Properties

Label 290.2.d.a.289.3
Level $290$
Weight $2$
Character 290.289
Analytic conductor $2.316$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [290,2,Mod(289,290)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(290, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("290.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 290 = 2 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 290.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.31566165862\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.75200995984.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 10x^{6} + 30x^{4} + 27x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.3
Root \(1.83507i\) of defining polynomial
Character \(\chi\) \(=\) 290.289
Dual form 290.2.d.a.289.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -0.367473 q^{3} +1.00000 q^{4} +(1.82635 - 1.29013i) q^{5} +0.367473 q^{6} -2.99580i q^{7} -1.00000 q^{8} -2.86496 q^{9} +(-1.82635 + 1.29013i) q^{10} -1.08988i q^{11} -0.367473 q^{12} +1.37471i q^{13} +2.99580i q^{14} +(-0.671136 + 0.474088i) q^{15} +1.00000 q^{16} +0.212256 q^{17} +2.86496 q^{18} -6.70297i q^{19} +(1.82635 - 1.29013i) q^{20} +1.10088i q^{21} +1.08988i q^{22} +1.06384i q^{23} +0.367473 q^{24} +(1.67114 - 4.71246i) q^{25} -1.37471i q^{26} +2.15522 q^{27} -2.99580i q^{28} +(2.49749 - 4.77101i) q^{29} +(0.671136 - 0.474088i) q^{30} -4.22738i q^{31} -1.00000 q^{32} +0.400501i q^{33} -0.212256 q^{34} +(-3.86496 - 5.47139i) q^{35} -2.86496 q^{36} -5.72993 q^{37} +6.70297i q^{38} -0.505170i q^{39} +(-1.82635 + 1.29013i) q^{40} +10.3731i q^{41} -1.10088i q^{42} +10.8599 q^{43} -1.08988i q^{44} +(-5.23244 + 3.69617i) q^{45} -1.06384i q^{46} +6.38765 q^{47} -0.367473 q^{48} -1.97480 q^{49} +(-1.67114 + 4.71246i) q^{50} -0.0779983 q^{51} +1.37471i q^{52} +10.0993i q^{53} -2.15522 q^{54} +(-1.40608 - 1.99050i) q^{55} +2.99580i q^{56} +2.46316i q^{57} +(-2.49749 + 4.77101i) q^{58} -5.28523 q^{59} +(-0.671136 + 0.474088i) q^{60} +3.38530i q^{61} +4.22738i q^{62} +8.58285i q^{63} +1.00000 q^{64} +(1.77356 + 2.51071i) q^{65} -0.400501i q^{66} -10.2314i q^{67} +0.212256 q^{68} -0.390934i q^{69} +(3.86496 + 5.47139i) q^{70} -5.04538 q^{71} +2.86496 q^{72} +3.51767 q^{73} +5.72993 q^{74} +(-0.614098 + 1.73170i) q^{75} -6.70297i q^{76} -3.26505 q^{77} +0.505170i q^{78} +8.85669i q^{79} +(1.82635 - 1.29013i) q^{80} +7.80291 q^{81} -10.3731i q^{82} +12.4112i q^{83} +1.10088i q^{84} +(0.387654 - 0.273837i) q^{85} -10.8599 q^{86} +(-0.917761 + 1.75322i) q^{87} +1.08988i q^{88} +2.95876i q^{89} +(5.23244 - 3.69617i) q^{90} +4.11836 q^{91} +1.06384i q^{92} +1.55345i q^{93} -6.38765 q^{94} +(-8.64769 - 12.2420i) q^{95} +0.367473 q^{96} -16.0605 q^{97} +1.97480 q^{98} +3.12246i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 4 q^{3} + 8 q^{4} - q^{5} - 4 q^{6} - 8 q^{8} + 8 q^{9} + q^{10} + 4 q^{12} + 3 q^{15} + 8 q^{16} + 2 q^{17} - 8 q^{18} - q^{20} - 4 q^{24} + 5 q^{25} + 10 q^{27} - 4 q^{29} - 3 q^{30}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/290\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(117\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −0.367473 −0.212161 −0.106080 0.994358i \(-0.533830\pi\)
−0.106080 + 0.994358i \(0.533830\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.82635 1.29013i 0.816770 0.576963i
\(6\) 0.367473 0.150020
\(7\) 2.99580i 1.13230i −0.824301 0.566152i \(-0.808431\pi\)
0.824301 0.566152i \(-0.191569\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.86496 −0.954988
\(10\) −1.82635 + 1.29013i −0.577544 + 0.407974i
\(11\) 1.08988i 0.328611i −0.986410 0.164305i \(-0.947462\pi\)
0.986410 0.164305i \(-0.0525382\pi\)
\(12\) −0.367473 −0.106080
\(13\) 1.37471i 0.381277i 0.981660 + 0.190638i \(0.0610558\pi\)
−0.981660 + 0.190638i \(0.938944\pi\)
\(14\) 2.99580i 0.800660i
\(15\) −0.671136 + 0.474088i −0.173287 + 0.122409i
\(16\) 1.00000 0.250000
\(17\) 0.212256 0.0514796 0.0257398 0.999669i \(-0.491806\pi\)
0.0257398 + 0.999669i \(0.491806\pi\)
\(18\) 2.86496 0.675278
\(19\) 6.70297i 1.53777i −0.639390 0.768883i \(-0.720813\pi\)
0.639390 0.768883i \(-0.279187\pi\)
\(20\) 1.82635 1.29013i 0.408385 0.288482i
\(21\) 1.10088i 0.240231i
\(22\) 1.08988i 0.232363i
\(23\) 1.06384i 0.221826i 0.993830 + 0.110913i \(0.0353776\pi\)
−0.993830 + 0.110913i \(0.964622\pi\)
\(24\) 0.367473 0.0750102
\(25\) 1.67114 4.71246i 0.334227 0.942493i
\(26\) 1.37471i 0.269603i
\(27\) 2.15522 0.414772
\(28\) 2.99580i 0.566152i
\(29\) 2.49749 4.77101i 0.463772 0.885954i
\(30\) 0.671136 0.474088i 0.122532 0.0865562i
\(31\) 4.22738i 0.759259i −0.925139 0.379630i \(-0.876051\pi\)
0.925139 0.379630i \(-0.123949\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.400501i 0.0697183i
\(34\) −0.212256 −0.0364016
\(35\) −3.86496 5.47139i −0.653298 0.924833i
\(36\) −2.86496 −0.477494
\(37\) −5.72993 −0.941994 −0.470997 0.882135i \(-0.656106\pi\)
−0.470997 + 0.882135i \(0.656106\pi\)
\(38\) 6.70297i 1.08736i
\(39\) 0.505170i 0.0808920i
\(40\) −1.82635 + 1.29013i −0.288772 + 0.203987i
\(41\) 10.3731i 1.62001i 0.586426 + 0.810003i \(0.300535\pi\)
−0.586426 + 0.810003i \(0.699465\pi\)
\(42\) 1.10088i 0.169869i
\(43\) 10.8599 1.65613 0.828063 0.560635i \(-0.189443\pi\)
0.828063 + 0.560635i \(0.189443\pi\)
\(44\) 1.08988i 0.164305i
\(45\) −5.23244 + 3.69617i −0.780006 + 0.550993i
\(46\) 1.06384i 0.156855i
\(47\) 6.38765 0.931735 0.465868 0.884854i \(-0.345742\pi\)
0.465868 + 0.884854i \(0.345742\pi\)
\(48\) −0.367473 −0.0530402
\(49\) −1.97480 −0.282114
\(50\) −1.67114 + 4.71246i −0.236334 + 0.666443i
\(51\) −0.0779983 −0.0109220
\(52\) 1.37471i 0.190638i
\(53\) 10.0993i 1.38724i 0.720341 + 0.693620i \(0.243985\pi\)
−0.720341 + 0.693620i \(0.756015\pi\)
\(54\) −2.15522 −0.293288
\(55\) −1.40608 1.99050i −0.189596 0.268399i
\(56\) 2.99580i 0.400330i
\(57\) 2.46316i 0.326254i
\(58\) −2.49749 + 4.77101i −0.327937 + 0.626464i
\(59\) −5.28523 −0.688079 −0.344039 0.938955i \(-0.611795\pi\)
−0.344039 + 0.938955i \(0.611795\pi\)
\(60\) −0.671136 + 0.474088i −0.0866433 + 0.0612045i
