Properties

Label 2320.2.g.i.1681.4
Level $2320$
Weight $2$
Character 2320.1681
Analytic conductor $18.525$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2320,2,Mod(1681,2320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2320.1681"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2320.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5252932689\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.16516096.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 9x^{4} + 13x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1681.4
Root \(1.30397i\) of defining polynomial
Character \(\chi\) \(=\) 2320.1681
Dual form 2320.2.g.i.1681.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.537080i q^{3} +1.00000 q^{5} +1.29966 q^{7} +2.71155 q^{9} -0.537080i q^{11} -5.71155 q^{13} +0.537080i q^{15} +6.91060i q^{17} +4.30266i q^{19} +0.698024i q^{21} -5.01121 q^{23} +1.00000 q^{25} +3.06756i q^{27} +(0.299664 + 5.37682i) q^{29} -8.44438i q^{31} +0.288455 q^{33} +1.29966 q^{35} +7.98476i q^{37} -3.06756i q^{39} +0.698024i q^{41} +10.2166i q^{43} +2.71155 q^{45} -0.537080i q^{47} -5.31087 q^{49} -3.71155 q^{51} +7.11222 q^{53} -0.537080i q^{55} -2.31087 q^{57} +7.71155 q^{59} -5.91390i q^{61} +3.52410 q^{63} -5.71155 q^{65} +9.01121 q^{67} -2.69142i q^{69} +4.28845 q^{71} -6.21258i q^{73} +0.537080i q^{75} -0.698024i q^{77} +10.2166i q^{79} +6.48711 q^{81} +2.70034 q^{83} +6.91060i q^{85} +(-2.88778 + 0.160944i) q^{87} -9.67948i q^{89} -7.42309 q^{91} +4.53531 q^{93} +4.30266i q^{95} +2.07086i q^{97} -1.45632i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{5} - 14 q^{9} - 4 q^{13} + 8 q^{23} + 6 q^{25} - 6 q^{29} + 32 q^{33} - 14 q^{45} + 14 q^{49} + 8 q^{51} + 28 q^{53} + 32 q^{57} + 16 q^{59} - 16 q^{63} - 4 q^{65} + 16 q^{67} + 56 q^{71} + 38 q^{81}+ \cdots - 48 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2320\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(581\) \(1857\) \(2031\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.537080i 0.310083i 0.987908 + 0.155042i \(0.0495512\pi\)
−0.987908 + 0.155042i \(0.950449\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.29966 0.491227 0.245613 0.969368i \(-0.421011\pi\)
0.245613 + 0.969368i \(0.421011\pi\)
\(8\) 0 0
\(9\) 2.71155 0.903848
\(10\) 0 0
\(11\) 0.537080i 0.161936i −0.996717 0.0809679i \(-0.974199\pi\)
0.996717 0.0809679i \(-0.0258011\pi\)
\(12\) 0 0
\(13\) −5.71155 −1.58410 −0.792049 0.610458i \(-0.790985\pi\)
