151\) −3.03916 + 3.03916i −0.247323 + 0.247323i −0.819871 0.572548i \(-0.805955\pi\)
0.572548 + 0.819871i \(0.305955\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.73123 0.460343
\(156\) 0 0
\(157\) 15.0409 1.20040 0.600198 0.799852i \(-0.295089\pi\)
0.600198 + 0.799852i \(0.295089\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.19420 + 3.19420i −0.251738 + 0.251738i
\(162\) 0 0
\(163\) −1.16112 4.33335i −0.0909459 0.339415i 0.905428 0.424500i \(-0.139550\pi\)
−0.996374 + 0.0850858i \(0.972884\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.51731 13.1268i 0.272178 1.01578i −0.685532 0.728043i \(-0.740430\pi\)
0.957709 0.287738i \(-0.0929032\pi\)
\(168\) 0 0
\(169\) 7.54567 + 10.5860i 0.580436 + 0.814306i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.29537 10.9039i 0.478628 0.829008i −0.521072 0.853513i \(-0.674468\pi\)
0.999700 + 0.0245050i \(0.00780097\pi\)
\(174\) 0 0
\(175\) 4.83171 1.29465i 0.365243 0.0978666i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.46186 16.3884i −0.707213 1.22493i −0.965887 0.258964i \(-0.916619\pi\)
0.258674 0.965965i \(-0.416714\pi\)
\(180\) 0 0
\(181\) 23.5898i 1.75342i 0.481020 + 0.876710i \(0.340267\pi\)
−0.481020 + 0.876710i \(0.659733\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.04096 2.33305i 0.297097 0.171529i
\(186\) 0 0
\(187\) −10.2024 10.2024i −0.746077 0.746077i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.55681 2.63088i −0.329720 0.190364i 0.325997 0.945371i \(-0.394300\pi\)
−0.655717 + 0.755007i \(0.727633\pi\)
\(192\) 0 0
\(193\) −4.47820 1.19993i −0.322348 0.0863728i 0.0940167 0.995571i \(-0.470029\pi\)
−0.416364 + 0.909198i \(0.636696\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.0510 + 4.56880i 1.21483 + 0.325514i 0.808657 0.588281i \(-0.200195\pi\)
0.406177 + 0.913795i \(0.366862\pi\)
\(198\) 0 0
\(199\) −5.93886 3.42880i −0.420994 0.243061i 0.274508 0.961585i \(-0.411485\pi\)
−0.695503 + 0.718524i \(0.744818\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 19.0437 + 19.0437i 1.33660 + 1.33660i
\(204\) 0 0
\(205\) −5.85491 + 3.38033i −0.408924 + 0.236093i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 20.1302i 1.39244i
\(210\) 0 0
\(211\) 3.20762 + 5.55576i 0.220821 + 0.382474i 0.955058 0.296420i \(-0.0957929\pi\)
−0.734236 + 0.678894i \(0.762460\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.69172 + 1.52509i −0.388172 + 0.104010i
\(216\) 0 0
\(217\) 14.3342 24.8276i 0.973072 1.68541i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.95230 5.75624i 0.602197 0.387206i
\(222\) 0 0
\(223\) 6.02636 22.4907i 0.403555 1.50609i −0.403150 0.915134i \(-0.632085\pi\)
0.806705 0.590954i \(-0.201249\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.142226 + 0.530796i 0.00943989 + 0.0352301i 0.970485 0.241161i \(-0.0775282\pi\)
−0.961045 + 0.276391i \(0.910861\pi\)
\(228\) 0 0
\(229\) −15.8318 + 15.8318i −1.04619 + 1.04619i −0.0473117 + 0.998880i \(0.515065\pi\)
−0.998880 + 0.0473117i \(0.984935\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −23.7509 −1.55598 −0.777988 0.628279i \(-0.783760\pi\)
−0.777988 + 0.628279i \(0.783760\pi\)
\(234\) 0 0
\(235\) −5.16537 −0.336952
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.3671 + 14.3671i −0.929331 + 0.929331i −0.997663 0.0683319i \(-0.978232\pi\)
0.0683319 + 0.997663i \(0.478232\pi\)
\(240\) 0 0
\(241\) 4.89235 + 18.2585i 0.315144 + 1.17613i 0.923855 + 0.382742i \(0.125020\pi\)
−0.608711 + 0.793392i \(0.708313\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.66432 17.4075i 0.297993 1.11212i
\(246\) 0 0
\(247\) 14.5105 + 3.15304i 0.923283 + 0.200623i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.19836 + 3.80766i −0.138759 + 0.240338i −0.927027 0.374994i \(-0.877645\pi\)
0.788268 + 0.615332i \(0.210978\pi\)
\(252\) 0 0