\(61\) 3.38530i 0.433443i 0.976233 + 0.216722i \(0.0695364\pi\)
−0.976233 + 0.216722i \(0.930464\pi\)
\(62\) 4.22738i 0.536877i
\(63\) 8.58285i 1.08134i
\(64\) 1.00000 0.125000
\(65\) 1.77356 + 2.51071i 0.219983 + 0.311415i
\(66\) 0.400501i 0.0492983i
\(67\) 10.2314i 1.24996i −0.780639 0.624982i \(-0.785106\pi\)
0.780639 0.624982i \(-0.214894\pi\)
\(68\) 0.212256 0.0257398
\(69\) 0.390934i 0.0470629i
\(70\) 3.86496 + 5.47139i 0.461951 + 0.653956i
\(71\) −5.04538 −0.598777 −0.299388 0.954131i \(-0.596783\pi\)
−0.299388 + 0.954131i \(0.596783\pi\)
\(72\) 2.86496 0.337639
\(73\) 3.51767 0.411712 0.205856 0.978582i \(-0.434002\pi\)
0.205856 + 0.978582i \(0.434002\pi\)
\(74\) 5.72993 0.666090
\(75\) −0.614098 + 1.73170i −0.0709099 + 0.199960i
\(76\) 6.70297i 0.768883i
\(77\) −3.26505 −0.372087
\(78\) 0.505170i 0.0571993i
\(79\) 8.85669i 0.996455i 0.867046 + 0.498227i \(0.166016\pi\)
−0.867046 + 0.498227i \(0.833984\pi\)
\(80\) 1.82635 1.29013i 0.204193 0.144241i
\(81\) 7.80291 0.866989
\(82\) 10.3731i 1.14552i
\(83\) 12.4112i 1.36230i 0.732143 + 0.681151i \(0.238520\pi\)
−0.732143 + 0.681151i \(0.761480\pi\)
\(84\) 1.10088i 0.120115i
\(85\) 0.387654 0.273837i 0.0420470 0.0297018i
\(86\) −10.8599 −1.17106
\(87\) −0.917761 + 1.75322i −0.0983943 + 0.187965i
\(88\) 1.08988i 0.116181i
\(89\) 2.95876i 0.313628i 0.987628 + 0.156814i \(0.0501224\pi\)
−0.987628 + 0.156814i \(0.949878\pi\)
\(90\) 5.23244 3.69617i 0.551547 0.389611i
\(91\) 4.11836 0.431721
\(92\) 1.06384i 0.110913i
\(93\) 1.55345i 0.161085i
\(94\) −6.38765 −0.658836
\(95\) −8.64769 12.2420i −0.887234 1.25600i
\(96\) 0.367473 0.0375051
\(97\) −16.0605 −1.63070 −0.815351 0.578968i \(-0.803456\pi\)
−0.815351 + 0.578968i \(0.803456\pi\)
\(98\) 1.97480 0.199485
\(99\) 3.12246i 0.313819i
\(100\) 1.67114 4.71246i 0.167114 0.471246i
\(101\) 13.7584i 1.36901i 0.729007 + 0.684506i \(0.239982\pi\)
−0.729007 + 0.684506i \(0.760018\pi\)
\(102\) 0.0779983 0.00772299
\(103\) 9.16613i 0.903165i −0.892229 0.451583i \(-0.850860\pi\)
0.892229 0.451583i \(-0.149140\pi\)
\(104\) 1.37471i 0.134802i
\(105\) 1.42027 + 2.01059i 0.138604 + 0.196213i
\(106\) 10.0993i 0.980927i
\(107\) 2.34345i 0.226550i 0.993564 + 0.113275i \(0.0361341\pi\)
−0.993564 + 0.113275i \(0.963866\pi\)
\(108\) 2.15522 0.207386
\(109\) −1.12260 −0.107526 −0.0537628 0.998554i \(-0.517121\pi\)
−0.0537628 + 0.998554i \(0.517121\pi\)
\(110\) 1.40608 + 1.99050i 0.134065 + 0.189787i
\(111\) 2.10560 0.199854
\(112\) 2.99580i 0.283076i
\(113\) 14.7451 1.38710 0.693551 0.720408i \(-0.256045\pi\)
0.693551 + 0.720408i \(0.256045\pi\)
\(114\) 2.46316i 0.230696i
\(115\) 1.37249 + 1.94295i 0.127986 + 0.181181i
\(116\) 2.49749 4.77101i 0.231886 0.442977i
\(117\) 3.93850i 0.364115i
\(118\) 5.28523 0.486545
\(119\) 0.635875i 0.0582906i
\(120\) 0.671136 0.474088i 0.0612661 0.0432781i
\(121\) 9.81217 0.892015
\(122\) 3.38530i 0.306491i
\(123\) 3.81184i 0.343702i
\(124\) 4.22738i 0.379630i
\(125\) −3.02760 10.7626i −0.270796 0.962637i
\(126\) 8.58285i 0.764621i
\(127\) −2.57047 −0.228092 −0.114046 0.993475i \(-0.536381\pi\)
−0.114046 + 0.993475i \(0.536381\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −3.99074 −0.351365
\(130\) −1.77356 2.51071i −0.155551 0.220204i
\(131\) 1.20697i 0.105454i 0.998609 + 0.0527269i \(0.0167913\pi\)
−0.998609 + 0.0527269i \(0.983209\pi\)
\(132\) 0.400501i 0.0348591i
\(133\) −20.0807 −1.74122
\(134\) 10.2314i 0.883858i
\(135\) 3.93619 2.78051i 0.338773 0.239308i
\(136\) −0.212256 −0.0182008
\(137\) 5.81534 0.496838 0.248419 0.968653i \(-0.420089\pi\)
0.248419 + 0.968653i \(0.420089\pi\)
\(138\) 0.390934i 0.0332785i
\(139\) 15.0428 1.27591 0.637955 0.770074i \(-0.279781\pi\)
0.637955 + 0.770074i \(0.279781\pi\)
\(140\) −3.86496 5.47139i −0.326649 0.462416i
\(141\) −2.34729 −0.197678
\(142\) 5.04538 0.423399
\(143\) 1.49827 0.125292
\(144\) −2.86496 −0.238747
\(145\) −1.59392 11.9356i −0.132368 0.991201i
\(146\) −3.51767 −0.291125
\(147\) 0.725686 0.0598536
\(148\) −5.72993 −0.470997
\(149\) 0.968162 0.0793150 0.0396575 0.999213i \(-0.487373\pi\)
0.0396575 + 0.999213i \(0.487373\pi\)
\(150\) 0.614098 1.73170i 0.0501409 0.141393i
\(151\) −10.3004 −0.838234 −0.419117 0.907932i \(-0.637660\pi\)
−0.419117 + 0.907932i \(0.637660\pi\)
\(152\) 6.70297i 0.543682i
\(153\) −0.608105 −0.0491624
\(154\) 3.26505 0.263105
\(155\) −5.45386 7.72069i −0.438065 0.620140i
\(156\) 0.505170i 0.0404460i
\(157\) 11.5654 0.923023 0.461512 0.887134i \(-0.347307\pi\)
0.461512 + 0.887134i \(0.347307\pi\)
\(158\) 8.85669i 0.704600i
\(159\) 3.71121i 0.294318i
\(160\) −1.82635 + 1.29013i −0.144386 + 0.101994i
\(161\) 3.18706 0.251175
\(162\) −7.80291 −0.613054
\(163\) −3.50675 −0.274670 −0.137335 0.990525i \(-0.543854\pi\)
−0.137335 + 0.990525i \(0.543854\pi\)
\(164\) 10.3731i 0.810003i
\(165\) 0.516698 + 0.731457i 0.0402249 + 0.0569438i
\(166\) 12.4112i 0.963292i
\(167\) 6.80763i 0.526791i −0.964688 0.263395i \(-0.915158\pi\)
0.964688 0.263395i \(-0.0848423\pi\)
\(168\) 1.10088i 0.0849344i
\(169\) 11.1102 0.854628
\(170\) −0.387654 + 0.273837i −0.0297317 + 0.0210024i
\(171\) 19.2038i 1.46855i
\(172\) 10.8599 0.828063
\(173\) 12.6960i 0.965258i −0.875825 0.482629i \(-0.839682\pi\)
0.875825 0.482629i \(-0.160318\pi\)
\(174\) 0.917761 1.75322i 0.0695753 0.132911i
\(175\) −14.1176 5.00638i −1.06719 0.378447i
\(176\) 1.08988i 0.0821527i
\(177\) 1.94218 0.145983
\(178\) 2.95876i 0.221769i
\(179\) −3.44971 −0.257844 −0.128922 0.991655i \(-0.541152\pi\)
−0.128922 + 0.991655i \(0.541152\pi\)
\(180\) −5.23244 + 3.69617i −0.390003 + 0.275496i
\(181\) 19.3826 1.44070 0.720350 0.693611i \(-0.243981\pi\)
0.720350 + 0.693611i \(0.243981\pi\)
\(182\) −4.11836 −0.305273
\(183\) 1.24401i 0.0919597i
\(184\) 1.06384i 0.0784275i
\(185\) −10.4649 + 7.39234i −0.769393 + 0.543496i
\(186\) 1.55345i 0.113904i
\(187\) 0.231333i 0.0169167i
\(188\) 6.38765 0.465868
\(189\) 6.45659i 0.469648i
\(190\) 8.64769 + 12.2420i 0.627369 + 0.888127i
\(191\) 24.5210i 1.77428i −0.461503 0.887139i \(-0.652689\pi\)
