Properties

Label 2320.2.j.e.289.3
Level $2320$
Weight $2$
Character 2320.289
Analytic conductor $18.525$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2320,2,Mod(289,2320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2320.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2320.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,4,0,-1,0,0,0,8,0,0,0,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5252932689\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.75200995984.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 10x^{6} + 30x^{4} + 27x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 290)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.3
Root \(1.83507i\) of defining polynomial
Character \(\chi\) \(=\) 2320.289
Dual form 2320.2.j.e.289.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.367473 q^{3} +(1.82635 - 1.29013i) q^{5} +2.99580i q^{7} -2.86496 q^{9} -1.08988i q^{11} +1.37471i q^{13} +(-0.671136 + 0.474088i) q^{15} -0.212256 q^{17} -6.70297i q^{19} -1.10088i q^{21} -1.06384i q^{23} +(1.67114 - 4.71246i) q^{25} +2.15522 q^{27} +(2.49749 + 4.77101i) q^{29} -4.22738i q^{31} +0.400501i q^{33} +(3.86496 + 5.47139i) q^{35} +5.72993 q^{37} -0.505170i q^{39} -10.3731i q^{41} +10.8599 q^{43} +(-5.23244 + 3.69617i) q^{45} +6.38765 q^{47} -1.97480 q^{49} +0.0779983 q^{51} +10.0993i q^{53} +(-1.40608 - 1.99050i) q^{55} +2.46316i q^{57} +5.28523 q^{59} -3.38530i q^{61} -8.58285i q^{63} +(1.77356 + 2.51071i) q^{65} +10.2314i q^{67} +0.390934i q^{69} +5.04538 q^{71} -3.51767 q^{73} +(-0.614098 + 1.73170i) q^{75} +3.26505 q^{77} +8.85669i q^{79} +7.80291 q^{81} -12.4112i q^{83} +(-0.387654 + 0.273837i) q^{85} +(-0.917761 - 1.75322i) q^{87} -2.95876i q^{89} -4.11836 q^{91} +1.55345i q^{93} +(-8.64769 - 12.2420i) q^{95} +16.0605 q^{97} +3.12246i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - q^{5} + 8 q^{9} + 3 q^{15} - 2 q^{17} + 5 q^{25} + 10 q^{27} - 4 q^{29} - 16 q^{37} + 8 q^{43} - 4 q^{45} + 6 q^{47} - 6 q^{49} + 24 q^{51} + 11 q^{55} + 18 q^{59} - 15 q^{65} + 12 q^{71}+ \cdots + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2320\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(581\) \(1857\) \(2031\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.367473 −0.212161 −0.106080 0.994358i \(-0.533830\pi\)
−0.106080 + 0.994358i \(0.533830\pi\)
\(4\) 0 0
\(5\) 1.82635 1.29013i 0.816770 0.576963i
\(6\) 0 0
\(7\) 2.99580i 1.13230i 0.824301 + 0.566152i \(0.191569\pi\)
−0.824301 + 0.566152i \(0.808431\pi\)
\(8\) 0 0
\(9\) −2.86496 −0.954988
\(10\) 0 0
\(11\) 1.08988i 0.328611i −0.986410 0.164305i \(-0.947462\pi\)
0.986410 0.164305i \(-0.0525382\pi\)
\(12\) 0 0
\(13\) 1.37471i 0.381277i 0.981660 + 0.190638i \(0.0610558\pi\)
−0.981660 + 0.190638i \(0.938944\pi\)
\(14\) 0 0
\(15\) −0.671136 + 0.474088i −0.173287 + 0.122409i
\(16\) 0 0
\(17\) −0.212256 −0.0514796 −0.0257398 0.999669i \(-0.508194\pi\)
−0.0257398 + 0.999669i \(0.508194\pi\)
\(18\) 0 0
\(19\) 6.70297i 1.53777i −0.639390 0.768883i \(-0.720813\pi\)
0.639390 0.768883i \(-0.279187\pi\)
\(20\) 0 0
\(21\) 1.10088i 0.240231i
\(22\) 0 0
\(23\) 1.06384i 0.221826i −0.993830 0.110913i \(-0.964622\pi\)
0.993830 0.110913i \(-0.0353776\pi\)
\(24\) 0 0
\(25\) 1.67114 4.71246i 0.334227 0.942493i
\(26\) 0 0
\(27\) 2.15522 0.414772
\(28\) 0 0
\(29\) 2.49749 + 4.77101i 0.463772 + 0.885954i
\(30\) 0 0
\(31\) 4.22738i 0.759259i −0.925139 0.379630i \(-0.876051\pi\)
0.925139 0.379630i \(-0.123949\pi\)
\(32\) 0 0
\(33\) 0.400501i 0.0697183i
\(34\) 0 0
\(35\) 3.86496 + 5.47139i 0.653298 + 0.924833i
\(36\) 0 0
\(37\) 5.72993 0.941994 0.470997 0.882135i \(-0.343894\pi\)
0.470997 + 0.882135i \(0.343894\pi\)
\(38\) 0 0
\(39\) 0.505170i 0.0808920i
\(40\) 0 0
\(41\) 10.3731i 1.62001i −0.586426 0.810003i \(-0.699465\pi\)
0.586426 0.810003i \(-0.300535\pi\)
\(42\) 0 0
\(43\) 10.8599 1.65613 0.828063 0.560635i \(-0.189443\pi\)
0.828063 + 0.560635i \(0.189443\pi\)
\(44\) 0 0
\(45\) −5.23244 + 3.69617i −0.780006 + 0.550993i
\(46\) 0 0
\(47\) 6.38765 0.931735 0.465868 0.884854i \(-0.345742\pi\)
0.465868 + 0.884854i \(0.345742\pi\)
\(48\) 0 0
\(49\) −1.97480 −0.282114
\(50\) 0 0
\(51\) 0.0779983 0.0109220
\(52\) 0 0
\(53\) 10.0993i 1.38724i 0.720341 + 0.693620i \(0.243985\pi\)
−0.720341 + 0.693620i \(0.756015\pi\)
\(54\) 0 0
\(55\) −1.40608 1.99050i −0.189596 0.268399i
\(56\) 0 0
\(57\) 2.46316i 0.326254i
\(58\) 0 0
\(59\) 5.28523 0.688079 0.344039 0.938955i \(-0.388205\pi\)
0.344039 + 0.938955i \(0.388205\pi\)
\(60\) 0 0
\(61\) 3.38530i 0.433443i −0.976233 0.216722i \(-0.930464\pi\)
0.976233 0.216722i \(-0.0695364\pi\)
\(62\) 0 0
\(63\) 8.58285i 1.08134i
\(64\) 0 0