\(253\) 4.26365 1.14244i 0.268054 0.0718248i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.32092 + 14.4123i 0.519045 + 0.899012i 0.999755 + 0.0221323i \(0.00704551\pi\)
−0.480710 + 0.876879i \(0.659621\pi\)
\(258\) 0 0
\(259\) 23.3405i 1.45031i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.1731 5.87345i 0.627301 0.362172i −0.152405 0.988318i \(-0.548702\pi\)
0.779706 + 0.626146i \(0.215369\pi\)
\(264\) 0 0
\(265\) −6.76066 6.76066i −0.415304 0.415304i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.43790 1.40752i −0.148641 0.0858182i 0.423835 0.905740i \(-0.360684\pi\)
−0.572476 + 0.819921i \(0.694017\pi\)
\(270\) 0 0
\(271\) −4.96693 1.33088i −0.301719 0.0808454i 0.104783 0.994495i \(-0.466585\pi\)
−0.406503 + 0.913650i \(0.633252\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.72131 1.26507i −0.284706 0.0762866i
\(276\) 0 0
\(277\) −15.4692 8.93115i −0.929454 0.536621i −0.0428152 0.999083i \(-0.513633\pi\)
−0.886639 + 0.462462i \(0.846966\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.78331 6.78331i −0.404658 0.404658i 0.475213 0.879871i \(-0.342371\pi\)
−0.879871 + 0.475213i \(0.842371\pi\)
\(282\) 0 0
\(283\) −15.6599 + 9.04122i −0.930882 + 0.537445i −0.887090 0.461596i \(-0.847277\pi\)
−0.0437914 + 0.999041i \(0.513944\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 33.8179i 1.99621i
\(288\) 0 0
\(289\) 4.14316 + 7.17616i 0.243715 + 0.422127i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 26.0243 6.97320i 1.52036 0.407379i 0.600498 0.799626i \(-0.294969\pi\)
0.919860 + 0.392248i \(0.128302\pi\)
\(294\) 0 0
\(295\) −4.65393 + 8.06084i −0.270962 + 0.469320i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.155686 + 3.25233i 0.00900355 + 0.188087i
\(300\) 0 0
\(301\) −7.62875 + 28.4709i −0.439714 + 1.64103i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.45518 + 5.43081i 0.0833234 + 0.310967i
\(306\) 0 0
\(307\) −0.588995 + 0.588995i −0.0336157 + 0.0336157i −0.723715 0.690099i \(-0.757567\pi\)
0.690099 + 0.723715i \(0.257567\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −23.6333 −1.34012 −0.670062 0.742305i \(-0.733732\pi\)
−0.670062 + 0.742305i \(0.733732\pi\)
\(312\) 0 0
\(313\) 9.65826 0.545917 0.272959 0.962026i \(-0.411998\pi\)
0.272959 + 0.962026i \(0.411998\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.33201 + 5.33201i −0.299475 + 0.299475i −0.840808 0.541333i \(-0.817920\pi\)
0.541333 + 0.840808i \(0.317920\pi\)
\(318\) 0 0
\(319\) −6.81119 25.4197i −0.381353 1.42323i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.14650 11.7429i 0.175076 0.653391i
\(324\) 0 0
\(325\) 1.65141 3.20513i 0.0916039 0.177788i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.9190 + 22.3764i −0.712247 + 1.23365i
\(330\) 0 0
\(331\) −22.6503 + 6.06914i −1.24497 + 0.333590i −0.820393 0.571800i \(-0.806245\pi\)
−0.424581 + 0.905390i \(0.639579\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.85391 6.67516i −0.210561 0.364703i
\(336\) 0 0
\(337\) 17.2728i 0.940912i −0.882423 0.470456i \(-0.844089\pi\)
0.882423 0.470456i \(-0.155911\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −24.2603 + 14.0067i −1.31377 + 0.758506i
\(342\) 0 0
\(343\) −38.9839 38.9839i −2.10493 2.10493i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.4321 7.17768i −0.667390 0.385318i 0.127697 0.991813i \(-0.459242\pi\)
−0.795087 + 0.606495i \(0.792575\pi\)
\(348\) 0 0
\(349\) 13.9002 + 3.72455i 0.744062 + 0.199371i 0.610883 0.791721i \(-0.290815\pi\)
0.133179 + 0.991092i \(0.457481\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −19.5034 5.22593i −1.03806 0.278148i −0.300753 0.953702i \(-0.597238\pi\)
−0.737311 + 0.675554i \(0.763905\pi\)
\(354\) 0 0
\(355\) 8.56230 + 4.94345i 0.454440 + 0.262371i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.9111 + 11.9111i 0.628646 + 0.628646i 0.947727 0.319081i \(-0.103374\pi\)