0.461503 0.887139i \(-0.347311\pi\)
\(192\) −0.367473 −0.0265201
\(193\) −10.0101 −0.720546 −0.360273 0.932847i \(-0.617316\pi\)
−0.360273 + 0.932847i \(0.617316\pi\)
\(194\) 16.0605 1.15308
\(195\) −0.651735 0.922620i −0.0466717 0.0660702i
\(196\) −1.97480 −0.141057
\(197\) 19.1667i 1.36557i 0.730618 + 0.682786i \(0.239232\pi\)
−0.730618 + 0.682786i \(0.760768\pi\)
\(198\) 3.12246i 0.221904i
\(199\) 14.7249 1.04382 0.521910 0.853000i \(-0.325219\pi\)
0.521910 + 0.853000i \(0.325219\pi\)
\(200\) −1.67114 + 4.71246i −0.118167 + 0.333221i
\(201\) 3.75977i 0.265193i
\(202\) 13.7584i 0.968038i
\(203\) −14.2930 7.48197i −1.00317 0.525132i
\(204\) −0.0779983 −0.00546098
\(205\) 13.3826 + 18.9450i 0.934684 + 1.32317i
\(206\) 9.16613i 0.638634i
\(207\) 3.04787i 0.211842i
\(208\) 1.37471i 0.0953192i
\(209\) −7.30542 −0.505326
\(210\) −1.42027 2.01059i −0.0980080 0.138744i
\(211\) 8.19596i 0.564233i 0.959380 + 0.282116i \(0.0910365\pi\)
−0.959380 + 0.282116i \(0.908964\pi\)
\(212\) 10.0993i 0.693620i
\(213\) 1.85404 0.127037
\(214\) 2.34345i 0.160195i
\(215\) 19.8341 14.0107i 1.35267 0.955523i
\(216\) −2.15522 −0.146644
\(217\) −12.6644 −0.859713
\(218\) 1.12260 0.0760321
\(219\) −1.29265 −0.0873492
\(220\) −1.40608 1.99050i −0.0947981 0.134200i
\(221\) 0.291791i 0.0196280i
\(222\) −2.10560 −0.141318
\(223\) 6.32850i 0.423788i 0.977293 + 0.211894i \(0.0679631\pi\)
−0.977293 + 0.211894i \(0.932037\pi\)
\(224\) 2.99580i 0.200165i
\(225\) −4.78774 + 13.5010i −0.319183 + 0.900069i
\(226\) −14.7451 −0.980829
\(227\) 20.8358i 1.38292i 0.722413 + 0.691461i \(0.243033\pi\)
−0.722413 + 0.691461i \(0.756967\pi\)
\(228\) 2.46316i 0.163127i
\(229\) 14.2925i 0.944473i 0.881472 + 0.472236i \(0.156553\pi\)
−0.881472 + 0.472236i \(0.843447\pi\)
\(230\) −1.37249 1.94295i −0.0904995 0.128114i
\(231\) 1.19982 0.0789424
\(232\) −2.49749 + 4.77101i −0.163968 + 0.313232i
\(233\) 13.5230i 0.885923i −0.896541 0.442961i \(-0.853928\pi\)
0.896541 0.442961i \(-0.146072\pi\)
\(234\) 3.93850i 0.257468i
\(235\) 11.6661 8.24090i 0.761014 0.537577i
\(236\) −5.28523 −0.344039
\(237\) 3.25460i 0.211409i
\(238\) 0.635875i 0.0412177i
\(239\) −18.6697 −1.20764 −0.603822 0.797119i \(-0.706356\pi\)
−0.603822 + 0.797119i \(0.706356\pi\)
\(240\) −0.671136 + 0.474088i −0.0433217 + 0.0306022i
\(241\) −19.6628 −1.26660 −0.633298 0.773908i \(-0.718299\pi\)
−0.633298 + 0.773908i \(0.718299\pi\)
\(242\) −9.81217 −0.630750
\(243\) −9.33301 −0.598713
\(244\) 3.38530i 0.216722i
\(245\) −3.60668 + 2.54775i −0.230422 + 0.162769i
\(246\) 3.81184i 0.243034i
\(247\) 9.21465 0.586314
\(248\) 4.22738i 0.268439i
\(249\) 4.56077i 0.289027i
\(250\) 3.02760 + 10.7626i 0.191482 + 0.680687i
\(251\) 11.5370i 0.728212i 0.931358 + 0.364106i \(0.118625\pi\)
−0.931358 + 0.364106i \(0.881375\pi\)
\(252\) 8.58285i 0.540669i
\(253\) 1.15946 0.0728945
\(254\) 2.57047 0.161286
\(255\) −0.142453 + 0.100628i −0.00892073 + 0.00630156i
\(256\) 1.00000 0.0625000
\(257\) 7.27525i 0.453817i −0.973916 0.226909i \(-0.927138\pi\)
0.973916 0.226909i \(-0.0728619\pi\)
\(258\) 3.99074 0.248453
\(259\) 17.1657i 1.06662i
\(260\) 1.77356 + 2.51071i 0.109991 + 0.155708i
\(261\) −7.15522 + 13.6688i −0.442897 + 0.846076i
\(262\) 1.20697i 0.0745671i
\(263\) 29.7334 1.83344 0.916721 0.399528i \(-0.130826\pi\)
0.916721 + 0.399528i \(0.130826\pi\)
\(264\) 0.400501i 0.0246491i
\(265\) 13.0293 + 18.4448i 0.800387 + 1.13306i
\(266\) 20.0807 1.23123
\(267\) 1.08727i 0.0665396i
\(268\) 10.2314i 0.624982i
\(269\) 26.5290i 1.61750i −0.588152 0.808750i \(-0.700144\pi\)
0.588152 0.808750i \(-0.299856\pi\)
\(270\) −3.93619 + 2.78051i −0.239549 + 0.169216i
\(271\) 19.2989i 1.17232i −0.810195 0.586161i \(-0.800639\pi\)
0.810195 0.586161i \(-0.199361\pi\)
\(272\) 0.212256 0.0128699
\(273\) −1.51339 −0.0915944
\(274\) −5.81534 −0.351318
\(275\) −5.13601 1.82133i −0.309713 0.109831i
\(276\) 0.390934i 0.0235314i
\(277\) 11.2042i 0.673194i 0.941649 + 0.336597i \(0.109276\pi\)
−0.941649 + 0.336597i \(0.890724\pi\)
\(278\) −15.0428 −0.902205
\(279\) 12.1113i 0.725083i
\(280\) 3.86496 + 5.47139i 0.230976 + 0.326978i
\(281\) −7.60493 −0.453672 −0.226836 0.973933i \(-0.572838\pi\)
−0.226836 + 0.973933i \(0.572838\pi\)
\(282\) 2.34729 0.139779
\(283\) 4.75740i 0.282798i −0.989953 0.141399i \(-0.954840\pi\)
0.989953 0.141399i \(-0.0451601\pi\)
\(284\) −5.04538 −0.299388
\(285\) 3.17779 + 4.49860i 0.188236 + 0.266474i
\(286\) −1.49827 −0.0885945
\(287\) 31.0757 1.83434
\(288\) 2.86496 0.168820
\(289\) −16.9549 −0.997350
\(290\) 1.59392 + 11.9356i 0.0935980 + 0.700885i
\(291\) 5.90182 0.345971
\(292\) 3.51767 0.205856
\(293\) −22.2904 −1.30222 −0.651108 0.758985i \(-0.725696\pi\)
−0.651108 + 0.758985i \(0.725696\pi\)
\(294\) −0.725686 −0.0423229
\(295\) −9.65271 + 6.81863i −0.562002 + 0.396996i
\(296\) 5.72993 0.333045
\(297\) 2.34892i 0.136298i
\(298\) −0.968162 −0.0560841
\(299\) −1.46248 −0.0845772
\(300\) −0.614098 + 1.73170i −0.0354550 + 0.0999800i
\(301\) 32.5342i 1.87524i
\(302\) 10.3004 0.592721
\(303\) 5.05585i 0.290451i
\(304\) 6.70297i 0.384441i
\(305\) 4.36747 + 6.18276i 0.250081 + 0.354024i
\(306\) 0.608105 0.0347631
\(307\) −19.9531 −1.13878 −0.569392 0.822066i \(-0.692821\pi\)
−0.569392 + 0.822066i \(0.692821\pi\)
\(308\) −3.26505 −0.186044
\(309\) 3.36831i 0.191616i
\(310\) 5.45386 + 7.72069i 0.309758 + 0.438506i
\(311\) 15.8156i 0.896820i −0.893828 0.448410i \(-0.851990\pi\)
0.893828 0.448410i \(-0.148010\pi\)
\(312\) 0.505170i 0.0285996i
\(313\) 9.71119i 0.548909i 0.961600 + 0.274454i \(0.0884973\pi\)
−0.961600 + 0.274454i \(0.911503\pi\)
\(314\) −11.5654 −0.652676
\(315\) 11.0730 + 15.6753i 0.623892 + 0.883204i
\(316\) 8.85669i 0.498227i
\(317\) 31.6058 1.77516 0.887580 0.460654i \(-0.152385\pi\)
0.887580 + 0.460654i \(0.152385\pi\)
\(318\) 3.71121i 0.208114i
\(319\) −5.19982 2.72196i −0.291134 0.152400i
\(320\) 1.82635 1.29013i 0.102096 0.0721204i
\(321\) 0.861157i 0.0480651i
\(322\) −3.18706 −0.177608
\(323\) 1.42274i 0.0791636i
\(324\) 7.80291 0.433495