\(65\) 1.77356 + 2.51071i 0.219983 + 0.311415i
\(66\) 0 0
\(67\) 10.2314i 1.24996i 0.780639 + 0.624982i \(0.214894\pi\)
−0.780639 + 0.624982i \(0.785106\pi\)
\(68\) 0 0
\(69\) 0.390934i 0.0470629i
\(70\) 0 0
\(71\) 5.04538 0.598777 0.299388 0.954131i \(-0.403217\pi\)
0.299388 + 0.954131i \(0.403217\pi\)
\(72\) 0 0
\(73\) −3.51767 −0.411712 −0.205856 0.978582i \(-0.565998\pi\)
−0.205856 + 0.978582i \(0.565998\pi\)
\(74\) 0 0
\(75\) −0.614098 + 1.73170i −0.0709099 + 0.199960i
\(76\) 0 0
\(77\) 3.26505 0.372087
\(78\) 0 0
\(79\) 8.85669i 0.996455i 0.867046 + 0.498227i \(0.166016\pi\)
−0.867046 + 0.498227i \(0.833984\pi\)
\(80\) 0 0
\(81\) 7.80291 0.866989
\(82\) 0 0
\(83\) 12.4112i 1.36230i −0.732143 0.681151i \(-0.761480\pi\)
0.732143 0.681151i \(-0.238520\pi\)
\(84\) 0 0
\(85\) −0.387654 + 0.273837i −0.0420470 + 0.0297018i
\(86\) 0 0
\(87\) −0.917761 1.75322i −0.0983943 0.187965i
\(88\) 0 0
\(89\) 2.95876i 0.313628i −0.987628 0.156814i \(-0.949878\pi\)
0.987628 0.156814i \(-0.0501224\pi\)
\(90\) 0 0
\(91\) −4.11836 −0.431721
\(92\) 0 0
\(93\) 1.55345i 0.161085i
\(94\) 0 0
\(95\) −8.64769 12.2420i −0.887234 1.25600i
\(96\) 0 0
\(97\) 16.0605 1.63070 0.815351 0.578968i \(-0.196544\pi\)
0.815351 + 0.578968i \(0.196544\pi\)
\(98\) 0 0
\(99\) 3.12246i 0.313819i
\(100\) 0 0
\(101\) 13.7584i 1.36901i −0.729007 0.684506i \(-0.760018\pi\)
0.729007 0.684506i \(-0.239982\pi\)
\(102\) 0 0
\(103\) 9.16613i 0.903165i 0.892229 + 0.451583i \(0.149140\pi\)
−0.892229 + 0.451583i \(0.850860\pi\)
\(104\) 0 0
\(105\) −1.42027 2.01059i −0.138604 0.196213i
\(106\) 0 0
\(107\) 2.34345i 0.226550i −0.993564 0.113275i \(-0.963866\pi\)
0.993564 0.113275i \(-0.0361341\pi\)
\(108\) 0 0
\(109\) −1.12260 −0.107526 −0.0537628 0.998554i \(-0.517121\pi\)
−0.0537628 + 0.998554i \(0.517121\pi\)
\(110\) 0 0
\(111\) −2.10560 −0.199854
\(112\) 0 0
\(113\) −14.7451 −1.38710 −0.693551 0.720408i \(-0.743955\pi\)
−0.693551 + 0.720408i \(0.743955\pi\)
\(114\) 0 0
\(115\) −1.37249 1.94295i −0.127986 0.181181i
\(116\) 0 0
\(117\) 3.93850i 0.364115i
\(118\) 0 0
\(119\) 0.635875i 0.0582906i
\(120\) 0 0
\(121\) 9.81217 0.892015
\(122\) 0 0
\(123\) 3.81184i 0.343702i
\(124\) 0 0
\(125\) −3.02760 10.7626i −0.270796 0.962637i
\(126\) 0 0
\(127\) −2.57047 −0.228092 −0.114046 0.993475i \(-0.536381\pi\)
−0.114046 + 0.993475i \(0.536381\pi\)
\(128\) 0 0
\(129\) −3.99074 −0.351365
\(130\) 0 0
\(131\) 1.20697i 0.105454i 0.998609 + 0.0527269i \(0.0167913\pi\)
−0.998609 + 0.0527269i \(0.983209\pi\)
\(132\) 0 0
\(133\) 20.0807 1.74122
\(134\) 0 0
\(135\) 3.93619 2.78051i 0.338773 0.239308i
\(136\) 0 0
\(137\) −5.81534 −0.496838 −0.248419 0.968653i \(-0.579911\pi\)
−0.248419 + 0.968653i \(0.579911\pi\)
\(138\) 0 0
\(139\) −15.0428 −1.27591 −0.637955 0.770074i \(-0.720219\pi\)
−0.637955 + 0.770074i \(0.720219\pi\)
\(140\) 0 0
\(141\) −2.34729 −0.197678
\(142\) 0 0
\(143\) 1.49827 0.125292
\(144\) 0 0
\(145\) 10.7165 + 5.49147i 0.889958 + 0.456042i
\(146\) 0 0
\(147\) 0.725686 0.0598536
\(148\) 0 0
\(149\) 0.968162 0.0793150 0.0396575 0.999213i \(-0.487373\pi\)
0.0396575 + 0.999213i \(0.487373\pi\)
\(150\) 0 0
\(151\) 10.3004 0.838234 0.419117 0.907932i \(-0.362340\pi\)
0.419117 + 0.907932i \(0.362340\pi\)
\(152\) 0 0
\(153\) 0.608105 0.0491624
\(154\) 0 0
\(155\) −5.45386 7.72069i −0.438065 0.620140i
\(156\) 0 0
\(157\) −11.5654 −0.923023 −0.461512 0.887134i \(-0.652693\pi\)
−0.461512 + 0.887134i \(0.652693\pi\)
\(158\) 0 0
\(159\) 3.71121i 0.294318i
\(160\) 0 0
\(161\) 3.18706 0.251175
\(162\) 0 0
\(163\) −3.50675 −0.274670 −0.137335 0.990525i \(-0.543854\pi\)
−0.137335 + 0.990525i \(0.543854\pi\)
\(164\) 0 0
\(165\) 0.516698 + 0.731457i 0.0402249 + 0.0569438i
\(166\) 0 0
\(167\) 6.80763i 0.526791i 0.964688 + 0.263395i \(0.0848423\pi\)
−0.964688 + 0.263395i \(0.915158\pi\)
\(168\) 0 0
\(169\) 11.1102 0.854628
\(170\) 0 0
\(171\) 19.2038i 1.46855i
\(172\) 0 0
\(173\) 12.6960i 0.965258i −0.875825 0.482629i \(-0.839682\pi\)
0.875825 0.482629i \(-0.160318\pi\)
\(174\) 0 0
\(175\) 14.1176 + 5.00638i 1.06719 + 0.378447i
\(176\) 0 0
\(177\) −1.94218 −0.145983
\(178\) 0 0
\(179\) 3.44971 0.257844 0.128922 0.991655i \(-0.458848\pi\)
0.128922 + 0.991655i \(0.458848\pi\)
\(180\) 0 0
\(181\) 19.3826 1.44070 0.720350 0.693611i \(-0.243981\pi\)
0.720350 + 0.693611i \(0.243981\pi\)
\(182\) 0 0
\(183\) 1.24401i 0.0919597i
\(184\) 0 0
\(185\) 10.4649 7.39234i 0.769393 0.543496i
\(186\) 0 0
\(187\) 0.231333i 0.0169167i
\(188\) 0 0
\(189\) 6.45659i 0.469648i
\(190\) 0 0
\(191\) 24.5210i 1.77428i −0.461503 0.887139i \(-0.652689\pi\)
0.461503 0.887139i \(-0.347311\pi\)
\(192\) 0 0
\(193\) 10.0101 0.720546 0.360273 0.932847i \(-0.382684\pi\)