−0.319081 + 0.947727i \(0.603374\pi\)
\(360\) 0 0
\(361\) −1.76554 + 1.01934i −0.0929232 + 0.0536492i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5.28666i 0.276716i
\(366\) 0 0
\(367\) −7.90259 13.6877i −0.412512 0.714491i 0.582652 0.812722i \(-0.302015\pi\)
−0.995164 + 0.0982307i \(0.968682\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −46.1961 + 12.3782i −2.39838 + 0.642645i
\(372\) 0 0
\(373\) 9.56288 16.5634i 0.495147 0.857620i −0.504837 0.863215i \(-0.668447\pi\)
0.999984 + 0.00559453i \(0.00178081\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.3902 0.928192i 0.998648 0.0478043i
\(378\) 0 0
\(379\) 0.0157597 0.0588159i 0.000809520 0.00302117i −0.965520 0.260329i \(-0.916169\pi\)
0.966329 + 0.257308i \(0.0828355\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.24921 23.3224i −0.319320 1.19172i −0.919900 0.392153i \(-0.871730\pi\)
0.600580 0.799565i \(-0.294936\pi\)
\(384\) 0 0
\(385\) −17.2886 + 17.2886i −0.881110 + 0.881110i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 33.1856 1.68258 0.841288 0.540587i \(-0.181798\pi\)
0.841288 + 0.540587i \(0.181798\pi\)
\(390\) 0 0
\(391\) 2.66576 0.134813
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.66277 + 6.66277i −0.335240 + 0.335240i
\(396\) 0 0
\(397\) 7.20190 + 26.8779i 0.361453 + 1.34896i 0.872166 + 0.489210i \(0.162715\pi\)
−0.510713 + 0.859751i \(0.670618\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.57520 + 20.8069i −0.278412 + 1.03905i 0.675108 + 0.737719i \(0.264097\pi\)
−0.953520 + 0.301329i \(0.902570\pi\)
\(402\) 0 0
\(403\) −6.29656 19.6816i −0.313654 0.980408i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.4036 + 19.7516i −0.565256 + 0.979051i
\(408\) 0 0
\(409\) 9.14530 2.45048i 0.452206 0.121168i −0.0255253 0.999674i \(-0.508126\pi\)
0.477732 + 0.878506i \(0.341459\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 23.2797 + 40.3216i 1.14552 + 1.98409i
\(414\) 0 0
\(415\) 15.2409i 0.748148i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.03957 4.64165i 0.392759 0.226759i −0.290596 0.956846i \(-0.593854\pi\)
0.683355 + 0.730086i \(0.260520\pi\)
\(420\) 0 0
\(421\) 22.9212 + 22.9212i 1.11711 + 1.11711i 0.992163 + 0.124947i \(0.0398762\pi\)
0.124947 + 0.992163i \(0.460124\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.55642 1.47595i −0.124004 0.0715940i
\(426\) 0 0
\(427\) 27.1658 + 7.27904i 1.31464 + 0.352258i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.4567 6.55316i −1.17804 0.315655i −0.383891 0.923378i \(-0.625416\pi\)
−0.794149 + 0.607724i \(0.792083\pi\)
\(432\) 0 0
\(433\) −30.7193 17.7358i −1.47628 0.852329i −0.476636 0.879101i \(-0.658144\pi\)
−0.999642 + 0.0267717i \(0.991477\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.62987 + 2.62987i 0.125804 + 0.125804i
\(438\) 0 0
\(439\) 29.2884 16.9097i 1.39786 0.807055i 0.403691 0.914895i \(-0.367727\pi\)
0.994168 + 0.107840i \(0.0343936\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.29148i 0.298917i 0.988768 + 0.149459i \(0.0477531\pi\)
−0.988768 + 0.149459i \(0.952247\pi\)
\(444\) 0 0
\(445\) −4.69674 8.13500i −0.222647 0.385636i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.46974 + 0.661766i −0.116554 + 0.0312307i −0.316625 0.948551i \(-0.602550\pi\)
0.200070 + 0.979782i \(0.435883\pi\)
\(450\) 0 0
\(451\) 16.5226 28.6179i 0.778018 1.34757i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −9.75427 15.1702i −0.457287 0.711189i
\(456\) 0 0
\(457\) 1.96538 7.33489i 0.0919365 0.343112i −0.904601 0.426260i \(-0.859831\pi\)
0.996537 + 0.0831483i \(0.0264975\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −9.27469 34.6136i −0.431966 1.61212i −0.748225 0.663445i \(-0.769094\pi\)
0.316260 0.948673i \(-0.397573\pi\)
\(462\) 0 0