−0.792049 + 0.610458i \(0.790985\pi\)
\(14\) 0 0
\(15\) 0.537080i 0.138673i
\(16\) 0 0
\(17\) 6.91060i 1.67607i 0.545619 + 0.838033i \(0.316295\pi\)
−0.545619 + 0.838033i \(0.683705\pi\)
\(18\) 0 0
\(19\) 4.30266i 0.987098i 0.869718 + 0.493549i \(0.164301\pi\)
−0.869718 + 0.493549i \(0.835699\pi\)
\(20\) 0 0
\(21\) 0.698024i 0.152321i
\(22\) 0 0
\(23\) −5.01121 −1.04491 −0.522455 0.852667i \(-0.674984\pi\)
−0.522455 + 0.852667i \(0.674984\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 3.06756i 0.590352i
\(28\) 0 0
\(29\) 0.299664 + 5.37682i 0.0556462 + 0.998451i
\(30\) 0 0
\(31\) 8.44438i 1.51666i −0.651874 0.758328i \(-0.726017\pi\)
0.651874 0.758328i \(-0.273983\pi\)
\(32\) 0 0
\(33\) 0.288455 0.0502136
\(34\) 0 0
\(35\) 1.29966 0.219683
\(36\) 0 0
\(37\) 7.98476i 1.31269i 0.754462 + 0.656343i \(0.227898\pi\)
−0.754462 + 0.656343i \(0.772102\pi\)
\(38\) 0 0
\(39\) 3.06756i 0.491202i
\(40\) 0 0
\(41\) 0.698024i 0.109013i 0.998513 + 0.0545065i \(0.0173586\pi\)
−0.998513 + 0.0545065i \(0.982641\pi\)
\(42\) 0 0
\(43\) 10.2166i 1.55801i 0.627017 + 0.779006i \(0.284276\pi\)
−0.627017 + 0.779006i \(0.715724\pi\)
\(44\) 0 0
\(45\) 2.71155 0.404213
\(46\) 0 0
\(47\) 0.537080i 0.0783412i −0.999233 0.0391706i \(-0.987528\pi\)
0.999233 0.0391706i \(-0.0124716\pi\)
\(48\) 0 0
\(49\) −5.31087 −0.758696
\(50\) 0 0
\(51\) −3.71155 −0.519720
\(52\) 0 0
\(53\) 7.11222 0.976938 0.488469 0.872581i \(-0.337556\pi\)
0.488469 + 0.872581i \(0.337556\pi\)
\(54\) 0 0
\(55\) 0.537080i 0.0724199i
\(56\) 0 0
\(57\) −2.31087 −0.306083
\(58\) 0 0
\(59\) 7.71155 1.00396 0.501979 0.864880i \(-0.332606\pi\)
0.501979 + 0.864880i \(0.332606\pi\)
\(60\) 0 0
\(61\) 5.91390i 0.757197i −0.925561 0.378599i \(-0.876406\pi\)
0.925561 0.378599i \(-0.123594\pi\)
\(62\) 0 0
\(63\) 3.52410 0.443995
\(64\) 0 0
\(65\) −5.71155 −0.708430
\(66\) 0 0
\(67\) 9.01121 1.10089 0.550447 0.834870i \(-0.314457\pi\)
0.550447 + 0.834870i \(0.314457\pi\)
\(68\) 0 0
\(69\) 2.69142i 0.324009i
\(70\) 0 0
\(71\) 4.28845 0.508946 0.254473 0.967080i \(-0.418098\pi\)
0.254473 + 0.967080i \(0.418098\pi\)
\(72\) 0 0
\(73\) 6.21258i 0.727127i −0.931569 0.363563i \(-0.881560\pi\)
0.931569 0.363563i \(-0.118440\pi\)
\(74\) 0 0
\(75\) 0.537080i 0.0620167i
\(76\) 0 0
\(77\) 0.698024i 0.0795472i
\(78\) 0 0
\(79\) 10.2166i 1.14945i 0.818346 + 0.574726i \(0.194892\pi\)
−0.818346 + 0.574726i \(0.805108\pi\)
\(80\) 0 0
\(81\) 6.48711 0.720790
\(82\) 0 0