0.360273 + 0.932847i \(0.382684\pi\)
\(194\) 0 0
\(195\) −0.651735 0.922620i −0.0466717 0.0660702i
\(196\) 0 0
\(197\) 19.1667i 1.36557i 0.730618 + 0.682786i \(0.239232\pi\)
−0.730618 + 0.682786i \(0.760768\pi\)
\(198\) 0 0
\(199\) −14.7249 −1.04382 −0.521910 0.853000i \(-0.674781\pi\)
−0.521910 + 0.853000i \(0.674781\pi\)
\(200\) 0 0
\(201\) 3.75977i 0.265193i
\(202\) 0 0
\(203\) −14.2930 + 7.48197i −1.00317 + 0.525132i
\(204\) 0 0
\(205\) −13.3826 18.9450i −0.934684 1.32317i
\(206\) 0 0
\(207\) 3.04787i 0.211842i
\(208\) 0 0
\(209\) −7.30542 −0.505326
\(210\) 0 0
\(211\) 8.19596i 0.564233i 0.959380 + 0.282116i \(0.0910365\pi\)
−0.959380 + 0.282116i \(0.908964\pi\)
\(212\) 0 0
\(213\) −1.85404 −0.127037
\(214\) 0 0
\(215\) 19.8341 14.0107i 1.35267 0.955523i
\(216\) 0 0
\(217\) 12.6644 0.859713
\(218\) 0 0
\(219\) 1.29265 0.0873492
\(220\) 0 0
\(221\) 0.291791i 0.0196280i
\(222\) 0 0
\(223\) 6.32850i 0.423788i −0.977293 0.211894i \(-0.932037\pi\)
0.977293 0.211894i \(-0.0679631\pi\)
\(224\) 0 0
\(225\) −4.78774 + 13.5010i −0.319183 + 0.900069i
\(226\) 0 0
\(227\) 20.8358i 1.38292i −0.722413 0.691461i \(-0.756967\pi\)
0.722413 0.691461i \(-0.243033\pi\)
\(228\) 0 0
\(229\) 14.2925i 0.944473i −0.881472 0.472236i \(-0.843447\pi\)
0.881472 0.472236i \(-0.156553\pi\)
\(230\) 0 0
\(231\) −1.19982 −0.0789424
\(232\) 0 0
\(233\) 13.5230i 0.885923i −0.896541 0.442961i \(-0.853928\pi\)
0.896541 0.442961i \(-0.146072\pi\)
\(234\) 0 0
\(235\) 11.6661 8.24090i 0.761014 0.537577i
\(236\) 0 0
\(237\) 3.25460i 0.211409i
\(238\) 0 0
\(239\) 18.6697 1.20764 0.603822 0.797119i \(-0.293644\pi\)
0.603822 + 0.797119i \(0.293644\pi\)
\(240\) 0 0
\(241\) −19.6628 −1.26660 −0.633298 0.773908i \(-0.718299\pi\)
−0.633298 + 0.773908i \(0.718299\pi\)
\(242\) 0 0
\(243\) −9.33301 −0.598713
\(244\) 0 0
\(245\) −3.60668 + 2.54775i −0.230422 + 0.162769i
\(246\) 0 0
\(247\) 9.21465 0.586314
\(248\) 0 0
\(249\) 4.56077i 0.289027i
\(250\) 0 0
\(251\) 11.5370i 0.728212i 0.931358 + 0.364106i \(0.118625\pi\)
−0.931358 + 0.364106i \(0.881375\pi\)
\(252\) 0 0
\(253\) −1.15946 −0.0728945
\(254\) 0 0
\(255\) 0.142453 0.100628i 0.00892073 0.00630156i
\(256\) 0 0
\(257\) 7.27525i 0.453817i −0.973916 0.226909i \(-0.927138\pi\)
0.973916 0.226909i \(-0.0728619\pi\)
\(258\) 0 0
\(259\) 17.1657i 1.06662i
\(260\) 0 0
\(261\) −7.15522 13.6688i −0.442897 0.846076i
\(262\) 0 0
\(263\) 29.7334 1.83344 0.916721 0.399528i \(-0.130826\pi\)
0.916721 + 0.399528i \(0.130826\pi\)
\(264\) 0 0
\(265\) 13.0293 + 18.4448i 0.800387 + 1.13306i
\(266\) 0 0
\(267\) 1.08727i 0.0665396i
\(268\) 0 0
\(269\) 26.5290i 1.61750i 0.588152 + 0.808750i \(0.299856\pi\)
−0.588152 + 0.808750i \(0.700144\pi\)
\(270\) 0 0
\(271\) 19.2989i 1.17232i −0.810195 0.586161i \(-0.800639\pi\)
0.810195 0.586161i \(-0.199361\pi\)
\(272\) 0 0
\(273\) 1.51339 0.0915944
\(274\) 0 0
\(275\) −5.13601 1.82133i −0.309713 0.109831i
\(276\) 0 0
\(277\) 11.2042i 0.673194i 0.941649 + 0.336597i \(0.109276\pi\)
−0.941649 + 0.336597i \(0.890724\pi\)
\(278\) 0 0
\(279\) 12.1113i 0.725083i
\(280\) 0 0
\(281\) −7.60493 −0.453672 −0.226836 0.973933i \(-0.572838\pi\)
−0.226836 + 0.973933i \(0.572838\pi\)
\(282\) 0 0
\(283\) 4.75740i 0.282798i 0.989953 + 0.141399i \(0.0451601\pi\)
−0.989953 + 0.141399i \(0.954840\pi\)
\(284\) 0 0
\(285\) 3.17779 + 4.49860i 0.188236 + 0.266474i
\(286\) 0 0
\(287\) 31.0757 1.83434
\(288\) 0 0
\(289\) −16.9549 −0.997350
\(290\) 0 0
\(291\) −5.90182 −0.345971
\(292\) 0 0
\(293\) 22.2904 1.30222 0.651108 0.758985i \(-0.274304\pi\)
0.651108 + 0.758985i \(0.274304\pi\)
\(294\) 0 0
\(295\) 9.65271 6.81863i 0.562002 0.396996i
\(296\) 0 0
\(297\) 2.34892i 0.136298i
\(298\) 0 0
\(299\) 1.46248 0.0845772
\(300\) 0 0
\(301\) 32.5342i 1.87524i
\(302\) 0 0
\(303\) 5.05585i 0.290451i
\(304\) 0 0
\(305\) −4.36747 6.18276i −0.250081 0.354024i
\(306\) 0 0
\(307\) −19.9531 −1.13878 −0.569392 0.822066i \(-0.692821\pi\)
−0.569392 + 0.822066i \(0.692821\pi\)
\(308\) 0 0
\(309\) 3.36831i 0.191616i
\(310\) 0 0
\(311\) 15.8156i 0.896820i −0.893828 0.448410i \(-0.851990\pi\)
0.893828 0.448410i \(-0.148010\pi\)
\(312\) 0 0
\(313\) 9.71119i 0.548909i 0.961600 + 0.274454i \(0.0884973\pi\)
−0.961600 + 0.274454i \(0.911503\pi\)
\(314\) 0 0
\(315\) −11.0730 15.6753i −0.623892 0.883204i
\(316\) 0 0
\(317\) −31.6058 −1.77516 −0.887580 0.460654i \(-0.847615\pi\)
−0.887580 + 0.460654i \(0.847615\pi\)
\(318\) 0 0
\(319\) 5.19982 2.72196i 0.291134 0.152400i
\(320\) 0 0
\(321\) 0.861157i 0.0480651i
\(322\) 0 0
\(323\) 1.42274i 0.0791636i
\(324\) 0 0
\(325\) 6.47828 + 2.29733i 0.359350 + 0.127433i
\(326\) 0 0
\(327\) 0.412526 0.0228127
\(328\) 0 0
\(329\) 19.1361i 1.05501i
\(330\) 0 0