\(463\) 25.7771 25.7771i 1.19796 1.19796i 0.223189 0.974775i \(-0.428353\pi\)
0.974775 0.223189i \(-0.0716467\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −26.9467 −1.24694 −0.623472 0.781846i \(-0.714278\pi\)
−0.623472 + 0.781846i \(0.714278\pi\)
\(468\) 0 0
\(469\) −38.5557 −1.78034
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 20.3659 20.3659i 0.936424 0.936424i
\(474\) 0 0
\(475\) −1.06592 3.97808i −0.0489079 0.182527i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.59843 35.8218i 0.438564 1.63674i −0.293828 0.955858i \(-0.594929\pi\)
0.732392 0.680883i \(-0.238404\pi\)
\(480\) 0 0
\(481\) −12.4515 11.3138i −0.567738 0.515867i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.75452 3.03891i 0.0796685 0.137990i
\(486\) 0 0
\(487\) 15.6125 4.18335i 0.707468 0.189565i 0.112895 0.993607i \(-0.463988\pi\)
0.594573 + 0.804041i \(0.297321\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −16.0669 27.8287i −0.725088 1.25589i −0.958938 0.283617i \(-0.908466\pi\)
0.233849 0.972273i \(-0.424868\pi\)
\(492\) 0 0
\(493\) 15.8931i 0.715790i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 42.8300 24.7279i 1.92119 1.10920i
\(498\) 0 0
\(499\) 0.793611 + 0.793611i 0.0355269 + 0.0355269i 0.724647 0.689120i \(-0.242003\pi\)
−0.689120 + 0.724647i \(0.742003\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −16.5556 9.55838i −0.738178 0.426187i 0.0832285 0.996530i \(-0.473477\pi\)
−0.821406 + 0.570343i \(0.806810\pi\)
\(504\) 0 0
\(505\) 8.90874 + 2.38709i 0.396434 + 0.106224i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −27.9305 7.48394i −1.23800 0.331720i −0.420308 0.907382i \(-0.638078\pi\)
−0.817688 + 0.575662i \(0.804745\pi\)
\(510\) 0 0
\(511\) −22.9018 13.2223i −1.01311 0.584922i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.70363 9.70363i −0.427593 0.427593i
\(516\) 0 0
\(517\) 21.8651 12.6238i 0.961624 0.555194i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.45705i 0.326699i 0.986568 + 0.163350i \(0.0522299\pi\)
−0.986568 + 0.163350i \(0.947770\pi\)
\(522\) 0 0
\(523\) 10.0343 + 17.3799i 0.438770 + 0.759972i 0.997595 0.0693137i \(-0.0220809\pi\)
−0.558825 + 0.829286i \(0.688748\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −16.3415 + 4.37870i −0.711847 + 0.190739i
\(528\) 0 0
\(529\) 11.0922 19.2123i 0.482271 0.835318i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 18.0408 + 16.3925i 0.781434 + 0.710039i
\(534\) 0 0
\(535\) 2.51938 9.40245i 0.108922 0.406503i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 22.7985 + 85.0853i 0.982003 + 3.66488i
\(540\) 0 0
\(541\) 13.1755 13.1755i 0.566459 0.566459i −0.364676 0.931135i \(-0.618820\pi\)
0.931135 + 0.364676i \(0.118820\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.50121 −0.406987
\(546\) 0 0
\(547\) −32.6348 −1.39536 −0.697681 0.716409i \(-0.745785\pi\)
−0.697681 + 0.716409i \(0.745785\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 15.6792 15.6792i 0.667955 0.667955i
\(552\) 0 0
\(553\) 12.1990 + 45.5272i 0.518753 + 1.93601i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −12.0217 + 44.8657i −0.509377 + 1.90102i −0.0828113 + 0.996565i \(0.526390\pi\)
−0.426566 + 0.904456i \(0.640277\pi\)
\(558\) 0 0
\(559\) 11.4905 + 17.8704i 0.485995 + 0.755836i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 17.5049 30.3194i 0.737743 1.27781i −0.215766 0.976445i \(-0.569225\pi\)
0.953509 0.301364i \(-0.0974419\pi\)
\(564\) 0 0
\(565\) 8.00082 2.14381i 0.336597 0.0901909i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.75159 11.6941i −0.283041 0.490242i 0.689091 0.724675i \(-0.258010\pi\)
−0.972132 + 0.234433i \(0.924677\pi\)
\(570\) 0 0
\(571\) 15.6642i 0.655526i 0.944760 + 0.327763i \(0.106295\pi\)
−0.944760 + 0.327763i \(0.893705\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.782079 0.451533i 0.0326149 0.0188302i