\(83\) 2.70034 0.296400 0.148200 0.988957i \(-0.452652\pi\)
0.148200 + 0.988957i \(0.452652\pi\)
\(84\) 0 0
\(85\) 6.91060i 0.749560i
\(86\) 0 0
\(87\) −2.88778 + 0.160944i −0.309603 + 0.0172550i
\(88\) 0 0
\(89\) 9.67948i 1.02602i −0.858382 0.513011i \(-0.828530\pi\)
0.858382 0.513011i \(-0.171470\pi\)
\(90\) 0 0
\(91\) −7.42309 −0.778151
\(92\) 0 0
\(93\) 4.53531 0.470289
\(94\) 0 0
\(95\) 4.30266i 0.441444i
\(96\) 0 0
\(97\) 2.07086i 0.210264i 0.994458 + 0.105132i \(0.0335265\pi\)
−0.994458 + 0.105132i \(0.966474\pi\)
\(98\) 0 0
\(99\) 1.45632i 0.146365i
\(100\) 0 0
\(101\) 3.06756i 0.305233i 0.988285 + 0.152617i \(0.0487700\pi\)
−0.988285 + 0.152617i \(0.951230\pi\)
\(102\) 0 0
\(103\) 0.187447 0.0184697 0.00923487 0.999957i \(-0.497060\pi\)
0.00923487 + 0.999957i \(0.497060\pi\)
\(104\) 0 0
\(105\) 0.698024i 0.0681201i
\(106\) 0 0
\(107\) −12.7228 −1.22996 −0.614978 0.788545i \(-0.710835\pi\)
−0.614978 + 0.788545i \(0.710835\pi\)
\(108\) 0 0
\(109\) −11.1122 −1.06436 −0.532179 0.846632i \(-0.678627\pi\)
−0.532179 + 0.846632i \(0.678627\pi\)
\(110\) 0 0
\(111\) −4.28845 −0.407042
\(112\) 0 0
\(113\) 9.60202i 0.903282i 0.892200 + 0.451641i \(0.149161\pi\)
−0.892200 + 0.451641i \(0.850839\pi\)
\(114\) 0 0
\(115\) −5.01121 −0.467298
\(116\) 0 0
\(117\) −15.4871 −1.43178
\(118\) 0 0
\(119\) 8.98146i 0.823329i
\(120\) 0 0
\(121\) 10.7115 0.973777
\(122\) 0 0
\(123\) −0.374895 −0.0338031
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 6.07484i 0.539055i −0.962993 0.269528i \(-0.913132\pi\)
0.962993 0.269528i \(-0.0868676\pi\)
\(128\) 0 0
\(129\) −5.48711 −0.483113
\(130\) 0 0
\(131\) 18.1239i 1.58349i 0.610852 + 0.791744i \(0.290827\pi\)
−0.610852 + 0.791744i \(0.709173\pi\)
\(132\) 0 0
\(133\) 5.59201i 0.484889i
\(134\) 0 0
\(135\) 3.06756i 0.264013i
\(136\) 0 0
\(137\) 13.2006i 1.12781i −0.825841 0.563903i \(-0.809299\pi\)
0.825841 0.563903i \(-0.190701\pi\)
\(138\) 0 0
\(139\) −14.5993 −1.23830 −0.619149 0.785273i \(-0.712522\pi\)
−0.619149 + 0.785273i \(0.712522\pi\)
\(140\) 0 0
\(141\) 0.288455 0.0242923
\(142\) 0 0
\(143\) 3.06756i 0.256522i
\(144\) 0 0
\(145\) 0.299664 + 5.37682i 0.0248857 + 0.446521i
\(146\) 0 0
\(147\) 2.85236i 0.235259i
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 21.7340 1.76868 0.884342 0.466839i \(-0.154607\pi\)
0.884342 + 0.466839i \(0.154607\pi\)
\(152\) 0 0
\(153\) 18.7384i 1.51491i
\(154\) 0 0
\(155\) 8.44438i 0.678269i
\(156\) 0 0