\(331\) 18.4649i 1.01492i 0.861674 + 0.507462i \(0.169416\pi\)
−0.861674 + 0.507462i \(0.830584\pi\)
\(332\) 0 0
\(333\) −16.4160 −0.899593
\(334\) 0 0
\(335\) 13.1998 + 18.6862i 0.721183 + 1.02093i
\(336\) 0 0
\(337\) −11.7729 −0.641311 −0.320656 0.947196i \(-0.603903\pi\)
−0.320656 + 0.947196i \(0.603903\pi\)
\(338\) 0 0
\(339\) 5.41843 0.294289
\(340\) 0 0
\(341\) −4.60733 −0.249501
\(342\) 0 0
\(343\) 15.0545i 0.812866i
\(344\) 0 0
\(345\) 0.504355 + 0.713983i 0.0271535 + 0.0384396i
\(346\) 0 0
\(347\) 12.1497i 0.652232i −0.945330 0.326116i \(-0.894260\pi\)
0.945330 0.326116i \(-0.105740\pi\)
\(348\) 0 0
\(349\) −8.13241 −0.435318 −0.217659 0.976025i \(-0.569842\pi\)
−0.217659 + 0.976025i \(0.569842\pi\)
\(350\) 0 0
\(351\) 2.96280i 0.158143i
\(352\) 0 0
\(353\) 17.7354i 0.943958i −0.881610 0.471979i \(-0.843540\pi\)
0.881610 0.471979i \(-0.156460\pi\)
\(354\) 0 0
\(355\) 9.21465 6.50919i 0.489063 0.345472i
\(356\) 0 0
\(357\) 0.233667i 0.0123670i
\(358\) 0 0
\(359\) 9.14009i 0.482396i −0.970476 0.241198i \(-0.922460\pi\)
0.970476 0.241198i \(-0.0775402\pi\)
\(360\) 0 0
\(361\) −25.9297 −1.36472
\(362\) 0 0
\(363\) −3.60571 −0.189251
\(364\) 0 0
\(365\) −6.42451 + 4.53825i −0.336274 + 0.237543i
\(366\) 0 0
\(367\) −25.5654 −1.33451 −0.667253 0.744831i \(-0.732530\pi\)
−0.667253 + 0.744831i \(0.732530\pi\)
\(368\) 0 0
\(369\) 29.7186i 1.54709i
\(370\) 0 0
\(371\) −30.2553 −1.57078
\(372\) 0 0
\(373\) 21.8731i 1.13255i −0.824217 0.566273i \(-0.808385\pi\)
0.824217 0.566273i \(-0.191615\pi\)
\(374\) 0 0
\(375\) 1.11256 + 3.95497i 0.0574524 + 0.204234i
\(376\) 0 0
\(377\) −6.55877 + 3.43333i −0.337794 + 0.176826i
\(378\) 0 0
\(379\) 32.8410i 1.68693i 0.537184 + 0.843465i \(0.319488\pi\)
−0.537184 + 0.843465i \(0.680512\pi\)
\(380\) 0 0
\(381\) 0.944579 0.0483922
\(382\) 0 0
\(383\) 34.6298i 1.76950i 0.466064 + 0.884751i \(0.345672\pi\)
−0.466064 + 0.884751i \(0.654328\pi\)
\(384\) 0 0
\(385\) 5.96314 4.21234i 0.303910 0.214681i
\(386\) 0 0
\(387\) −31.1133 −1.58158
\(388\) 0 0
\(389\) 12.9103i 0.654580i 0.944924 + 0.327290i \(0.106135\pi\)
−0.944924 + 0.327290i \(0.893865\pi\)
\(390\) 0 0
\(391\) 0.225807i 0.0114195i
\(392\) 0 0
\(393\) 0.443531i 0.0223732i
\(394\) 0 0
\(395\) 11.4263 + 16.1754i 0.574918 + 0.813875i
\(396\) 0 0
\(397\) 28.7398i 1.44241i −0.692723 0.721204i \(-0.743589\pi\)
0.692723 0.721204i \(-0.256411\pi\)
\(398\) 0 0
\(399\) −7.37913 −0.369419
\(400\) 0 0
\(401\) 24.2030 1.20864 0.604320 0.796742i \(-0.293445\pi\)
0.604320 + 0.796742i \(0.293445\pi\)
\(402\) 0 0
\(403\) 5.81143 0.289488
\(404\) 0 0
\(405\) 14.2509 10.0668i 0.708131 0.500221i
\(406\) 0 0
\(407\) 6.24492i 0.309549i
\(408\) 0 0
\(409\) 17.4820i 0.864431i 0.901770 + 0.432216i \(0.142268\pi\)
−0.901770 + 0.432216i \(0.857732\pi\)
\(410\) 0 0
\(411\) 2.13698 0.105410
\(412\) 0 0
\(413\) 15.8335i 0.779115i
\(414\) 0 0
\(415\) −16.0120 22.6672i −0.785997 1.11269i
\(416\) 0 0
\(417\) 5.52781 0.270698
\(418\) 0 0
\(419\) −26.2378 −1.28180 −0.640900 0.767625i \(-0.721439\pi\)
−0.640900 + 0.767625i \(0.721439\pi\)
\(420\) 0 0
\(421\) 13.6673i 0.666105i −0.942908 0.333053i \(-0.891921\pi\)
0.942908 0.333053i \(-0.108079\pi\)
\(422\) 0 0
\(423\) −18.3004 −0.889796
\(424\) 0 0
\(425\) −0.354708 + 1.00025i −0.0172059 + 0.0485191i
\(426\) 0 0
\(427\) 10.1417 0.490790
\(428\) 0 0
\(429\) −0.550574 −0.0265820
\(430\) 0 0
\(431\) 20.1544 0.970805 0.485403 0.874291i \(-0.338673\pi\)
0.485403 + 0.874291i \(0.338673\pi\)
\(432\) 0 0
\(433\) −9.30542 −0.447190 −0.223595 0.974682i \(-0.571779\pi\)
−0.223595 + 0.974682i \(0.571779\pi\)
\(434\) 0 0
\(435\) −3.93803 2.01797i −0.188814 0.0967542i
\(436\) 0 0
\(437\) −7.13090 −0.341117
\(438\) 0 0
\(439\) −38.2655 −1.82631 −0.913156 0.407610i \(-0.866362\pi\)
−0.913156 + 0.407610i \(0.866362\pi\)
\(440\) 0 0
\(441\) 5.65773 0.269416
\(442\) 0 0
\(443\) −34.1561 −1.62281 −0.811403 0.584488i \(-0.801296\pi\)
−0.811403 + 0.584488i \(0.801296\pi\)
\(444\) 0 0
\(445\) −3.81719 5.40375i −0.180952 0.256162i
\(446\) 0 0
\(447\) −0.355774 −0.0168275
\(448\) 0 0
\(449\) 2.90669i 0.137175i 0.997645 + 0.0685876i \(0.0218493\pi\)
−0.997645 + 0.0685876i \(0.978151\pi\)
\(450\) 0 0
\(451\) −11.3054 −0.532351
\(452\) 0 0
\(453\) −3.78512 −0.177840
\(454\) 0 0
\(455\) −7.52158 + 5.31321i −0.352617 + 0.249087i
\(456\) 0 0
\(457\) 2.65336i 0.124119i −0.998072 0.0620596i \(-0.980233\pi\)
0.998072 0.0620596i \(-0.0197669\pi\)
\(458\) 0 0
\(459\) −0.457457 −0.0213523
\(460\) 0 0
\(461\) 6.53979i 0.304589i −0.988335 0.152294i \(-0.951334\pi\)
0.988335 0.152294i \(-0.0486662\pi\)
\(462\) 0 0
\(463\) 27.1658i 1.26250i −0.775579 0.631250i \(-0.782542\pi\)
0.775579 0.631250i \(-0.217458\pi\)