\(576\) 0 0
\(577\) 8.34957 + 8.34957i 0.347597 + 0.347597i 0.859214 0.511617i \(-0.170953\pi\)
−0.511617 + 0.859214i \(0.670953\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −66.0236 38.1187i −2.73912 1.58143i
\(582\) 0 0
\(583\) 45.1405 + 12.0954i 1.86953 + 0.500939i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.9618 + 7.76028i 1.19538 + 0.320301i 0.801010 0.598651i \(-0.204296\pi\)
0.394370 + 0.918952i \(0.370963\pi\)
\(588\) 0 0
\(589\) −20.4413 11.8018i −0.842268 0.486284i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.64256 + 9.64256i 0.395973 + 0.395973i 0.876810 0.480837i \(-0.159667\pi\)
−0.480837 + 0.876810i \(0.659667\pi\)
\(594\) 0 0
\(595\) −12.7876 + 7.38292i −0.524240 + 0.302670i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 35.6265i 1.45566i −0.685758 0.727829i \(-0.740529\pi\)
0.685758 0.727829i \(-0.259471\pi\)
\(600\) 0 0
\(601\) −14.2791 24.7322i −0.582459 1.00885i −0.995187 0.0979937i \(-0.968757\pi\)
0.412728 0.910854i \(-0.364576\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 12.4519 3.33647i 0.506241 0.135647i
\(606\) 0 0
\(607\) 13.9940 24.2383i 0.567999 0.983803i −0.428765 0.903416i \(-0.641051\pi\)
0.996764 0.0803867i \(-0.0256155\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.67489 + 17.7384i 0.229581 + 0.717617i
\(612\) 0 0
\(613\) −1.21419 + 4.53143i −0.0490408 + 0.183023i −0.986102 0.166143i \(-0.946869\pi\)
0.937061 + 0.349166i \(0.113535\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.72124 + 21.3520i 0.230329 + 0.859598i 0.980199 + 0.198013i \(0.0634490\pi\)
−0.749871 + 0.661584i \(0.769884\pi\)
\(618\) 0 0
\(619\) 9.30361 9.30361i 0.373944 0.373944i −0.494968 0.868911i \(-0.664820\pi\)
0.868911 + 0.494968i \(0.164820\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −46.9877 −1.88252
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.73957 + 9.73957i −0.388342 + 0.388342i
\(630\) 0 0
\(631\) 3.18322 + 11.8799i 0.126722 + 0.472933i 0.999895 0.0144773i \(-0.00460844\pi\)
−0.873173 + 0.487410i \(0.837942\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.70582 + 13.8303i −0.147061 + 0.548839i
\(636\) 0 0
\(637\) −64.9033 + 3.10686i −2.57156 + 0.123098i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8.35676 + 14.4743i −0.330072 + 0.571702i −0.982526 0.186127i \(-0.940406\pi\)
0.652453 + 0.757829i \(0.273740\pi\)
\(642\) 0 0
\(643\) −39.5404 + 10.5948i −1.55932 + 0.417818i −0.932448 0.361304i \(-0.882332\pi\)
−0.626872 + 0.779123i \(0.715665\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7.59770 13.1596i −0.298697 0.517358i 0.677141 0.735853i \(-0.263219\pi\)
−0.975838 + 0.218495i \(0.929885\pi\)
\(648\) 0 0
\(649\) 45.4954i 1.78585i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −35.7721 + 20.6530i −1.39987 + 0.808215i −0.994379 0.105883i \(-0.966233\pi\)
−0.405492 + 0.914099i \(0.632900\pi\)
\(654\) 0 0
\(655\) 5.53416 + 5.53416i 0.216238 + 0.216238i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 33.9981 + 19.6288i 1.32438 + 0.764630i 0.984424 0.175812i \(-0.0562550\pi\)
0.339954 + 0.940442i \(0.389588\pi\)
\(660\) 0 0
\(661\) −2.22310 0.595679i −0.0864687 0.0231692i 0.215325 0.976542i \(-0.430919\pi\)
−0.301794 + 0.953373i \(0.597585\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −19.8990 5.33192i −0.771650 0.206763i
\(666\) 0 0
\(667\) 4.21074 + 2.43107i 0.163041 + 0.0941315i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −19.4323 19.4323i −0.750176 0.750176i
\(672\) 0 0
\(673\) −1.38701 + 0.800790i −0.0534653 + 0.0308682i −0.526494 0.850179i \(-0.676494\pi\)
0.473029 + 0.881047i \(0.343161\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.78167i 0.260641i 0.991472 + 0.130320i \(0.0416006\pi\)
−0.991472 + 0.130320i \(0.958399\pi\)
\(678\) 0 0