\(157\) 5.29334i 0.422454i 0.977437 + 0.211227i \(0.0677460\pi\)
−0.977437 + 0.211227i \(0.932254\pi\)
\(158\) 0 0
\(159\) 3.81983i 0.302932i
\(160\) 0 0
\(161\) −6.51289 −0.513288
\(162\) 0 0
\(163\) 6.07484i 0.475819i 0.971287 + 0.237909i \(0.0764621\pi\)
−0.971287 + 0.237909i \(0.923538\pi\)
\(164\) 0 0
\(165\) 0.288455 0.0224562
\(166\) 0 0
\(167\) −5.01121 −0.387779 −0.193890 0.981023i \(-0.562110\pi\)
−0.193890 + 0.981023i \(0.562110\pi\)
\(168\) 0 0
\(169\) 19.6217 1.50937
\(170\) 0 0
\(171\) 11.6669i 0.892187i
\(172\) 0 0
\(173\) −8.31087 −0.631864 −0.315932 0.948782i \(-0.602317\pi\)
−0.315932 + 0.948782i \(0.602317\pi\)
\(174\) 0 0
\(175\) 1.29966 0.0982454
\(176\) 0 0
\(177\) 4.14172i 0.311311i
\(178\) 0 0
\(179\) −6.59933 −0.493257 −0.246628 0.969110i \(-0.579323\pi\)
−0.246628 + 0.969110i \(0.579323\pi\)
\(180\) 0 0
\(181\) −3.48711 −0.259195 −0.129597 0.991567i \(-0.541369\pi\)
−0.129597 + 0.991567i \(0.541369\pi\)
\(182\) 0 0
\(183\) 3.17624 0.234794
\(184\) 0 0
\(185\) 7.98476i 0.587051i
\(186\) 0 0
\(187\) 3.71155 0.271415
\(188\) 0 0
\(189\) 3.98679i 0.289997i
\(190\) 0 0
\(191\) 2.68540i 0.194309i 0.995269 + 0.0971544i \(0.0309741\pi\)
−0.995269 + 0.0971544i \(0.969026\pi\)
\(192\) 0 0
\(193\) 4.76228i 0.342796i 0.985202 + 0.171398i \(0.0548285\pi\)
−0.985202 + 0.171398i \(0.945172\pi\)
\(194\) 0 0
\(195\) 3.06756i 0.219672i
\(196\) 0 0
\(197\) 16.0224 1.14155 0.570775 0.821106i \(-0.306643\pi\)
0.570775 + 0.821106i \(0.306643\pi\)
\(198\) 0 0
\(199\) 1.68913 0.119739 0.0598695 0.998206i \(-0.480932\pi\)
0.0598695 + 0.998206i \(0.480932\pi\)
\(200\) 0 0
\(201\) 4.83974i 0.341369i
\(202\) 0 0
\(203\) 0.389463 + 6.98806i 0.0273349 + 0.490466i
\(204\) 0 0
\(205\) 0.698024i 0.0487521i
\(206\) 0 0
\(207\) −13.5881 −0.944440
\(208\) 0 0
\(209\) 2.31087 0.159846
\(210\) 0 0
\(211\) 6.99408i 0.481492i 0.970588 + 0.240746i \(0.0773921\pi\)
−0.970588 + 0.240746i \(0.922608\pi\)
\(212\) 0 0
\(213\) 2.30324i 0.157816i
\(214\) 0 0
\(215\) 10.2166i 0.696764i
\(216\) 0 0
\(217\) 10.9749i 0.745022i
\(218\) 0 0
\(219\) 3.33665 0.225470
\(220\) 0 0
\(221\) 39.4702i 2.65505i
\(222\) 0 0
\(223\) −2.98879 −0.200144 −0.100072 0.994980i \(-0.531907\pi\)
−0.100072 + 0.994980i \(0.531907\pi\)
\(224\) 0 0
\(225\) 2.71155 0.180770
\(226\) 0 0
\(227\) 23.8574 1.58347 0.791735 0.610864i \(-0.209178\pi\)
0.791735 + 0.610864i \(0.209178\pi\)
\(228\) 0 0
\(229\) 0.321887i 0.0212709i 0.999943 + 0.0106355i \(0.00338543\pi\)