\(325\) 6.47828 + 2.29733i 0.359350 + 0.127433i
\(326\) 3.50675 0.194221
\(327\) 0.412526 0.0228127
\(328\) 10.3731i 0.572759i
\(329\) 19.1361i 1.05501i
\(330\) −0.516698 0.731457i −0.0284433 0.0402654i
\(331\) 18.4649i 1.01492i 0.861674 + 0.507462i \(0.169416\pi\)
−0.861674 + 0.507462i \(0.830584\pi\)
\(332\) 12.4112i 0.681151i
\(333\) 16.4160 0.899593
\(334\) 6.80763i 0.372497i
\(335\) −13.1998 18.6862i −0.721183 1.02093i
\(336\) 1.10088i 0.0600577i
\(337\) 11.7729 0.641311 0.320656 0.947196i \(-0.396097\pi\)
0.320656 + 0.947196i \(0.396097\pi\)
\(338\) −11.1102 −0.604313
\(339\) −5.41843 −0.294289
\(340\) 0.387654 0.273837i 0.0210235 0.0148509i
\(341\) −4.60733 −0.249501
\(342\) 19.2038i 1.03842i
\(343\) 15.0545i 0.812866i
\(344\) −10.8599 −0.585529
\(345\) −0.504355 0.713983i −0.0271535 0.0384396i
\(346\) 12.6960i 0.682541i
\(347\) 12.1497i 0.652232i 0.945330 + 0.326116i \(0.105740\pi\)
−0.945330 + 0.326116i \(0.894260\pi\)
\(348\) −0.917761 + 1.75322i −0.0491972 + 0.0939824i
\(349\) −8.13241 −0.435318 −0.217659 0.976025i \(-0.569842\pi\)
−0.217659 + 0.976025i \(0.569842\pi\)
\(350\) 14.1176 + 5.00638i 0.754616 + 0.267603i
\(351\) 2.96280i 0.158143i
\(352\) 1.08988i 0.0580907i
\(353\) 17.7354i 0.943958i −0.881610 0.471979i \(-0.843540\pi\)
0.881610 0.471979i \(-0.156460\pi\)
\(354\) −1.94218 −0.103226
\(355\) −9.21465 + 6.50919i −0.489063 + 0.345472i
\(356\) 2.95876i 0.156814i
\(357\) 0.233667i 0.0123670i
\(358\) 3.44971 0.182323
\(359\) 9.14009i 0.482396i −0.970476 0.241198i \(-0.922460\pi\)
0.970476 0.241198i \(-0.0775402\pi\)
\(360\) 5.23244 3.69617i 0.275774 0.194805i
\(361\) −25.9297 −1.36472
\(362\) −19.3826 −1.01873
\(363\) −3.60571 −0.189251
\(364\) 4.11836 0.215861
\(365\) 6.42451 4.53825i 0.336274 0.237543i
\(366\) 1.24401i 0.0650253i
\(367\) −25.5654 −1.33451 −0.667253 0.744831i \(-0.732530\pi\)
−0.667253 + 0.744831i \(0.732530\pi\)
\(368\) 1.06384i 0.0554566i
\(369\) 29.7186i 1.54709i
\(370\) 10.4649 7.39234i 0.544043 0.384310i
\(371\) 30.2553 1.57078
\(372\) 1.55345i 0.0805425i
\(373\) 21.8731i 1.13255i −0.824217 0.566273i \(-0.808385\pi\)
0.824217 0.566273i \(-0.191615\pi\)
\(374\) 0.231333i 0.0119619i
\(375\) 1.11256 + 3.95497i 0.0574524 + 0.204234i
\(376\) −6.38765 −0.329418
\(377\) 6.55877 + 3.43333i 0.337794 + 0.176826i
\(378\) 6.45659i 0.332091i
\(379\) 32.8410i 1.68693i 0.537184 + 0.843465i \(0.319488\pi\)
−0.537184 + 0.843465i \(0.680512\pi\)
\(380\) −8.64769 12.2420i −0.443617 0.628001i
\(381\) 0.944579 0.0483922
\(382\) 24.5210i 1.25460i
\(383\) 34.6298i 1.76950i −0.466064 0.884751i \(-0.654328\pi\)
0.466064 0.884751i \(-0.345672\pi\)
\(384\) 0.367473 0.0187525
\(385\) −5.96314 + 4.21234i −0.303910 + 0.214681i
\(386\) 10.0101 0.509503
\(387\) −31.1133 −1.58158
\(388\) −16.0605 −0.815351
\(389\) 12.9103i 0.654580i −0.944924 0.327290i \(-0.893865\pi\)
0.944924 0.327290i \(-0.106135\pi\)
\(390\) 0.651735 + 0.922620i 0.0330019 + 0.0467187i
\(391\) 0.225807i 0.0114195i
\(392\) 1.97480 0.0997424
\(393\) 0.443531i 0.0223732i
\(394\) 19.1667i 0.965605i
\(395\) 11.4263 + 16.1754i 0.574918 + 0.813875i
\(396\) 3.12246i 0.156910i
\(397\) 28.7398i 1.44241i −0.692723 0.721204i \(-0.743589\pi\)
0.692723 0.721204i \(-0.256411\pi\)
\(398\) −14.7249 −0.738093
\(399\) 7.37913 0.369419
\(400\) 1.67114 4.71246i 0.0835568 0.235623i
\(401\) 24.2030 1.20864 0.604320 0.796742i \(-0.293445\pi\)
0.604320 + 0.796742i \(0.293445\pi\)
\(402\) 3.75977i 0.187520i
\(403\) 5.81143 0.289488
\(404\) 13.7584i 0.684506i
\(405\) 14.2509 10.0668i 0.708131 0.500221i
\(406\) 14.2930 + 7.48197i 0.709349 + 0.371324i
\(407\) 6.24492i 0.309549i
\(408\) 0.0779983 0.00386149
\(409\) 17.4820i 0.864431i −0.901770 0.432216i \(-0.857732\pi\)
0.901770 0.432216i \(-0.142268\pi\)
\(410\) −13.3826 18.9450i −0.660921 0.935624i
\(411\) −2.13698 −0.105410
\(412\) 9.16613i 0.451583i
\(413\) 15.8335i 0.779115i
\(414\) 3.04787i 0.149795i
\(415\) 16.0120 + 22.6672i 0.785997 + 1.11269i
\(416\) 1.37471i 0.0674008i
\(417\) −5.52781 −0.270698
\(418\) 7.30542 0.357320
\(419\) 26.2378 1.28180 0.640900 0.767625i \(-0.278561\pi\)
0.640900 + 0.767625i \(0.278561\pi\)
\(420\) 1.42027 + 2.01059i 0.0693021 + 0.0981066i
\(421\) 13.6673i 0.666105i 0.942908 + 0.333053i \(0.108079\pi\)
−0.942908 + 0.333053i \(0.891921\pi\)
\(422\) 8.19596i 0.398973i
\(423\) −18.3004 −0.889796
\(424\) 10.0993i 0.490464i
\(425\) 0.354708 1.00025i 0.0172059 0.0485191i
\(426\) −1.85404 −0.0898287
\(427\) 10.1417 0.490790
\(428\) 2.34345i 0.113275i
\(429\) −0.550574 −0.0265820
\(430\) −19.8341 + 14.0107i −0.956485 + 0.675657i
\(431\) −20.1544 −0.970805 −0.485403 0.874291i \(-0.661327\pi\)
−0.485403 + 0.874291i \(0.661327\pi\)
\(432\) 2.15522 0.103693
\(433\) 9.30542 0.447190 0.223595 0.974682i \(-0.428221\pi\)
0.223595 + 0.974682i \(0.428221\pi\)
\(434\) 12.6644 0.607909
\(435\) 0.585722 + 4.38603i 0.0280832 + 0.210294i
\(436\) −1.12260 −0.0537628
\(437\) 7.13090 0.341117
\(438\) 1.29265 0.0617652
\(439\) 38.2655 1.82631 0.913156 0.407610i \(-0.133638\pi\)
0.913156 + 0.407610i \(0.133638\pi\)
\(440\) 1.40608 + 1.99050i 0.0670324 + 0.0948935i
\(441\) 5.65773 0.269416
\(442\) 0.291791i 0.0138791i
\(443\) −34.1561 −1.62281 −0.811403 0.584488i \(-0.801296\pi\)
−0.811403 + 0.584488i \(0.801296\pi\)
\(444\) 2.10560 0.0999271
\(445\) 3.81719 + 5.40375i 0.180952 + 0.256162i
\(446\) 6.32850i 0.299663i
\(447\) −0.355774 −0.0168275
\(448\) 2.99580i 0.141538i
\(449\) 2.90669i 0.137175i −0.997645 0.0685876i \(-0.978151\pi\)
0.997645 0.0685876i \(-0.0218493\pi\)
\(450\) 4.78774 13.5010i 0.225696 0.636445i
\(451\) 11.3054 0.532351
\(452\) 14.7451 0.693551
\(453\) 3.78512 0.177840
\(454\) 20.8358i 0.977874i
\(455\) 7.52158 5.31321i 0.352617 0.249087i
\(456\) 2.46316i 0.115348i
\(457\) 2.65336i 0.124119i −0.998072 0.0620596i \(-0.980233\pi\)
0.998072 0.0620596i \(-0.0197669\pi\)
\(458\) 14.2925i 0.667843i
\(459\) 0.457457 0.0213523
\(460\) 1.37249 + 1.94295i 0.0639928 + 0.0905906i
\(461\) 6.53979i 0.304589i 0.988335 + 0.152294i \(0.0486662\pi\)
−0.988335 + 0.152294i \(0.951334\pi\)
