Properties

Label 2340.2.fo.a
Level $2340$
Weight $2$
Character orbit 2340.fo
Analytic conductor $18.685$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1241,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.fo (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 40 q - 12 q^{13} - 20 q^{19} - 28 q^{31} + 12 q^{49} + 16 q^{55} + 48 q^{61} + 16 q^{67} - 20 q^{73} + 80 q^{79} + 20 q^{85} + 4 q^{91} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1241.1 0 0 0 −0.707107 0.707107i 0 −0.541475 + 2.02081i 0 0 0
1241.2 0 0 0 −0.707107 0.707107i 0 0.718874 2.68287i 0 0 0
1241.3 0 0 0 −0.707107 0.707107i 0 −0.420712 + 1.57012i 0 0 0
1241.4 0 0 0 −0.707107 0.707107i 0 −0.185315 + 0.691603i 0 0 0
1241.5 0 0 0 −0.707107 0.707107i 0 1.29465 4.83171i 0 0 0
1241.6 0 0 0 0.707107 + 0.707107i 0 1.29465 4.83171i 0 0 0
1241.7 0 0 0 0.707107 + 0.707107i 0 −0.420712 + 1.57012i 0 0 0
1241.8 0 0 0 0.707107 + 0.707107i 0 0.718874 2.68287i 0 0 0
1241.9 0 0 0 0.707107 + 0.707107i 0 −0.185315 + 0.691603i 0 0 0
1241.10 0 0 0 0.707107 + 0.707107i 0 −0.541475 + 2.02081i 0 0 0
1601.1 0 0 0 −0.707107 0.707107i 0 −4.01056 + 1.07463i 0 0 0
1601.2 0 0 0 −0.707107 0.707107i 0 −3.16623 + 0.848389i 0 0 0
1601.3 0 0 0 −0.707107 0.707107i 0 1.13373 0.303782i 0 0 0
1601.4 0 0 0 −0.707107 0.707107i 0 2.64656 0.709144i 0 0 0
1601.5 0 0 0 −0.707107 0.707107i 0 2.53048 0.678039i 0 0 0
1601.6 0 0 0 0.707107 + 0.707107i 0 1.13373 0.303782i 0 0 0
1601.7 0 0 0 0.707107 + 0.707107i 0 −3.16623 + 0.848389i 0 0 0
1601.8 0 0 0 0.707107 + 0.707107i 0 −4.01056 + 1.07463i 0 0 0
1601.9 0 0 0 0.707107 + 0.707107i 0 2.53048 0.678039i 0 0 0
1601.10 0 0 0 0.707107 + 0.707107i 0 2.64656 0.709144i 0 0 0
See all 40 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1241.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.f odd 12 1 inner
39.k even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2340.2.fo.a 40
3.b odd 2 1 inner 2340.2.fo.a 40
13.f odd 12 1 inner 2340.2.fo.a 40
39.k even 12 1 inner 2340.2.fo.a 40
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2340.2.fo.a 40 1.a even 1 1 trivial
2340.2.fo.a 40 3.b odd 2 1 inner
2340.2.fo.a 40 13.f odd 12 1 inner
2340.2.fo.a 40 39.k even 12 1 inner