−0.999943 + 0.0106355i \(0.996615\pi\)
\(230\) 0 0
\(231\) 0.374895 0.0246663
\(232\) 0 0
\(233\) −16.0224 −1.04966 −0.524832 0.851206i \(-0.675872\pi\)
−0.524832 + 0.851206i \(0.675872\pi\)
\(234\) 0 0
\(235\) 0.537080i 0.0350352i
\(236\) 0 0
\(237\) −5.48711 −0.356426
\(238\) 0 0
\(239\) −19.7115 −1.27503 −0.637517 0.770436i \(-0.720038\pi\)
−0.637517 + 0.770436i \(0.720038\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) 12.6868i 0.813857i
\(244\) 0 0
\(245\) −5.31087 −0.339299
\(246\) 0 0
\(247\) 24.5748i 1.56366i
\(248\) 0 0
\(249\) 1.45030i 0.0919088i
\(250\) 0 0
\(251\) 24.7900i 1.56473i −0.622818 0.782366i \(-0.714012\pi\)
0.622818 0.782366i \(-0.285988\pi\)
\(252\) 0 0
\(253\) 2.69142i 0.169208i
\(254\) 0 0
\(255\) −3.71155 −0.232426
\(256\) 0 0
\(257\) 16.8878 1.05343 0.526715 0.850042i \(-0.323423\pi\)
0.526715 + 0.850042i \(0.323423\pi\)
\(258\) 0 0
\(259\) 10.3775i 0.644827i
\(260\) 0 0
\(261\) 0.812553 + 14.5795i 0.0502957 + 0.902448i
\(262\) 0 0
\(263\) 7.74635i 0.477661i 0.971061 + 0.238830i \(0.0767640\pi\)
−0.971061 + 0.238830i \(0.923236\pi\)
\(264\) 0 0
\(265\) 7.11222 0.436900
\(266\) 0 0
\(267\) 5.19866 0.318153
\(268\) 0 0
\(269\) 11.4517i 0.698220i −0.937082 0.349110i \(-0.886484\pi\)
0.937082 0.349110i \(-0.113516\pi\)
\(270\) 0 0
\(271\) 25.8642i 1.57114i −0.618774 0.785569i \(-0.712370\pi\)
0.618774 0.785569i \(-0.287630\pi\)
\(272\) 0 0
\(273\) 3.98679i 0.241292i
\(274\) 0 0
\(275\) 0.537080i 0.0323871i
\(276\) 0 0
\(277\) −8.88778 −0.534015 −0.267008 0.963694i \(-0.586035\pi\)
−0.267008 + 0.963694i \(0.586035\pi\)
\(278\) 0 0
\(279\) 22.8973i 1.37083i
\(280\) 0 0
\(281\) −22.5353 −1.34434 −0.672172 0.740395i \(-0.734638\pi\)
−0.672172 + 0.740395i \(0.734638\pi\)
\(282\) 0 0
\(283\) 14.4119 0.856697 0.428349 0.903614i \(-0.359096\pi\)
0.428349 + 0.903614i \(0.359096\pi\)
\(284\) 0 0
\(285\) −2.31087 −0.136884
\(286\) 0 0
\(287\) 0.907196i 0.0535501i
\(288\) 0 0
\(289\) −30.7564 −1.80920
\(290\) 0 0
\(291\) −1.11222 −0.0651993
\(292\) 0 0
\(293\) 0.996698i 0.0582277i 0.999576 + 0.0291139i \(0.00926854\pi\)
−0.999576 + 0.0291139i \(0.990731\pi\)
\(294\) 0 0
\(295\) 7.71155 0.448984
\(296\) 0 0
\(297\) 1.64752 0.0955990
\(298\) 0 0
\(299\) 28.6217 1.65524
\(300\) 0 0
\(301\) 13.2781i 0.765337i
\(302\) 0 0
\(303\) −1.64752 −0.0946478
\(304\) 0 0
\(305\) 5.91390i 0.338629i
\(306\) 0 0
\(307\) 27.1053i 1.54698i −0.633807 0.773491i \(-0.718509\pi\)
0.633807 0.773491i \(-0.281491\pi\)