\(462\) −1.19982 −0.0558207
\(463\) 27.1658i 1.26250i 0.775579 + 0.631250i \(0.217458\pi\)
−0.775579 + 0.631250i \(0.782542\pi\)
\(464\) 2.49749 4.77101i 0.115943 0.221489i
\(465\) 2.00415 + 2.83715i 0.0929401 + 0.131570i
\(466\) 13.5230i 0.626442i
\(467\) −32.2561 −1.49264 −0.746318 0.665590i \(-0.768180\pi\)
−0.746318 + 0.665590i \(0.768180\pi\)
\(468\) 3.93850i 0.182057i
\(469\) −30.6512 −1.41534
\(470\) −11.6661 + 8.24090i −0.538118 + 0.380124i
\(471\) −4.24999 −0.195829
\(472\) 5.28523 0.243273
\(473\) 11.8360i 0.544221i
\(474\) 3.25460i 0.149489i
\(475\) −31.5875 11.2016i −1.44933 0.513963i
\(476\) 0.635875i 0.0291453i
\(477\) 28.9340i 1.32480i
\(478\) 18.6697 0.853933
\(479\) 25.8295i 1.18018i 0.807337 + 0.590090i \(0.200908\pi\)
−0.807337 + 0.590090i \(0.799092\pi\)
\(480\) 0.671136 0.474088i 0.0306330 0.0216391i
\(481\) 7.87700i 0.359160i
\(482\) 19.6628 0.895618
\(483\) −1.17116 −0.0532895
\(484\) 9.81217 0.446008
\(485\) −29.3322 + 20.7202i −1.33191 + 0.940854i
\(486\) 9.33301 0.423354
\(487\) 1.63351i 0.0740215i −0.999315 0.0370107i \(-0.988216\pi\)
0.999315 0.0370107i \(-0.0117836\pi\)
\(488\) 3.38530i 0.153245i
\(489\) 1.28864 0.0582742
\(490\) 3.60668 2.54775i 0.162933 0.115095i
\(491\) 10.3456i 0.466892i 0.972370 + 0.233446i \(0.0750002\pi\)
−0.972370 + 0.233446i \(0.925000\pi\)
\(492\) 3.81184i 0.171851i
\(493\) 0.530107 1.01267i 0.0238748 0.0456086i
\(494\) −9.21465 −0.414587
\(495\) 4.02838 + 5.70272i 0.181062 + 0.256318i
\(496\) 4.22738i 0.189815i
\(497\) 15.1149i 0.677998i
\(498\) 4.56077i 0.204373i
\(499\) 0.704726 0.0315479 0.0157739 0.999876i \(-0.494979\pi\)
0.0157739 + 0.999876i \(0.494979\pi\)
\(500\) −3.02760 10.7626i −0.135398 0.481318i
\(501\) 2.50162i 0.111764i
\(502\) 11.5370i 0.514924i
\(503\) 6.19285 0.276126 0.138063 0.990423i \(-0.455912\pi\)
0.138063 + 0.990423i \(0.455912\pi\)
\(504\) 8.58285i 0.382310i
\(505\) 17.7501 + 25.1277i 0.789869 + 1.11817i
\(506\) −1.15946 −0.0515442
\(507\) −4.08269 −0.181319
\(508\) −2.57047 −0.114046
\(509\) −14.6292 −0.648426 −0.324213 0.945984i \(-0.605100\pi\)
−0.324213 + 0.945984i \(0.605100\pi\)
\(510\) 0.142453 0.100628i 0.00630791 0.00445588i
\(511\) 10.5382i 0.466184i
\(512\) −1.00000 −0.0441942
\(513\) 14.4463i 0.637822i
\(514\) 7.27525i 0.320897i
\(515\) −11.8255 16.7406i −0.521093 0.737679i
\(516\) −3.99074 −0.175683
\(517\) 6.96176i 0.306178i
\(518\) 17.1657i 0.754217i
\(519\) 4.66544i 0.204790i
\(520\) −1.77356 2.51071i −0.0777756 0.110102i
\(521\) −6.40511 −0.280613 −0.140306 0.990108i \(-0.544809\pi\)
−0.140306 + 0.990108i \(0.544809\pi\)
\(522\) 7.15522 13.6688i 0.313175 0.598266i
\(523\) 16.5805i 0.725013i 0.931981 + 0.362507i \(0.118079\pi\)
−0.931981 + 0.362507i \(0.881921\pi\)
\(524\) 1.20697i 0.0527269i
\(525\) 5.18783 + 1.83971i 0.226416 + 0.0802917i
\(526\) −29.7334 −1.29644
\(527\) 0.897285i 0.0390864i
\(528\) 0.400501i 0.0174296i
\(529\) 21.8682 0.950793
\(530\) −13.0293 18.4448i −0.565959 0.801192i
\(531\) 15.1420 0.657107
\(532\) −20.0807 −0.870610
\(533\) −14.2600 −0.617671
\(534\) 1.08727i 0.0470506i
\(535\) 3.02336 + 4.27997i 0.130711 + 0.185039i
\(536\) 10.2314i 0.441929i
\(537\) 1.26768 0.0547043
\(538\) 26.5290i 1.14375i
\(539\) 2.15229i 0.0927057i
\(540\) 3.93619 2.78051i 0.169387 0.119654i
\(541\) 40.5567i 1.74367i −0.489803 0.871833i \(-0.662931\pi\)
0.489803 0.871833i \(-0.337069\pi\)
\(542\) 19.2989i 0.828957i
\(543\) −7.12260 −0.305660
\(544\) −0.212256 −0.00910039
\(545\) −2.05027 + 1.44830i −0.0878238 + 0.0620383i
\(546\) 1.51339 0.0647670
\(547\) 43.0100i 1.83897i 0.393119 + 0.919487i \(0.371396\pi\)
−0.393119 + 0.919487i \(0.628604\pi\)
\(548\) 5.81534 0.248419
\(549\) 9.69876i 0.413933i
\(550\) 5.13601 + 1.82133i 0.219000 + 0.0776620i
\(551\) −31.9799 16.7406i −1.36239 0.713173i
\(552\) 0.390934i 0.0166392i
\(553\) 26.5328 1.12829
\(554\) 11.2042i 0.476020i
\(555\) 3.84556 2.71649i 0.163235 0.115309i
\(556\) 15.0428 0.637955
\(557\) 35.0002i 1.48301i 0.670949 + 0.741503i \(0.265887\pi\)
−0.670949 + 0.741503i \(0.734113\pi\)
\(558\) 12.1113i 0.512711i
\(559\) 14.9293i 0.631442i
\(560\) −3.86496 5.47139i −0.163325 0.231208i
\(561\) 0.0850087i 0.00358907i
\(562\) 7.60493 0.320795
\(563\) 7.82733 0.329882 0.164941 0.986303i \(-0.447257\pi\)
0.164941 + 0.986303i \(0.447257\pi\)
\(564\) −2.34729 −0.0988388
\(565\) 26.9297 19.0231i 1.13294 0.800306i
\(566\) 4.75740i 0.199969i
\(567\) 23.3759i 0.981696i
\(568\) 5.04538 0.211700
\(569\) 16.3098i 0.683741i 0.939747 + 0.341870i \(0.111060\pi\)
−0.939747 + 0.341870i \(0.888940\pi\)
\(570\) −3.17779 4.49860i −0.133103 0.188426i
\(571\) −26.6814 −1.11658 −0.558291 0.829645i \(-0.688543\pi\)
−0.558291 + 0.829645i \(0.688543\pi\)
\(572\) 1.49827 0.0626458
\(573\) 9.01082i 0.376432i
\(574\) −31.0757 −1.29707
\(575\) 5.01332 + 1.77783i 0.209070 + 0.0741404i
\(576\) −2.86496 −0.119373
\(577\) 34.3986 1.43203 0.716016 0.698084i \(-0.245964\pi\)
0.716016 + 0.698084i \(0.245964\pi\)
\(578\) 16.9549 0.705233
\(579\) 3.67846 0.152872
\(580\) −1.59392 11.9356i −0.0661838 0.495600i
\(581\) 37.1813 1.54254
\(582\) −5.90182 −0.244638
\(583\) 11.0070 0.455862
\(584\) −3.51767 −0.145562
\(585\) −5.08117 7.19310i −0.210081 0.297398i
\(586\) 22.2904 0.920806
\(587\) 25.7402i 1.06241i −0.847243 0.531205i \(-0.821739\pi\)
0.847243 0.531205i \(-0.178261\pi\)
\(588\) 0.725686 0.0299268
\(589\) −28.3360 −1.16756
\(590\) 9.65271 6.81863i 0.397396 0.280719i
\(591\) 7.04326i 0.289721i
\(592\) −5.72993 −0.235499
\(593\) 8.07625i 0.331652i 0.986155 + 0.165826i \(0.0530290\pi\)
−0.986155 + 0.165826i \(0.946971\pi\)
\(594\) 2.34892i 0.0963775i
\(595\) −0.820361 1.16133i −0.0336315 0.0476100i
\(596\) 0.968162 0.0396575
\(597\) −5.41101 −0.221458
\(598\) 1.46248 0.0598051
\(599\) 6.48120i 0.264815i −0.991195 0.132407i \(-0.957729\pi\)
0.991195 0.132407i \(-0.0422707\pi\)
\(600\) 0.614098 1.73170i 0.0250704 0.0706965i
\(601\) 9.59123i 0.391235i 0.980680 + 0.195617i \(0.0626710\pi\)
−0.980680 + 0.195617i \(0.937329\pi\)
\(602\) 32.5342i 1.32599i