\(464\) 0 0
\(465\) 2.00415 + 2.83715i 0.0929401 + 0.131570i
\(466\) 0 0
\(467\) −32.2561 −1.49264 −0.746318 0.665590i \(-0.768180\pi\)
−0.746318 + 0.665590i \(0.768180\pi\)
\(468\) 0 0
\(469\) −30.6512 −1.41534
\(470\) 0 0
\(471\) 4.24999 0.195829
\(472\) 0 0
\(473\) 11.8360i 0.544221i
\(474\) 0 0
\(475\) −31.5875 11.2016i −1.44933 0.513963i
\(476\) 0 0
\(477\) 28.9340i 1.32480i
\(478\) 0 0
\(479\) 25.8295i 1.18018i 0.807337 + 0.590090i \(0.200908\pi\)
−0.807337 + 0.590090i \(0.799092\pi\)
\(480\) 0 0
\(481\) 7.87700i 0.359160i
\(482\) 0 0
\(483\) −1.17116 −0.0532895
\(484\) 0 0
\(485\) 29.3322 20.7202i 1.33191 0.940854i
\(486\) 0 0
\(487\) 1.63351i 0.0740215i 0.999315 + 0.0370107i \(0.0117836\pi\)
−0.999315 + 0.0370107i \(0.988216\pi\)
\(488\) 0 0
\(489\) 1.28864 0.0582742
\(490\) 0 0
\(491\) 10.3456i 0.466892i 0.972370 + 0.233446i \(0.0750002\pi\)
−0.972370 + 0.233446i \(0.925000\pi\)
\(492\) 0 0
\(493\) −0.530107 1.01267i −0.0238748 0.0456086i
\(494\) 0 0
\(495\) 4.02838 + 5.70272i 0.181062 + 0.256318i
\(496\) 0 0
\(497\) 15.1149i 0.677998i
\(498\) 0 0
\(499\) −0.704726 −0.0315479 −0.0157739 0.999876i \(-0.505021\pi\)
−0.0157739 + 0.999876i \(0.505021\pi\)
\(500\) 0 0
\(501\) 2.50162i 0.111764i
\(502\) 0 0
\(503\) 6.19285 0.276126 0.138063 0.990423i \(-0.455912\pi\)
0.138063 + 0.990423i \(0.455912\pi\)
\(504\) 0 0
\(505\) −17.7501 25.1277i −0.789869 1.11817i
\(506\) 0 0
\(507\) −4.08269 −0.181319
\(508\) 0 0
\(509\) −14.6292 −0.648426 −0.324213 0.945984i \(-0.605100\pi\)
−0.324213 + 0.945984i \(0.605100\pi\)
\(510\) 0 0
\(511\) 10.5382i 0.466184i
\(512\) 0 0
\(513\) 14.4463i 0.637822i
\(514\) 0 0
\(515\) 11.8255 + 16.7406i 0.521093 + 0.737679i
\(516\) 0 0
\(517\) 6.96176i 0.306178i
\(518\) 0 0
\(519\) 4.66544i 0.204790i
\(520\) 0 0
\(521\) −6.40511 −0.280613 −0.140306 0.990108i \(-0.544809\pi\)
−0.140306 + 0.990108i \(0.544809\pi\)
\(522\) 0 0
\(523\) 16.5805i 0.725013i −0.931981 0.362507i \(-0.881921\pi\)
0.931981 0.362507i \(-0.118079\pi\)
\(524\) 0 0
\(525\) −5.18783 1.83971i −0.226416 0.0802917i
\(526\) 0 0
\(527\) 0.897285i 0.0390864i
\(528\) 0 0
\(529\) 21.8682 0.950793
\(530\) 0 0
\(531\) −15.1420 −0.657107
\(532\) 0 0
\(533\) 14.2600 0.617671
\(534\) 0 0
\(535\) −3.02336 4.27997i −0.130711 0.185039i
\(536\) 0 0
\(537\) −1.26768 −0.0547043
\(538\) 0 0
\(539\) 2.15229i 0.0927057i
\(540\) 0 0
\(541\) 40.5567i 1.74367i 0.489803 + 0.871833i \(0.337069\pi\)
−0.489803 + 0.871833i \(0.662931\pi\)
\(542\) 0 0
\(543\) −7.12260 −0.305660
\(544\) 0 0
\(545\) −2.05027 + 1.44830i −0.0878238 + 0.0620383i
\(546\) 0 0
\(547\) 43.0100i 1.83897i −0.393119 0.919487i \(-0.628604\pi\)
0.393119 0.919487i \(-0.371396\pi\)
\(548\) 0 0
\(549\) 9.69876i 0.413933i
\(550\) 0 0
\(551\) 31.9799 16.7406i 1.36239 0.713173i
\(552\) 0 0
\(553\) −26.5328 −1.12829
\(554\) 0 0
\(555\) −3.84556 + 2.71649i −0.163235 + 0.115309i
\(556\) 0 0
\(557\) 35.0002i 1.48301i 0.670949 + 0.741503i \(0.265887\pi\)
−0.670949 + 0.741503i \(0.734113\pi\)
\(558\) 0 0
\(559\) 14.9293i 0.631442i
\(560\) 0 0
\(561\) 0.0850087i 0.00358907i
\(562\) 0 0
\(563\) 7.82733 0.329882 0.164941 0.986303i \(-0.447257\pi\)
0.164941 + 0.986303i \(0.447257\pi\)
\(564\) 0 0
\(565\) −26.9297 + 19.0231i −1.13294 + 0.800306i
\(566\) 0 0
\(567\) 23.3759i 0.981696i
\(568\) 0 0
\(569\) 16.3098i 0.683741i −0.939747 0.341870i \(-0.888940\pi\)
0.939747 0.341870i \(-0.111060\pi\)
\(570\) 0 0
\(571\) 26.6814 1.11658 0.558291 0.829645i \(-0.311457\pi\)
0.558291 + 0.829645i \(0.311457\pi\)
\(572\) 0 0
\(573\) 9.01082i 0.376432i
\(574\) 0 0
\(575\) −5.01332 1.77783i −0.209070 0.0741404i
\(576\) 0 0
\(577\) −34.3986 −1.43203 −0.716016 0.698084i \(-0.754036\pi\)
−0.716016 + 0.698084i \(0.754036\pi\)
\(578\) 0 0
\(579\) −3.67846 −0.152872
\(580\) 0 0
\(581\) 37.1813 1.54254
\(582\) 0 0
\(583\) 11.0070 0.455862
\(584\) 0 0
\(585\) −5.08117 7.19310i −0.210081 0.297398i
\(586\) 0 0
\(587\) 25.7402i 1.06241i 0.847243 + 0.531205i \(0.178261\pi\)
−0.847243 + 0.531205i \(0.821739\pi\)
\(588\) 0 0
\(589\) −28.3360 −1.16756
\(590\) 0 0
\(591\) 7.04326i 0.289721i
\(592\) 0 0
\(593\) 8.07625i 0.331652i 0.986155 + 0.165826i \(0.0530290\pi\)
−0.986155 + 0.165826i \(0.946971\pi\)
\(594\) 0 0
\(595\) −0.820361 1.16133i −0.0336315 0.0476100i
\(596\) 0 0
\(597\) 5.41101 0.221458
\(598\) 0 0
\(599\) 6.48120i 0.264815i −0.991195 0.132407i \(-0.957729\pi\)
0.991195 0.132407i \(-0.0422707\pi\)
\(600\) 0 0
\(601\) 9.59123i 0.391235i −0.980680 0.195617i \(-0.937329\pi\)
0.980680 0.195617i \(-0.0626710\pi\)
\(602\) 0 0
\(603\) 29.3126i 1.19370i
\(604\) 0 0
\(605\) 17.9205 12.6590i 0.728571 0.514660i
\(606\) 0 0
\(607\) 28.1680 1.14330 0.571652 0.820496i \(-0.306303\pi\)