\(679\) −8.77636 15.2011i −0.336806 0.583365i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.49948 + 1.74153i −0.248696 + 0.0666378i −0.381013 0.924570i \(-0.624425\pi\)
0.132318 + 0.991207i \(0.457758\pi\)
\(684\) 0 0
\(685\) −0.365108 + 0.632386i −0.0139501 + 0.0241622i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −15.7892 + 30.6443i −0.601521 + 1.16745i
\(690\) 0 0
\(691\) 5.49544 20.5093i 0.209057 0.780210i −0.779118 0.626877i \(-0.784333\pi\)
0.988175 0.153333i \(-0.0490006\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.11818 + 19.1013i 0.194144 + 0.724555i
\(696\) 0 0
\(697\) 14.1116 14.1116i 0.534514 0.534514i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −16.7276 −0.631791 −0.315896 0.948794i \(-0.602305\pi\)
−0.315896 + 0.948794i \(0.602305\pi\)
\(702\) 0 0
\(703\) −19.2169 −0.724779
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 32.6223 32.6223i 1.22689 1.22689i
\(708\) 0 0
\(709\) 4.54094 + 16.9470i 0.170538 + 0.636458i 0.997269 + 0.0738596i \(0.0235317\pi\)
−0.826730 + 0.562599i \(0.809802\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.33956 4.99932i 0.0501671 0.187226i
\(714\) 0 0
\(715\) 0.842651 + 17.6033i 0.0315134 + 0.658325i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −25.4389 + 44.0614i −0.948710 + 1.64321i −0.200564 + 0.979681i \(0.564277\pi\)
−0.748146 + 0.663534i \(0.769056\pi\)
\(720\) 0 0
\(721\) −66.3056 + 17.7665i −2.46935 + 0.661661i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.69202 4.66272i −0.0999791 0.173169i
\(726\) 0 0
\(727\) 1.07231i 0.0397698i −0.999802 0.0198849i \(-0.993670\pi\)
0.999802 0.0198849i \(-0.00632998\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 15.0637 8.69703i 0.557151 0.321671i
\(732\) 0 0
\(733\) −37.9128 37.9128i −1.40034 1.40034i −0.798969 0.601372i \(-0.794621\pi\)
−0.601372 0.798969i \(-0.705379\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 32.6272 + 18.8373i 1.20184 + 0.693882i
\(738\) 0 0
\(739\) 4.04046 + 1.08264i 0.148631 + 0.0398254i 0.332367 0.943150i \(-0.392153\pi\)
−0.183737 + 0.982976i \(0.558819\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −46.3917 12.4306i −1.70195 0.456035i −0.728518 0.685027i \(-0.759791\pi\)
−0.973428 + 0.228991i \(0.926457\pi\)
\(744\) 0 0
\(745\) −11.1047 6.41130i −0.406844 0.234892i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −34.4302 34.4302i −1.25805 1.25805i
\(750\) 0 0
\(751\) 37.7380 21.7881i 1.37708 0.795058i 0.385274 0.922802i \(-0.374107\pi\)
0.991807 + 0.127744i \(0.0407737\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.29802i 0.156421i
\(756\) 0 0
\(757\) −5.14830 8.91712i −0.187118 0.324098i 0.757170 0.653218i \(-0.226581\pi\)
−0.944288 + 0.329120i \(0.893248\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 46.5535 12.4740i 1.68756 0.452181i 0.717803 0.696246i \(-0.245148\pi\)
0.969759 + 0.244065i \(0.0784811\pi\)
\(762\) 0 0
\(763\) −23.7633 + 41.1592i −0.860288 + 1.49006i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 32.7946 + 7.12605i 1.18415 + 0.257307i
\(768\) 0 0
\(769\) −1.36511 + 5.09467i −0.0492272 + 0.183718i −0.986162 0.165787i \(-0.946984\pi\)
0.936934 + 0.349505i \(0.113650\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.79553 + 32.8254i 0.316353 + 1.18065i 0.922723 + 0.385464i \(0.125958\pi\)
−0.606370 + 0.795183i \(0.707375\pi\)
\(774\) 0 0
\(775\) −4.05259 + 4.05259i −0.145573 + 0.145573i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 27.8432 0.997587
\(780\) 0 0
\(781\) −48.3257 −1.72923
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10.6355 + 10.6355i −0.379598 + 0.379598i
\(786\) 0 0
\(787\) −12.8105 47.8093i −0.456643 1.70422i −0.683211 0.730221i \(-0.739417\pi\)
0.226568 0.973995i \(-0.427249\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 10.7237 40.0213i 0.381290 1.42299i