\(603\) 29.3126i 1.19370i
\(604\) −10.3004 −0.419117
\(605\) 17.9205 12.6590i 0.728571 0.514660i
\(606\) 5.05585i 0.205380i
\(607\) 28.1680 1.14330 0.571652 0.820496i \(-0.306303\pi\)
0.571652 + 0.820496i \(0.306303\pi\)
\(608\) 6.70297i 0.271841i
\(609\) 5.25229 + 2.74943i 0.212833 + 0.111412i
\(610\) −4.36747 6.18276i −0.176834 0.250333i
\(611\) 8.78119i 0.355249i
\(612\) −0.608105 −0.0245812
\(613\) 41.3758i 1.67115i 0.549373 + 0.835577i \(0.314867\pi\)
−0.549373 + 0.835577i \(0.685133\pi\)
\(614\) 19.9531 0.805242
\(615\) −4.91776 6.96176i −0.198303 0.280725i
\(616\) 3.26505 0.131553
\(617\) −9.70399 −0.390668 −0.195334 0.980737i \(-0.562579\pi\)
−0.195334 + 0.980737i \(0.562579\pi\)
\(618\) 3.36831i 0.135493i
\(619\) 29.7952i 1.19757i 0.800909 + 0.598786i \(0.204350\pi\)
−0.800909 + 0.598786i \(0.795650\pi\)
\(620\) −5.45386 7.72069i −0.219032 0.310070i
\(621\) 2.29281i 0.0920073i
\(622\) 15.8156i 0.634147i
\(623\) 8.86386 0.355123
\(624\) 0.505170i 0.0202230i
\(625\) −19.4146 15.7503i −0.776584 0.630013i
\(626\) 9.71119i 0.388137i
\(627\) 2.68455 0.107210
\(628\) 11.5654 0.461512
\(629\) −1.21621 −0.0484935
\(630\) −11.0730 15.6753i −0.441158 0.624520i
\(631\) −35.9799 −1.43234 −0.716169 0.697927i \(-0.754106\pi\)
−0.716169 + 0.697927i \(0.754106\pi\)
\(632\) 8.85669i 0.352300i
\(633\) 3.01180i 0.119708i
\(634\) −31.6058 −1.25523
\(635\) −4.69458 + 3.31623i −0.186299 + 0.131601i
\(636\) 3.71121i 0.147159i
\(637\) 2.71478i 0.107564i
\(638\) 5.19982 + 2.72196i 0.205863 + 0.107763i
\(639\) 14.4548 0.571824
\(640\) −1.82635 + 1.29013i −0.0721930 + 0.0509968i
\(641\) 7.21413i 0.284941i −0.989799 0.142471i \(-0.954495\pi\)
0.989799 0.142471i \(-0.0455046\pi\)
\(642\) 0.861157i 0.0339871i
\(643\) 16.4543i 0.648895i −0.945904 0.324448i \(-0.894822\pi\)
0.945904 0.324448i \(-0.105178\pi\)
\(644\) 3.18706 0.125588
\(645\) −7.28850 + 5.14857i −0.286984 + 0.202725i
\(646\) 1.42274i 0.0559771i
\(647\) 30.8486i 1.21278i 0.795166 + 0.606392i \(0.207384\pi\)
−0.795166 + 0.606392i \(0.792616\pi\)
\(648\) −7.80291 −0.306527
\(649\) 5.76026i 0.226110i
\(650\) −6.47828 2.29733i −0.254099 0.0901088i
\(651\) 4.65382 0.182397
\(652\) −3.50675 −0.137335
\(653\) −22.3089 −0.873014 −0.436507 0.899701i \(-0.643785\pi\)
−0.436507 + 0.899701i \(0.643785\pi\)
\(654\) −0.412526 −0.0161310
\(655\) 1.55715 + 2.20436i 0.0608430 + 0.0861316i
\(656\) 10.3731i 0.405002i
\(657\) −10.0780 −0.393180
\(658\) 19.1361i 0.746003i
\(659\) 27.0186i 1.05249i 0.850332 + 0.526247i \(0.176401\pi\)
−0.850332 + 0.526247i \(0.823599\pi\)
\(660\) 0.516698 + 0.731457i 0.0201124 + 0.0284719i
\(661\) −9.63068 −0.374590 −0.187295 0.982304i \(-0.559972\pi\)
−0.187295 + 0.982304i \(0.559972\pi\)
\(662\) 18.4649i 0.717659i
\(663\) 0.107225i 0.00416429i
\(664\) 12.4112i 0.481646i
\(665\) −36.6745 + 25.9067i −1.42218 + 1.00462i
\(666\) −16.4160 −0.636108
\(667\) 5.07560 + 2.65694i 0.196528 + 0.102877i
\(668\) 6.80763i 0.263395i
\(669\) 2.32555i 0.0899111i
\(670\) 13.1998 + 18.6862i 0.509954 + 0.721909i
\(671\) 3.68956 0.142434
\(672\) 1.10088i 0.0424672i
\(673\) 46.9574i 1.81007i 0.425334 + 0.905037i \(0.360157\pi\)
−0.425334 + 0.905037i \(0.639843\pi\)
\(674\) −11.7729 −0.453476
\(675\) 3.60166 10.1564i 0.138628 0.390919i
\(676\) 11.1102 0.427314
\(677\) −28.1645 −1.08245 −0.541224 0.840878i \(-0.682039\pi\)
−0.541224 + 0.840878i \(0.682039\pi\)
\(678\) 5.41843 0.208093
\(679\) 48.1141i 1.84645i
\(680\) −0.387654 + 0.273837i −0.0148659 + 0.0105012i
\(681\) 7.65661i 0.293402i
\(682\) 4.60733 0.176424
\(683\) 19.8006i 0.757650i 0.925468 + 0.378825i \(0.123672\pi\)
−0.925468 + 0.378825i \(0.876328\pi\)
\(684\) 19.2038i 0.734274i
\(685\) 10.6209 7.50254i 0.405803 0.286657i
\(686\) 15.0545i 0.574783i
\(687\) 5.25210i 0.200380i
\(688\) 10.8599 0.414031
\(689\) −13.8836 −0.528922
\(690\) 0.504355 + 0.713983i 0.0192005 + 0.0271809i
\(691\) 3.64179 0.138540 0.0692701 0.997598i \(-0.477933\pi\)
0.0692701 + 0.997598i \(0.477933\pi\)
\(692\) 12.6960i 0.482629i
\(693\) 9.35426 0.355339
\(694\) 12.1497i 0.461198i
\(695\) 27.4734 19.4071i 1.04213 0.736153i
\(696\) 0.917761 1.75322i 0.0347876 0.0664556i
\(697\) 2.20175i 0.0833973i
\(698\) 8.13241 0.307816
\(699\) 4.96935i 0.187958i
\(700\) −14.1176 5.00638i −0.533594 0.189224i
\(701\) −24.5639 −0.927767 −0.463883 0.885896i \(-0.653544\pi\)
−0.463883 + 0.885896i \(0.653544\pi\)
\(702\) 2.96280i 0.111824i
\(703\) 38.4075i 1.44857i
\(704\) 1.08988i 0.0410763i
\(705\) −4.28699 + 3.02831i −0.161457 + 0.114053i
\(706\) 17.7354i 0.667479i
\(707\) 41.2174 1.55014
\(708\) 1.94218 0.0729917
\(709\) 36.5676 1.37333 0.686663 0.726976i \(-0.259075\pi\)
0.686663 + 0.726976i \(0.259075\pi\)
\(710\) 9.21465 6.50919i 0.345820 0.244286i
\(711\) 25.3741i 0.951602i
\(712\) 2.95876i 0.110884i
\(713\) 4.49726 0.168424
\(714\) 0.233667i 0.00874477i
\(715\) 2.73637 1.93296i 0.102334 0.0722886i
\(716\) −3.44971 −0.128922
\(717\) 6.86062 0.256215
\(718\) 9.14009i 0.341105i
\(719\) −4.40968 −0.164453 −0.0822267 0.996614i \(-0.526203\pi\)
−0.0822267 + 0.996614i \(0.526203\pi\)
\(720\) −5.23244 + 3.69617i −0.195001 + 0.137748i
\(721\) −27.4599 −1.02266
\(722\) 25.9297 0.965005
\(723\) 7.22557 0.268722
\(724\) 19.3826 0.720350
\(725\) −18.3096 19.7423i −0.680000 0.733212i
\(726\) 3.60571 0.133820
\(727\) −37.9900 −1.40897 −0.704485 0.709719i \(-0.748822\pi\)
−0.704485 + 0.709719i \(0.748822\pi\)
\(728\) −4.11836 −0.152637
\(729\) −19.9791 −0.739966
\(730\) −6.42451 + 4.53825i −0.237782 + 0.167968i
\(731\) 2.30509 0.0852567
\(732\) 1.24401i 0.0459798i
\(733\) −6.57895 −0.242999 −0.121500 0.992591i \(-0.538770\pi\)
−0.121500 + 0.992591i \(0.538770\pi\)
\(734\) 25.5654 0.943638
\(735\) 1.32536 0.936228i 0.0488866 0.0345333i
\(736\) 1.06384i 0.0392137i
\(737\) −11.1510 −0.410752
\(738\) 29.7186i 1.09396i
\(739\) 26.6171i 0.979127i 0.871968 + 0.489563i \(0.162844\pi\)
−0.871968 + 0.489563i \(0.837156\pi\)
\(740\) −10.4649 + 7.39234i −0.384696 + 0.271748i
\(741\) −3.38614 −0.124393
\(742\) −30.2553 −1.11071