0.571652 + 0.820496i \(0.306303\pi\)
\(608\) 0 0
\(609\) 5.25229 2.74943i 0.212833 0.111412i
\(610\) 0 0
\(611\) 8.78119i 0.355249i
\(612\) 0 0
\(613\) 41.3758i 1.67115i 0.549373 + 0.835577i \(0.314867\pi\)
−0.549373 + 0.835577i \(0.685133\pi\)
\(614\) 0 0
\(615\) 4.91776 + 6.96176i 0.198303 + 0.280725i
\(616\) 0 0
\(617\) 9.70399 0.390668 0.195334 0.980737i \(-0.437421\pi\)
0.195334 + 0.980737i \(0.437421\pi\)
\(618\) 0 0
\(619\) 29.7952i 1.19757i 0.800909 + 0.598786i \(0.204350\pi\)
−0.800909 + 0.598786i \(0.795650\pi\)
\(620\) 0 0
\(621\) 2.29281i 0.0920073i
\(622\) 0 0
\(623\) 8.86386 0.355123
\(624\) 0 0
\(625\) −19.4146 15.7503i −0.776584 0.630013i
\(626\) 0 0
\(627\) 2.68455 0.107210
\(628\) 0 0
\(629\) −1.21621 −0.0484935
\(630\) 0 0
\(631\) 35.9799 1.43234 0.716169 0.697927i \(-0.245894\pi\)
0.716169 + 0.697927i \(0.245894\pi\)
\(632\) 0 0
\(633\) 3.01180i 0.119708i
\(634\) 0 0
\(635\) −4.69458 + 3.31623i −0.186299 + 0.131601i
\(636\) 0 0
\(637\) 2.71478i 0.107564i
\(638\) 0 0
\(639\) −14.4548 −0.571824
\(640\) 0 0
\(641\) 7.21413i 0.284941i 0.989799 + 0.142471i \(0.0455046\pi\)
−0.989799 + 0.142471i \(0.954495\pi\)
\(642\) 0 0
\(643\) 16.4543i 0.648895i 0.945904 + 0.324448i \(0.105178\pi\)
−0.945904 + 0.324448i \(0.894822\pi\)
\(644\) 0 0
\(645\) −7.28850 + 5.14857i −0.286984 + 0.202725i
\(646\) 0 0
\(647\) 30.8486i 1.21278i −0.795166 0.606392i \(-0.792616\pi\)
0.795166 0.606392i \(-0.207384\pi\)
\(648\) 0 0
\(649\) 5.76026i 0.226110i
\(650\) 0 0
\(651\) −4.65382 −0.182397
\(652\) 0 0
\(653\) 22.3089 0.873014 0.436507 0.899701i \(-0.356215\pi\)
0.436507 + 0.899701i \(0.356215\pi\)
\(654\) 0 0
\(655\) 1.55715 + 2.20436i 0.0608430 + 0.0861316i
\(656\) 0 0
\(657\) 10.0780 0.393180
\(658\) 0 0
\(659\) 27.0186i 1.05249i 0.850332 + 0.526247i \(0.176401\pi\)
−0.850332 + 0.526247i \(0.823599\pi\)
\(660\) 0 0
\(661\) −9.63068 −0.374590 −0.187295 0.982304i \(-0.559972\pi\)
−0.187295 + 0.982304i \(0.559972\pi\)
\(662\) 0 0
\(663\) 0.107225i 0.00416429i
\(664\) 0 0
\(665\) 36.6745 25.9067i 1.42218 1.00462i
\(666\) 0 0
\(667\) 5.07560 2.65694i 0.196528 0.102877i
\(668\) 0 0
\(669\) 2.32555i 0.0899111i
\(670\) 0 0
\(671\) −3.68956 −0.142434
\(672\) 0 0
\(673\) 46.9574i 1.81007i 0.425334 + 0.905037i \(0.360157\pi\)
−0.425334 + 0.905037i \(0.639843\pi\)
\(674\) 0 0
\(675\) 3.60166 10.1564i 0.138628 0.390919i
\(676\) 0 0
\(677\) 28.1645 1.08245 0.541224 0.840878i \(-0.317961\pi\)
0.541224 + 0.840878i \(0.317961\pi\)
\(678\) 0 0
\(679\) 48.1141i 1.84645i
\(680\) 0 0
\(681\) 7.65661i 0.293402i
\(682\) 0 0
\(683\) 19.8006i 0.757650i −0.925468 0.378825i \(-0.876328\pi\)
0.925468 0.378825i \(-0.123672\pi\)
\(684\) 0 0
\(685\) −10.6209 + 7.50254i −0.405803 + 0.286657i
\(686\) 0 0
\(687\) 5.25210i 0.200380i
\(688\) 0 0
\(689\) −13.8836 −0.528922
\(690\) 0 0
\(691\) −3.64179 −0.138540 −0.0692701 0.997598i \(-0.522067\pi\)
−0.0692701 + 0.997598i \(0.522067\pi\)
\(692\) 0 0
\(693\) −9.35426 −0.355339
\(694\) 0 0
\(695\) −27.4734 + 19.4071i −1.04213 + 0.736153i
\(696\) 0 0
\(697\) 2.20175i 0.0833973i
\(698\) 0 0
\(699\) 4.96935i 0.187958i
\(700\) 0 0
\(701\) −24.5639 −0.927767 −0.463883 0.885896i \(-0.653544\pi\)
−0.463883 + 0.885896i \(0.653544\pi\)
\(702\) 0 0
\(703\) 38.4075i 1.44857i
\(704\) 0 0
\(705\) −4.28699 + 3.02831i −0.161457 + 0.114053i
\(706\) 0 0
\(707\) 41.2174 1.55014
\(708\) 0 0
\(709\) 36.5676 1.37333 0.686663 0.726976i \(-0.259075\pi\)
0.686663 + 0.726976i \(0.259075\pi\)
\(710\) 0 0
\(711\) 25.3741i 0.951602i
\(712\) 0 0
\(713\) −4.49726 −0.168424
\(714\) 0 0
\(715\) 2.73637 1.93296i 0.102334 0.0722886i
\(716\) 0 0
\(717\) −6.86062 −0.256215
\(718\) 0 0
\(719\) 4.40968 0.164453 0.0822267 0.996614i \(-0.473797\pi\)
0.0822267 + 0.996614i \(0.473797\pi\)
\(720\) 0 0
\(721\) −27.4599 −1.02266
\(722\) 0 0
\(723\) 7.22557 0.268722
\(724\) 0 0
\(725\) 26.6569 3.79632i 0.990011 0.140992i
\(726\) 0 0
\(727\) −37.9900 −1.40897 −0.704485 0.709719i \(-0.748822\pi\)
−0.704485 + 0.709719i \(0.748822\pi\)
\(728\) 0 0
\(729\) −19.9791 −0.739966
\(730\) 0 0
\(731\) −2.30509 −0.0852567
\(732\) 0 0
\(733\) 6.57895 0.242999 0.121500 0.992591i \(-0.461230\pi\)
0.121500 + 0.992591i \(0.461230\pi\)
\(734\) 0 0
\(735\) 1.32536 0.936228i 0.0488866 0.0345333i
\(736\) 0 0
\(737\) 11.1510 0.410752
\(738\) 0 0
\(739\) 26.6171i 0.979127i 0.871968 + 0.489563i \(0.162844\pi\)
−0.871968 + 0.489563i \(0.837156\pi\)
\(740\) 0 0
\(741\) −3.38614 −0.124393
\(742\) 0 0
\(743\) 4.67606 0.171548 0.0857741 0.996315i \(-0.472664\pi\)
0.0857741 + 0.996315i \(0.472664\pi\)
\(744\) 0 0
\(745\) 1.76821 1.24905i 0.0647821 0.0457618i
\(746\) 0 0
\(747\) 35.5575i 1.30098i
\(748\) 0 0