\(792\) 0 0
\(793\) 17.0512 10.9637i 0.605505 0.389334i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.119917 0.207702i 0.00424766 0.00735717i −0.863894 0.503674i \(-0.831981\pi\)
0.868141 + 0.496317i \(0.165315\pi\)
\(798\) 0 0
\(799\) 14.7281 3.94638i 0.521042 0.139613i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.9202 + 22.3785i 0.455944 + 0.789719i
\(804\) 0 0
\(805\) 4.51728i 0.159213i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 40.8499 23.5847i 1.43621 0.829194i 0.438623 0.898671i \(-0.355466\pi\)
0.997584 + 0.0694772i \(0.0221331\pi\)
\(810\) 0 0
\(811\) −4.27615 4.27615i −0.150156 0.150156i 0.628032 0.778188i \(-0.283861\pi\)
−0.778188 + 0.628032i \(0.783861\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.88518 + 2.24311i 0.136092 + 0.0785727i
\(816\) 0 0
\(817\) 23.4409 + 6.28096i 0.820092 + 0.219743i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17.6013 4.71625i −0.614289 0.164598i −0.0617587 0.998091i \(-0.519671\pi\)
−0.552530 + 0.833493i \(0.686338\pi\)
\(822\) 0 0
\(823\) 43.9961 + 25.4012i 1.53361 + 0.885429i 0.999191 + 0.0402071i \(0.0128018\pi\)
0.534416 + 0.845222i \(0.320532\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.68880 + 5.68880i 0.197819 + 0.197819i 0.799064 0.601245i \(-0.205329\pi\)
−0.601245 + 0.799064i \(0.705329\pi\)
\(828\) 0 0
\(829\) −19.7314 + 11.3919i −0.685301 + 0.395658i −0.801849 0.597527i \(-0.796150\pi\)
0.116549 + 0.993185i \(0.462817\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 53.1978i 1.84319i
\(834\) 0 0
\(835\) 6.79492 + 11.7691i 0.235148 + 0.407288i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 40.9704 10.9780i 1.41445 0.379002i 0.530941 0.847409i \(-0.321838\pi\)
0.883513 + 0.468407i \(0.155172\pi\)
\(840\) 0 0
\(841\) −0.00605310 + 0.0104843i −0.000208727 + 0.000361526i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.8210 2.14982i −0.441056 0.0739562i
\(846\) 0 0
\(847\) 16.6896 62.2863i 0.573460 2.14018i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1.09061 4.07021i −0.0373856 0.139525i
\(852\) 0 0
\(853\) 26.7767 26.7767i 0.916817 0.916817i −0.0799792 0.996797i \(-0.525485\pi\)
0.996797 + 0.0799792i \(0.0254854\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −23.8178 −0.813600 −0.406800 0.913517i \(-0.633355\pi\)
−0.406800 + 0.913517i \(0.633355\pi\)
\(858\) 0 0
\(859\) −44.7622 −1.52727 −0.763633 0.645650i \(-0.776586\pi\)
−0.763633 + 0.645650i \(0.776586\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −11.4545 + 11.4545i −0.389917 + 0.389917i −0.874658 0.484741i \(-0.838914\pi\)
0.484741 + 0.874658i \(0.338914\pi\)
\(864\) 0 0
\(865\) 3.25872 + 12.1617i 0.110800 + 0.413511i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11.9202 44.4869i 0.404366 1.50911i
\(870\) 0 0
\(871\) −18.6891 + 20.5683i −0.633255 + 0.696929i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.50108 + 4.33199i −0.0845519 + 0.146448i
\(876\) 0 0
\(877\) −2.97974 + 0.798420i −0.100619 + 0.0269607i −0.308777 0.951134i \(-0.599920\pi\)
0.208158 + 0.978095i \(0.433253\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −0.884341 1.53172i −0.0297942 0.0516051i 0.850744 0.525581i \(-0.176152\pi\)
−0.880538 + 0.473975i \(0.842819\pi\)
\(882\) 0 0
\(883\) 20.1220i 0.677158i −0.940938 0.338579i \(-0.890054\pi\)
0.940938 0.338579i \(-0.109946\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16.8952 9.75447i 0.567287 0.327523i −0.188778 0.982020i \(-0.560453\pi\)
0.756065 + 0.654497i \(0.227119\pi\)
\(888\) 0 0
\(889\) 50.6443 + 50.6443i 1.69855 + 1.69855i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 18.4231 + 10.6366i 0.616505 + 0.355939i
\(894\) 0 0
\(895\) 18.2789 + 4.89782i 0.610997 + 0.163716i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −29.8057 7.98642i −0.994076 0.266362i
\(900\) 0 0