\(743\) 4.67606 0.171548 0.0857741 0.996315i \(-0.472664\pi\)
0.0857741 + 0.996315i \(0.472664\pi\)
\(744\) 1.55345i 0.0569522i
\(745\) 1.76821 1.24905i 0.0647821 0.0457618i
\(746\) 21.8731i 0.800832i
\(747\) 35.5575i 1.30098i
\(748\) 0.231333i 0.00845837i
\(749\) 7.02051 0.256524
\(750\) −1.11256 3.95497i −0.0406250 0.144415i
\(751\) 12.3371i 0.450187i −0.974337 0.225093i \(-0.927731\pi\)
0.974337 0.225093i \(-0.0722687\pi\)
\(752\) 6.38765 0.232934
\(753\) 4.23956i 0.154498i
\(754\) −6.55877 3.43333i −0.238856 0.125035i
\(755\) −18.8122 + 13.2888i −0.684645 + 0.483630i
\(756\) 6.45659i 0.234824i
\(757\) −10.2685 −0.373216 −0.186608 0.982434i \(-0.559749\pi\)
−0.186608 + 0.982434i \(0.559749\pi\)
\(758\) 32.8410i 1.19284i
\(759\) −0.426070 −0.0154654
\(760\) 8.64769 + 12.2420i 0.313685 + 0.444064i
\(761\) 49.1824 1.78286 0.891430 0.453159i \(-0.149703\pi\)
0.891430 + 0.453159i \(0.149703\pi\)
\(762\) −0.944579 −0.0342185
\(763\) 3.36308i 0.121752i
\(764\) 24.5210i 0.887139i
\(765\) −1.11062 + 0.784534i −0.0401544 + 0.0283649i
\(766\) 34.6298i 1.25123i
\(767\) 7.26568i 0.262348i
\(768\) −0.367473 −0.0132601
\(769\) 36.4972i 1.31612i −0.752964 0.658062i \(-0.771376\pi\)
0.752964 0.658062i \(-0.228624\pi\)
\(770\) 5.96314 4.21234i 0.214897 0.151802i
\(771\) 2.67346i 0.0962823i
\(772\) −10.0101 −0.360273
\(773\) 29.4854 1.06052 0.530258 0.847836i \(-0.322095\pi\)
0.530258 + 0.847836i \(0.322095\pi\)
\(774\) 31.1133 1.11835
\(775\) −19.9214 7.06452i −0.715596 0.253765i
\(776\) 16.0605 0.576540
\(777\) 6.30794i 0.226296i
\(778\) 12.9103i 0.462858i
\(779\) 69.5305 2.49119
\(780\) −0.651735 0.922620i −0.0233358 0.0330351i
\(781\) 5.49885i 0.196764i
\(782\) 0.225807i 0.00807483i
\(783\) 5.38263 10.2826i 0.192360 0.367469i
\(784\) −1.97480 −0.0705285
\(785\) 21.1226 14.9209i 0.753898 0.532550i
\(786\) 0.443531i 0.0158202i
\(787\) 38.4961i 1.37224i −0.727490 0.686119i \(-0.759313\pi\)
0.727490 0.686119i \(-0.240687\pi\)
\(788\) 19.1667i 0.682786i
\(789\) −10.9262 −0.388985
\(790\) −11.4263 16.1754i −0.406528 0.575496i
\(791\) 44.1733i 1.57062i
\(792\) 3.12246i 0.110952i
\(793\) −4.65382 −0.165262
\(794\) 28.7398i 1.01994i
\(795\) −4.78794 6.77798i −0.169811 0.240390i
\(796\) 14.7249 0.521910
\(797\) −44.1311 −1.56320 −0.781602 0.623777i \(-0.785597\pi\)
−0.781602 + 0.623777i \(0.785597\pi\)
\(798\) −7.37913 −0.261218
\(799\) 1.35582 0.0479653
\(800\) −1.67114 + 4.71246i −0.0590836 + 0.166611i
\(801\) 8.47675i 0.299511i
\(802\) −24.2030 −0.854637
\(803\) 3.83383i 0.135293i
\(804\) 3.75977i 0.132597i
\(805\) 5.82069 4.11171i 0.205152 0.144919i
\(806\) −5.81143 −0.204699
\(807\) 9.74869i 0.343170i
\(808\) 13.7584i 0.484019i
\(809\) 8.79023i 0.309048i 0.987989 + 0.154524i \(0.0493844\pi\)
−0.987989 + 0.154524i \(0.950616\pi\)
\(810\) −14.2509 + 10.0668i −0.500724 + 0.353710i
\(811\) −3.91186 −0.137364 −0.0686820 0.997639i \(-0.521879\pi\)
−0.0686820 + 0.997639i \(0.521879\pi\)
\(812\) −14.2930 7.48197i −0.501585 0.262566i
\(813\) 7.09181i 0.248721i
\(814\) 6.24492i 0.218884i
\(815\) −6.40457 + 4.52416i −0.224342 + 0.158474i
\(816\) −0.0779983 −0.00273049
\(817\) 72.7938i 2.54673i
\(818\) 17.4820i 0.611245i
\(819\) −11.7990 −0.412289
\(820\) 13.3826 + 18.9450i 0.467342 + 0.661586i
\(821\) −8.59729 −0.300047 −0.150024 0.988682i \(-0.547935\pi\)
−0.150024 + 0.988682i \(0.547935\pi\)
\(822\) 2.13698 0.0745358
\(823\) 2.31892 0.0808323 0.0404162 0.999183i \(-0.487132\pi\)
0.0404162 + 0.999183i \(0.487132\pi\)
\(824\) 9.16613i 0.319317i
\(825\) 1.88735 + 0.669292i 0.0657090 + 0.0233018i
\(826\) 15.8335i 0.550918i
\(827\) 13.5864 0.472446 0.236223 0.971699i \(-0.424090\pi\)
0.236223 + 0.971699i \(0.424090\pi\)
\(828\) 3.04787i 0.105921i
\(829\) 24.1451i 0.838594i −0.907849 0.419297i \(-0.862277\pi\)
0.907849 0.419297i \(-0.137723\pi\)
\(830\) −16.0120 22.6672i −0.555784 0.786789i
\(831\) 4.11724i 0.142825i
\(832\) 1.37471i 0.0476596i
\(833\) −0.419163 −0.0145231
\(834\) 5.52781 0.191412
\(835\) −8.78272 12.4331i −0.303939 0.430267i
\(836\) −7.30542 −0.252663
\(837\) 9.11092i 0.314919i
\(838\) −26.2378 −0.906369
\(839\) 19.9698i 0.689434i −0.938707 0.344717i \(-0.887975\pi\)
0.938707 0.344717i \(-0.112025\pi\)
\(840\) −1.42027 2.01059i −0.0490040 0.0693719i
\(841\) −16.5251 23.8311i −0.569831 0.821762i
\(842\) 13.6673i 0.471008i
\(843\) 2.79461 0.0962514
\(844\) 8.19596i 0.282116i
\(845\) 20.2911 14.3335i 0.698035 0.493089i
\(846\) 18.3004 0.629181
\(847\) 29.3953i 1.01003i
\(848\) 10.0993i 0.346810i
\(849\) 1.74822i 0.0599987i
\(850\) −0.354708 + 1.00025i −0.0121664 + 0.0343082i
\(851\) 6.09574i 0.208959i
\(852\) 1.85404 0.0635185
\(853\) 36.0840 1.23549 0.617746 0.786378i \(-0.288046\pi\)
0.617746 + 0.786378i \(0.288046\pi\)
\(854\) −10.1417 −0.347041
\(855\) 24.7753 + 35.0728i 0.847298 + 1.19947i
\(856\) 2.34345i 0.0800976i
\(857\) 19.0491i 0.650705i 0.945593 + 0.325352i \(0.105483\pi\)
−0.945593 + 0.325352i \(0.894517\pi\)
\(858\) 0.550574 0.0187963
\(859\) 43.1051i 1.47073i −0.677673 0.735364i \(-0.737011\pi\)
0.677673 0.735364i \(-0.262989\pi\)
\(860\) 19.8341 14.0107i 0.676337 0.477762i
\(861\) −11.4195 −0.389175
\(862\) 20.1544 0.686463
\(863\) 25.9382i 0.882947i −0.897274 0.441474i \(-0.854456\pi\)
0.897274 0.441474i \(-0.145544\pi\)
\(864\) −2.15522 −0.0733220
\(865\) −16.3795 23.1874i −0.556918 0.788394i
\(866\) −9.30542 −0.316211
\(867\) 6.23049 0.211599
\(868\) −12.6644 −0.429857
\(869\) 9.65271 0.327446
\(870\) −0.585722 4.38603i −0.0198578 0.148700i
\(871\) 14.0652 0.476582
\(872\) 1.12260 0.0380161
\(873\) 46.0129 1.55730
\(874\) −7.13090 −0.241206
\(875\) −32.2426 + 9.07007i −1.09000 + 0.306624i
\(876\) −1.29265 −0.0436746
\(877\) 43.0492i 1.45367i 0.686812 + 0.726835i \(0.259009\pi\)
−0.686812 + 0.726835i \(0.740991\pi\)
\(878\) −38.2655 −1.29140
\(879\) 8.19111 0.276279
\(880\) −1.40608 1.99050i −0.0473990 0.0670998i
\(881\) 49.8210i 1.67851i 0.543736 + 0.839256i \(0.317009\pi\)
−0.543736 + 0.839256i \(0.682991\pi\)
\(882\) −5.65773 −0.190506
\(883\) 9.29618i 0.312841i 0.987691 + 0.156421i \(0.0499955\pi\)