\(749\) 7.02051 0.256524
\(750\) 0 0
\(751\) 12.3371i 0.450187i −0.974337 0.225093i \(-0.927731\pi\)
0.974337 0.225093i \(-0.0722687\pi\)
\(752\) 0 0
\(753\) 4.23956i 0.154498i
\(754\) 0 0
\(755\) 18.8122 13.2888i 0.684645 0.483630i
\(756\) 0 0
\(757\) 10.2685 0.373216 0.186608 0.982434i \(-0.440251\pi\)
0.186608 + 0.982434i \(0.440251\pi\)
\(758\) 0 0
\(759\) 0.426070 0.0154654
\(760\) 0 0
\(761\) 49.1824 1.78286 0.891430 0.453159i \(-0.149703\pi\)
0.891430 + 0.453159i \(0.149703\pi\)
\(762\) 0 0
\(763\) 3.36308i 0.121752i
\(764\) 0 0
\(765\) 1.11062 0.784534i 0.0401544 0.0283649i
\(766\) 0 0
\(767\) 7.26568i 0.262348i
\(768\) 0 0
\(769\) 36.4972i 1.31612i 0.752964 + 0.658062i \(0.228624\pi\)
−0.752964 + 0.658062i \(0.771376\pi\)
\(770\) 0 0
\(771\) 2.67346i 0.0962823i
\(772\) 0 0
\(773\) −29.4854 −1.06052 −0.530258 0.847836i \(-0.677905\pi\)
−0.530258 + 0.847836i \(0.677905\pi\)
\(774\) 0 0
\(775\) −19.9214 7.06452i −0.715596 0.253765i
\(776\) 0 0
\(777\) 6.30794i 0.226296i
\(778\) 0 0
\(779\) −69.5305 −2.49119
\(780\) 0 0
\(781\) 5.49885i 0.196764i
\(782\) 0 0
\(783\) 5.38263 + 10.2826i 0.192360 + 0.367469i
\(784\) 0 0
\(785\) −21.1226 + 14.9209i −0.753898 + 0.532550i
\(786\) 0 0
\(787\) 38.4961i 1.37224i 0.727490 + 0.686119i \(0.240687\pi\)
−0.727490 + 0.686119i \(0.759313\pi\)
\(788\) 0 0
\(789\) −10.9262 −0.388985
\(790\) 0 0
\(791\) 44.1733i 1.57062i
\(792\) 0 0
\(793\) 4.65382 0.165262
\(794\) 0 0
\(795\) −4.78794 6.77798i −0.169811 0.240390i
\(796\) 0 0
\(797\) 44.1311 1.56320 0.781602 0.623777i \(-0.214403\pi\)
0.781602 + 0.623777i \(0.214403\pi\)
\(798\) 0 0
\(799\) −1.35582 −0.0479653
\(800\) 0 0
\(801\) 8.47675i 0.299511i
\(802\) 0 0
\(803\) 3.83383i 0.135293i
\(804\) 0 0
\(805\) 5.82069 4.11171i 0.205152 0.144919i
\(806\) 0 0
\(807\) 9.74869i 0.343170i
\(808\) 0 0
\(809\) 8.79023i 0.309048i −0.987989 0.154524i \(-0.950616\pi\)
0.987989 0.154524i \(-0.0493844\pi\)
\(810\) 0 0
\(811\) 3.91186 0.137364 0.0686820 0.997639i \(-0.478121\pi\)
0.0686820 + 0.997639i \(0.478121\pi\)
\(812\) 0 0
\(813\) 7.09181i 0.248721i
\(814\) 0 0
\(815\) −6.40457 + 4.52416i −0.224342 + 0.158474i
\(816\) 0 0
\(817\) 72.7938i 2.54673i
\(818\) 0 0
\(819\) 11.7990 0.412289
\(820\) 0 0
\(821\) −8.59729 −0.300047 −0.150024 0.988682i \(-0.547935\pi\)
−0.150024 + 0.988682i \(0.547935\pi\)
\(822\) 0 0
\(823\) 2.31892 0.0808323 0.0404162 0.999183i \(-0.487132\pi\)
0.0404162 + 0.999183i \(0.487132\pi\)
\(824\) 0 0
\(825\) 1.88735 + 0.669292i 0.0657090 + 0.0233018i
\(826\) 0 0
\(827\) 13.5864 0.472446 0.236223 0.971699i \(-0.424090\pi\)
0.236223 + 0.971699i \(0.424090\pi\)
\(828\) 0 0
\(829\) 24.1451i 0.838594i 0.907849 + 0.419297i \(0.137723\pi\)
−0.907849 + 0.419297i \(0.862277\pi\)
\(830\) 0 0
\(831\) 4.11724i 0.142825i
\(832\) 0 0
\(833\) 0.419163 0.0145231
\(834\) 0 0
\(835\) 8.78272 + 12.4331i 0.303939 + 0.430267i
\(836\) 0 0
\(837\) 9.11092i 0.314919i
\(838\) 0 0
\(839\) 19.9698i 0.689434i −0.938707 0.344717i \(-0.887975\pi\)
0.938707 0.344717i \(-0.112025\pi\)
\(840\) 0 0
\(841\) −16.5251 + 23.8311i −0.569831 + 0.821762i
\(842\) 0 0
\(843\) 2.79461 0.0962514
\(844\) 0 0
\(845\) 20.2911 14.3335i 0.698035 0.493089i
\(846\) 0 0
\(847\) 29.3953i 1.01003i
\(848\) 0 0
\(849\) 1.74822i 0.0599987i
\(850\) 0 0
\(851\) 6.09574i 0.208959i
\(852\) 0 0
\(853\) −36.0840 −1.23549 −0.617746 0.786378i \(-0.711954\pi\)
−0.617746 + 0.786378i \(0.711954\pi\)
\(854\) 0 0
\(855\) 24.7753 + 35.0728i 0.847298 + 1.19947i
\(856\) 0 0
\(857\) 19.0491i 0.650705i 0.945593 + 0.325352i \(0.105483\pi\)
−0.945593 + 0.325352i \(0.894517\pi\)
\(858\) 0 0
\(859\) 43.1051i 1.47073i −0.677673 0.735364i \(-0.737011\pi\)
0.677673 0.735364i \(-0.262989\pi\)
\(860\) 0 0
\(861\) −11.4195 −0.389175
\(862\) 0 0
\(863\) 25.9382i 0.882947i 0.897274 + 0.441474i \(0.145544\pi\)
−0.897274 + 0.441474i \(0.854456\pi\)
\(864\) 0 0
\(865\) −16.3795 23.1874i −0.556918 0.788394i
\(866\) 0 0
\(867\) 6.23049 0.211599
\(868\) 0 0
\(869\) 9.65271 0.327446
\(870\) 0 0
\(871\) −14.0652 −0.476582
\(872\) 0 0
\(873\) −46.0129 −1.55730
\(874\) 0 0
\(875\) 32.2426 9.07007i 1.09000 0.306624i
\(876\) 0 0
\(877\) 43.0492i 1.45367i 0.686812 + 0.726835i \(0.259009\pi\)
−0.686812 + 0.726835i \(0.740991\pi\)
\(878\) 0 0
\(879\) −8.19111 −0.276279
\(880\) 0 0
\(881\) 49.8210i 1.67851i −0.543736 0.839256i \(-0.682991\pi\)
0.543736 0.839256i \(-0.317009\pi\)
\(882\) 0 0
\(883\) 9.29618i 0.312841i −0.987691 0.156421i \(-0.950004\pi\)
0.987691 0.156421i \(-0.0499955\pi\)
\(884\) 0 0
\(885\) −3.54711 + 2.50567i −0.119235 + 0.0842270i
\(886\) 0 0
\(887\) 1.49827 0.0503070 0.0251535 0.999684i \(-0.491993\pi\)
0.0251535 + 0.999684i \(0.491993\pi\)