\(901\) 24.4420 + 14.1116i 0.814280 + 0.470125i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −16.6805 16.6805i −0.554480 0.554480i
\(906\) 0 0
\(907\) −5.37878 + 3.10544i −0.178600 + 0.103115i −0.586635 0.809852i \(-0.699547\pi\)
0.408035 + 0.912966i \(0.366214\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 17.4945i 0.579618i 0.957085 + 0.289809i \(0.0935917\pi\)
−0.957085 + 0.289809i \(0.906408\pi\)
\(912\) 0 0
\(913\) 37.2477 + 64.5150i 1.23272 + 2.13513i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 37.8153 10.1326i 1.24877 0.334608i
\(918\) 0 0
\(919\) −6.50509 + 11.2671i −0.214583 + 0.371669i −0.953144 0.302518i \(-0.902173\pi\)
0.738560 + 0.674187i \(0.235506\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 7.56936 34.8348i 0.249149 1.14660i
\(924\) 0 0
\(925\) −1.20767 + 4.50710i −0.0397081 + 0.148193i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −9.52510 35.5481i −0.312508 1.16630i −0.926287 0.376819i \(-0.877018\pi\)
0.613779 0.789478i \(-0.289649\pi\)
\(930\) 0 0
\(931\) −52.4816 + 52.4816i −1.72002 + 1.72002i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 14.4284 0.471861
\(936\) 0 0
\(937\) 13.5562 0.442862 0.221431 0.975176i \(-0.428927\pi\)
0.221431 + 0.975176i \(0.428927\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20.1111 20.1111i 0.655603 0.655603i −0.298733 0.954337i \(-0.596564\pi\)
0.954337 + 0.298733i \(0.0965641\pi\)
\(942\) 0 0
\(943\) 1.58018 + 5.89730i 0.0514576 + 0.192042i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.4238 46.3663i 0.403719 1.50670i −0.402686 0.915338i \(-0.631923\pi\)
0.806406 0.591363i \(-0.201410\pi\)
\(948\) 0 0
\(949\) −18.1549 + 5.80814i −0.589332 + 0.188540i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 4.01265 6.95011i 0.129982 0.225136i −0.793687 0.608326i \(-0.791841\pi\)
0.923670 + 0.383190i \(0.125175\pi\)
\(954\) 0 0
\(955\) 5.08247 1.36184i 0.164465 0.0440682i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.82633 + 3.16330i 0.0589753 + 0.102148i
\(960\) 0 0
\(961\) 1.84695i 0.0595790i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.01504 2.31809i 0.129249 0.0746218i
\(966\) 0 0
\(967\) 22.9644 + 22.9644i 0.738484 + 0.738484i 0.972285 0.233800i \(-0.0751162\pi\)
−0.233800 + 0.972285i \(0.575116\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 14.4507 + 8.34311i 0.463745 + 0.267743i 0.713618 0.700535i \(-0.247055\pi\)
−0.249873 + 0.968279i \(0.580389\pi\)
\(972\) 0 0
\(973\) 95.5478 + 25.6020i 3.06312 + 0.820761i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −15.7156 4.21099i −0.502788 0.134722i −0.00149424 0.999999i \(-0.500476\pi\)
−0.501293 + 0.865277i \(0.667142\pi\)
\(978\) 0 0
\(979\) 39.7627 + 22.9570i 1.27082 + 0.733709i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.23542 + 1.23542i 0.0394037 + 0.0394037i 0.726534 0.687130i \(-0.241130\pi\)
−0.687130 + 0.726534i \(0.741130\pi\)
\(984\) 0 0
\(985\) −15.2875 + 8.82624i −0.487100 + 0.281228i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.32132i 0.169208i
\(990\) 0 0
\(991\) 10.3071 + 17.8524i 0.327415 + 0.567100i 0.981998 0.188890i \(-0.0604890\pi\)
−0.654583 + 0.755990i \(0.727156\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.62393 1.77488i 0.209993 0.0562674i
\(996\) 0 0
\(997\) 1.31531 2.27818i 0.0416561 0.0721506i −0.844446 0.535641i \(-0.820070\pi\)
0.886102 + 0.463491i \(0.153403\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.fo.a.1961.5 yes 40
3.2 odd 2 inner 2340.2.fo.a.1961.6 yes 40
13.6 odd 12 inner 2340.2.fo.a.1241.6 yes 40
39.32 even 12 inner 2340.2.fo.a.1241.5 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.fo.a.1241.5 40 39.32 even 12 inner
2340.2.fo.a.1241.6 yes 40 13.6 odd 12 inner
2340.2.fo.a.1961.5 yes 40 1.1 even 1 trivial
2340.2.fo.a.1961.6 yes 40 3.2 odd 2 inner