−0.987691 + 0.156421i \(0.950004\pi\)
\(884\) 0.291791i 0.00981398i
\(885\) 3.54711 2.50567i 0.119235 0.0842270i
\(886\) 34.1561 1.14750
\(887\) 1.49827 0.0503070 0.0251535 0.999684i \(-0.491993\pi\)
0.0251535 + 0.999684i \(0.491993\pi\)
\(888\) −2.10560 −0.0706591
\(889\) 7.70060i 0.258270i
\(890\) −3.81719 5.40375i −0.127952 0.181134i
\(891\) 8.50422i 0.284902i
\(892\) 6.32850i 0.211894i
\(893\) 42.8162i 1.43279i
\(894\) 0.355774 0.0118989
\(895\) −6.30040 + 4.45057i −0.210599 + 0.148766i
\(896\) 2.99580i 0.100083i
\(897\) 0.537421 0.0179440
\(898\) 2.90669i 0.0969976i
\(899\) −20.1689 10.5578i −0.672669 0.352123i
\(900\) −4.78774 + 13.5010i −0.159591 + 0.450034i
\(901\) 2.14363i 0.0714146i
\(902\) −11.3054 −0.376429
\(903\) 11.9554i 0.397852i
\(904\) −14.7451 −0.490414
\(905\) 35.3995 25.0061i 1.17672 0.831231i
\(906\) −3.78512 −0.125752
\(907\) 32.7075 1.08603 0.543017 0.839722i \(-0.317282\pi\)
0.543017 + 0.839722i \(0.317282\pi\)
\(908\) 20.8358i 0.691461i
\(909\) 39.4173i 1.30739i
\(910\) −7.52158 + 5.31321i −0.249338 + 0.176131i
\(911\) 38.5452i 1.27706i −0.769598 0.638529i \(-0.779543\pi\)
0.769598 0.638529i \(-0.220457\pi\)
\(912\) 2.46316i 0.0815634i
\(913\) 13.5266 0.447667
\(914\) 2.65336i 0.0877655i
\(915\) −1.60493 2.27200i −0.0530573 0.0751099i
\(916\) 14.2925i 0.472236i
\(917\) 3.61585 0.119406
\(918\) −0.457457 −0.0150983
\(919\) −36.8375 −1.21516 −0.607579 0.794259i \(-0.707859\pi\)
−0.607579 + 0.794259i \(0.707859\pi\)
\(920\) −1.37249 1.94295i −0.0452498 0.0640572i
\(921\) 7.33223 0.241605
\(922\) 6.53979i 0.215377i
\(923\) 6.93595i 0.228300i
\(924\) 1.19982 0.0394712
\(925\) −9.57549 + 27.0021i −0.314840 + 0.887822i
\(926\) 27.1658i 0.892722i
\(927\) 26.2606i 0.862512i
\(928\) −2.49749 + 4.77101i −0.0819841 + 0.156616i
\(929\) 29.3787 0.963885 0.481942 0.876203i \(-0.339931\pi\)
0.481942 + 0.876203i \(0.339931\pi\)
\(930\) −2.00415 2.83715i −0.0657186 0.0930337i
\(931\) 13.2370i 0.433826i
\(932\) 13.5230i 0.442961i
\(933\) 5.81181i 0.190270i
\(934\) 32.2561 1.05545
\(935\) −0.298449 0.422496i −0.00976033 0.0138171i
\(936\) 3.93850i 0.128734i
\(937\) 29.1188i 0.951270i −0.879643 0.475635i \(-0.842218\pi\)
0.879643 0.475635i \(-0.157782\pi\)
\(938\) 30.6512 1.00080
\(939\) 3.56860i 0.116457i
\(940\) 11.6661 8.24090i 0.380507 0.268788i
\(941\) −34.4784 −1.12396 −0.561982 0.827149i \(-0.689961\pi\)
−0.561982 + 0.827149i \(0.689961\pi\)
\(942\) 4.24999 0.138472
\(943\) −11.0353 −0.359360
\(944\) −5.28523 −0.172020
\(945\) −8.32984 11.7920i −0.270970 0.383595i
\(946\) 11.8360i 0.384822i
\(947\) −16.7368 −0.543873 −0.271936 0.962315i \(-0.587664\pi\)
−0.271936 + 0.962315i \(0.587664\pi\)
\(948\) 3.25460i 0.105704i
\(949\) 4.83579i 0.156976i
\(950\) 31.5875 + 11.2016i 1.02483 + 0.363427i
\(951\) −11.6143 −0.376619
\(952\) 0.635875i 0.0206088i
\(953\) 49.5247i 1.60426i 0.597149 + 0.802131i \(0.296300\pi\)
−0.597149 + 0.802131i \(0.703700\pi\)
\(954\) 28.9340i 0.936773i
\(955\) −31.6353 44.7840i −1.02369 1.44918i
\(956\) −18.6697 −0.603822
\(957\) 1.91080 + 1.00025i 0.0617672 + 0.0323334i
\(958\) 25.8295i 0.834514i
\(959\) 17.4216i 0.562572i
\(960\) −0.671136 + 0.474088i −0.0216608 + 0.0153011i
\(961\) 13.1293 0.423525
\(962\) 7.87700i 0.253965i
\(963\) 6.71391i 0.216353i
\(964\) −19.6628 −0.633298
\(965\) −18.2821 + 12.9144i −0.588520 + 0.415728i
\(966\) 1.17116 0.0376814
\(967\) −28.3924 −0.913040 −0.456520 0.889713i \(-0.650904\pi\)
−0.456520 + 0.889713i \(0.650904\pi\)
\(968\) −9.81217 −0.315375
\(969\) 0.522820i 0.0167954i
\(970\) 29.3322 20.7202i 0.941801 0.665284i
\(971\) 4.86155i 0.156014i 0.996953 + 0.0780072i \(0.0248557\pi\)
−0.996953 + 0.0780072i \(0.975144\pi\)
\(972\) −9.33301 −0.299356
\(973\) 45.0650i 1.44472i
\(974\) 1.63351i 0.0523411i
\(975\) −2.38060 0.844208i −0.0762401 0.0270363i
\(976\) 3.38530i 0.108361i
\(977\) 34.0078i 1.08801i 0.839083 + 0.544003i \(0.183092\pi\)
−0.839083 + 0.544003i \(0.816908\pi\)
\(978\) −1.28864 −0.0412061
\(979\) 3.22469 0.103062
\(980\) −3.60668 + 2.54775i −0.115211 + 0.0813847i
\(981\) 3.21621 0.102686
\(982\) 10.3456i 0.330142i
\(983\) −38.6176 −1.23171 −0.615855 0.787860i \(-0.711189\pi\)
−0.615855 + 0.787860i \(0.711189\pi\)
\(984\) 3.81184i 0.121517i
\(985\) 24.7275 + 35.0052i 0.787885 + 1.11536i
\(986\) −0.530107 + 1.01267i −0.0168820 + 0.0322501i
\(987\) 7.03201i 0.223831i
\(988\) 9.21465 0.293157
\(989\) 11.5533i 0.367372i
\(990\) −4.02838 5.70272i −0.128030 0.181244i
\(991\) 26.3189 0.836048 0.418024 0.908436i \(-0.362723\pi\)
0.418024 + 0.908436i \(0.362723\pi\)
\(992\) 4.22738i 0.134219i
\(993\) 6.78536i 0.215327i
\(994\) 15.1149i 0.479417i
\(995\) 26.8929 18.9970i 0.852562 0.602246i
\(996\) 4.56077i 0.144513i
\(997\) 34.2096 1.08343 0.541715 0.840562i \(-0.317775\pi\)
0.541715 + 0.840562i \(0.317775\pi\)
\(998\) −0.704726 −0.0223077
\(999\) −12.3492 −0.390713
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 290.2.d.a.289.3 8
3.2 odd 2 2610.2.b.f.289.2 8
4.3 odd 2 2320.2.j.d.289.5 8
5.2 odd 4 1450.2.c.g.1101.6 16
5.3 odd 4 1450.2.c.g.1101.11 16
5.4 even 2 290.2.d.b.289.6 yes 8
15.14 odd 2 2610.2.b.d.289.1 8
20.19 odd 2 2320.2.j.e.289.4 8
29.28 even 2 290.2.d.b.289.5 yes 8
87.86 odd 2 2610.2.b.d.289.2 8
116.115 odd 2 2320.2.j.e.289.3 8
145.28 odd 4 1450.2.c.g.1101.5 16
145.57 odd 4 1450.2.c.g.1101.12 16
145.144 even 2 inner 290.2.d.a.289.4 yes 8
435.434 odd 2 2610.2.b.f.289.1 8
580.579 odd 2 2320.2.j.d.289.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
290.2.d.a.289.3 8 1.1 even 1 trivial
290.2.d.a.289.4 yes 8 145.144 even 2 inner
290.2.d.b.289.5 yes 8 29.28 even 2
290.2.d.b.289.6 yes 8 5.4 even 2
1450.2.c.g.1101.5 16 145.28 odd 4
1450.2.c.g.1101.6 16 5.2 odd 4
1450.2.c.g.1101.11 16 5.3 odd 4
1450.2.c.g.1101.12 16 145.57 odd 4
2320.2.j.d.289.5 8 4.3 odd 2
2320.2.j.d.289.6 8 580.579 odd 2
2320.2.j.e.289.3 8 116.115 odd 2
2320.2.j.e.289.4 8 20.19 odd 2
2610.2.b.d.289.1 8 15.14 odd 2
2610.2.b.d.289.2 8 87.86 odd 2
2610.2.b.f.289.1 8 435.434 odd 2
2610.2.b.f.289.2 8 3.2 odd 2