\(888\) 0 0
\(889\) 7.70060i 0.258270i
\(890\) 0 0
\(891\) 8.50422i 0.284902i
\(892\) 0 0
\(893\) 42.8162i 1.43279i
\(894\) 0 0
\(895\) 6.30040 4.45057i 0.210599 0.148766i
\(896\) 0 0
\(897\) −0.537421 −0.0179440
\(898\) 0 0
\(899\) 20.1689 10.5578i 0.672669 0.352123i
\(900\) 0 0
\(901\) 2.14363i 0.0714146i
\(902\) 0 0
\(903\) 11.9554i 0.397852i
\(904\) 0 0
\(905\) 35.3995 25.0061i 1.17672 0.831231i
\(906\) 0 0
\(907\) 32.7075 1.08603 0.543017 0.839722i \(-0.317282\pi\)
0.543017 + 0.839722i \(0.317282\pi\)
\(908\) 0 0
\(909\) 39.4173i 1.30739i
\(910\) 0 0
\(911\) 38.5452i 1.27706i −0.769598 0.638529i \(-0.779543\pi\)
0.769598 0.638529i \(-0.220457\pi\)
\(912\) 0 0
\(913\) −13.5266 −0.447667
\(914\) 0 0
\(915\) 1.60493 + 2.27200i 0.0530573 + 0.0751099i
\(916\) 0 0
\(917\) −3.61585 −0.119406
\(918\) 0 0
\(919\) 36.8375 1.21516 0.607579 0.794259i \(-0.292141\pi\)
0.607579 + 0.794259i \(0.292141\pi\)
\(920\) 0 0
\(921\) 7.33223 0.241605
\(922\) 0 0
\(923\) 6.93595i 0.228300i
\(924\) 0 0
\(925\) 9.57549 27.0021i 0.314840 0.887822i
\(926\) 0 0
\(927\) 26.2606i 0.862512i
\(928\) 0 0
\(929\) 29.3787 0.963885 0.481942 0.876203i \(-0.339931\pi\)
0.481942 + 0.876203i \(0.339931\pi\)
\(930\) 0 0
\(931\) 13.2370i 0.433826i
\(932\) 0 0
\(933\) 5.81181i 0.190270i
\(934\) 0 0
\(935\) 0.298449 + 0.422496i 0.00976033 + 0.0138171i
\(936\) 0 0
\(937\) 29.1188i 0.951270i −0.879643 0.475635i \(-0.842218\pi\)
0.879643 0.475635i \(-0.157782\pi\)
\(938\) 0 0
\(939\) 3.56860i 0.116457i
\(940\) 0 0
\(941\) −34.4784 −1.12396 −0.561982 0.827149i \(-0.689961\pi\)
−0.561982 + 0.827149i \(0.689961\pi\)
\(942\) 0 0
\(943\) −11.0353 −0.359360
\(944\) 0 0
\(945\) 8.32984 + 11.7920i 0.270970 + 0.383595i
\(946\) 0 0
\(947\) −16.7368 −0.543873 −0.271936 0.962315i \(-0.587664\pi\)
−0.271936 + 0.962315i \(0.587664\pi\)
\(948\) 0 0
\(949\) 4.83579i 0.156976i
\(950\) 0 0
\(951\) 11.6143 0.376619
\(952\) 0 0
\(953\) 49.5247i 1.60426i 0.597149 + 0.802131i \(0.296300\pi\)
−0.597149 + 0.802131i \(0.703700\pi\)
\(954\) 0 0
\(955\) −31.6353 44.7840i −1.02369 1.44918i
\(956\) 0 0
\(957\) −1.91080 + 1.00025i −0.0617672 + 0.0323334i
\(958\) 0 0
\(959\) 17.4216i 0.562572i
\(960\) 0 0
\(961\) 13.1293 0.423525
\(962\) 0 0
\(963\) 6.71391i 0.216353i
\(964\) 0 0
\(965\) 18.2821 12.9144i 0.588520 0.415728i
\(966\) 0 0
\(967\) −28.3924 −0.913040 −0.456520 0.889713i \(-0.650904\pi\)
−0.456520 + 0.889713i \(0.650904\pi\)
\(968\) 0 0
\(969\) 0.522820i 0.0167954i
\(970\) 0 0
\(971\) 4.86155i 0.156014i 0.996953 + 0.0780072i \(0.0248557\pi\)
−0.996953 + 0.0780072i \(0.975144\pi\)
\(972\) 0 0
\(973\) 45.0650i 1.44472i
\(974\) 0 0
\(975\) −2.38060 0.844208i −0.0762401 0.0270363i
\(976\) 0 0
\(977\) 34.0078i 1.08801i 0.839083 + 0.544003i \(0.183092\pi\)
−0.839083 + 0.544003i \(0.816908\pi\)
\(978\) 0 0
\(979\) −3.22469 −0.103062
\(980\) 0 0
\(981\) 3.21621 0.102686
\(982\) 0 0
\(983\) −38.6176 −1.23171 −0.615855 0.787860i \(-0.711189\pi\)
−0.615855 + 0.787860i \(0.711189\pi\)
\(984\) 0 0
\(985\) 24.7275 + 35.0052i 0.787885 + 1.11536i
\(986\) 0 0
\(987\) 7.03201i 0.223831i
\(988\) 0 0
\(989\) 11.5533i 0.367372i
\(990\) 0 0
\(991\) −26.3189 −0.836048 −0.418024 0.908436i \(-0.637277\pi\)
−0.418024 + 0.908436i \(0.637277\pi\)
\(992\) 0 0
\(993\) 6.78536i 0.215327i
\(994\) 0 0
\(995\) −26.8929 + 18.9970i −0.852562 + 0.602246i
\(996\) 0 0
\(997\) −34.2096 −1.08343 −0.541715 0.840562i \(-0.682225\pi\)
−0.541715 + 0.840562i \(0.682225\pi\)
\(998\) 0 0
\(999\) 12.3492 0.390713
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.2.j.e.289.3 8
4.3 odd 2 290.2.d.b.289.5 yes 8
5.4 even 2 2320.2.j.d.289.6 8
12.11 even 2 2610.2.b.d.289.2 8
20.3 even 4 1450.2.c.g.1101.5 16
20.7 even 4 1450.2.c.g.1101.12 16
20.19 odd 2 290.2.d.a.289.4 yes 8
29.28 even 2 2320.2.j.d.289.5 8
60.59 even 2 2610.2.b.f.289.1 8
116.115 odd 2 290.2.d.a.289.3 8
145.144 even 2 inner 2320.2.j.e.289.4 8
348.347 even 2 2610.2.b.f.289.2 8
580.347 even 4 1450.2.c.g.1101.6 16
580.463 even 4 1450.2.c.g.1101.11 16
580.579 odd 2 290.2.d.b.289.6 yes 8
1740.1739 even 2 2610.2.b.d.289.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
290.2.d.a.289.3 8 116.115 odd 2
290.2.d.a.289.4 yes 8 20.19 odd 2
290.2.d.b.289.5 yes 8 4.3 odd 2
290.2.d.b.289.6 yes 8 580.579 odd 2
1450.2.c.g.1101.5 16 20.3 even 4
1450.2.c.g.1101.6 16 580.347 even 4
1450.2.c.g.1101.11 16 580.463 even 4
1450.2.c.g.1101.12 16 20.7 even 4
2320.2.j.d.289.5 8 29.28 even 2
2320.2.j.d.289.6 8 5.4 even 2
2320.2.j.e.289.3 8 1.1 even 1 trivial
2320.2.j.e.289.4 8 145.144 even 2 inner
2610.2.b.d.289.1 8 1740.1739 even 2
2610.2.b.d.289.2 8 12.11 even 2
2610.2.b.f.289.1 8 60.59 even 2
2610.2.b.f.289.2 8 348.347 even 2