L(s) = 1 | + (−0.707 + 0.707i)5-s + (1.29 + 4.83i)7-s + (1.26 − 4.72i)11-s + (3.20 + 1.65i)13-s + (1.47 − 2.55i)17-s + (3.97 − 1.06i)19-s + (0.451 + 0.782i)23-s − 1.00i·25-s + (4.66 − 2.69i)29-s + (−4.05 − 4.05i)31-s + (−4.33 − 2.50i)35-s + (−4.50 − 1.20i)37-s + (6.53 + 1.74i)41-s + (5.10 + 2.94i)43-s + (3.65 + 3.65i)47-s + ⋯ |
L(s) = 1 | + (−0.316 + 0.316i)5-s + (0.489 + 1.82i)7-s + (0.381 − 1.42i)11-s + (0.888 + 0.458i)13-s + (0.357 − 0.620i)17-s + (0.912 − 0.244i)19-s + (0.0941 + 0.163i)23-s − 0.200i·25-s + (0.865 − 0.499i)29-s + (−0.727 − 0.727i)31-s + (−0.732 − 0.422i)35-s + (−0.740 − 0.198i)37-s + (1.01 + 0.273i)41-s + (0.778 + 0.449i)43-s + (0.532 + 0.532i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.710 - 0.703i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.710 - 0.703i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.001198961\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.001198961\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
| 13 | \( 1 + (-3.20 - 1.65i)T \) |
good | 7 | \( 1 + (-1.29 - 4.83i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (-1.26 + 4.72i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-1.47 + 2.55i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.97 + 1.06i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.451 - 0.782i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.66 + 2.69i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.05 + 4.05i)T + 31iT^{2} \) |
| 37 | \( 1 + (4.50 + 1.20i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-6.53 - 1.74i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-5.10 - 2.94i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.65 - 3.65i)T + 47iT^{2} \) |
| 53 | \( 1 - 9.56iT - 53T^{2} \) |
| 59 | \( 1 + (-8.99 + 2.40i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-2.81 + 4.86i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.99 - 7.44i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (2.55 + 9.55i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (3.73 - 3.73i)T - 73iT^{2} \) |
| 79 | \( 1 - 9.42T + 79T^{2} \) |
| 83 | \( 1 + (10.7 - 10.7i)T - 83iT^{2} \) |
| 89 | \( 1 + (2.43 - 9.07i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (3.38 - 0.908i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.091658728197785900245048744893, −8.373094774699900737977171176698, −7.75058839391184295262516528971, −6.61879833629045875329078281610, −5.80262050413709660061284920066, −5.43942136583767452444657684244, −4.19901759177592128392559284068, −3.16742845587308146909943834516, −2.48077446453219159254306763326, −1.08859202138920913822611031046,
0.896748451759690631305485718710, 1.68115722021004055437219189813, 3.41400594586416185468215055179, 4.04326444241855113464071810519, 4.73354304987379534347107375209, 5.65938474525341131724931430571, 6.98862505997137273409128827410, 7.19997583129971157907726307736, 8.057782401421424537010332290802, 8.765376609482382930322620034656