\(308\) 0 0
\(309\) 0.100674i 0.00572716i
\(310\) 0 0
\(311\) 18.8761i 1.07037i −0.844736 0.535184i \(-0.820242\pi\)
0.844736 0.535184i \(-0.179758\pi\)
\(312\) 0 0
\(313\) 6.28845 0.355444 0.177722 0.984081i \(-0.443127\pi\)
0.177722 + 0.984081i \(0.443127\pi\)
\(314\) 0 0
\(315\) 3.52410 0.198560
\(316\) 0 0
\(317\) 13.5225i 0.759501i −0.925089 0.379750i \(-0.876010\pi\)
0.925089 0.379750i \(-0.123990\pi\)
\(318\) 0 0
\(319\) 2.88778 0.160944i 0.161685 0.00901111i
\(320\) 0 0
\(321\) 6.83314i 0.381389i
\(322\) 0 0
\(323\) −29.7340 −1.65444
\(324\) 0 0
\(325\) −5.71155 −0.316820
\(326\) 0 0
\(327\) 5.96815i 0.330039i
\(328\) 0 0
\(329\) 0.698024i 0.0384833i
\(330\) 0 0
\(331\) 20.8695i 1.14709i 0.819173 + 0.573547i \(0.194433\pi\)
−0.819173 + 0.573547i \(0.805567\pi\)
\(332\) 0 0
\(333\) 21.6510i 1.18647i
\(334\) 0 0
\(335\) 9.01121 0.492335
\(336\) 0 0
\(337\) 31.1093i 1.69463i 0.531089 + 0.847316i \(0.321783\pi\)
−0.531089 + 0.847316i \(0.678217\pi\)
\(338\) 0 0
\(339\) −5.15705 −0.280093
\(340\) 0 0
\(341\) −4.53531 −0.245601
\(342\) 0 0
\(343\) −16.0000 −0.863919
\(344\) 0 0
\(345\) 2.69142i 0.144901i
\(346\) 0 0
\(347\) −32.7676 −1.75906 −0.879528 0.475847i \(-0.842142\pi\)
−0.879528 + 0.475847i \(0.842142\pi\)
\(348\) 0 0
\(349\) 24.0224 1.28589 0.642945 0.765912i \(-0.277712\pi\)
0.642945 + 0.765912i \(0.277712\pi\)
\(350\) 0 0
\(351\) 17.5205i 0.935175i
\(352\) 0 0
\(353\) 28.3557 1.50922 0.754611 0.656172i \(-0.227826\pi\)
0.754611 + 0.656172i \(0.227826\pi\)
\(354\) 0 0
\(355\) 4.28845 0.227608
\(356\) 0 0
\(357\) −4.82376 −0.255301
\(358\) 0 0
\(359\) 30.7039i 1.62049i −0.586090 0.810246i \(-0.699334\pi\)
0.586090 0.810246i \(-0.300666\pi\)
\(360\) 0 0
\(361\) 0.487111 0.0256374
\(362\) 0 0
\(363\) 5.75296i 0.301952i
\(364\) 0 0
\(365\) 6.21258i 0.325181i
\(366\) 0 0
\(367\) 1.93313i 0.100908i −0.998726 0.0504542i \(-0.983933\pi\)
0.998726 0.0504542i \(-0.0160669\pi\)
\(368\) 0 0
\(369\) 1.89272i 0.0985312i
\(370\) 0 0
\(371\) 9.24349 0.479898
\(372\) 0 0
\(373\) 0.801344 0.0414920 0.0207460 0.999785i \(-0.493396\pi\)
0.0207460 + 0.999785i \(0.493396\pi\)
\(374\) 0 0
\(375\) 0.537080i 0.0277347i
\(376\) 0 0
\(377\) −1.71155 30.7100i −0.0881491 1.58164i
\(378\) 0 0
\(379\) 25.8642i 1.32855i 0.747486 + 0.664277i \(0.231261\pi\)
−0.747486 + 0.664277i \(0.768739\pi\)
\(380\) 0 0
\(381\) 3.26268 0.167152
\(382\) 0 0
\(383\) 20.7676 1.06117 0.530587 0.847630i \(-0.321971\pi\)
0.530587 + 0.847630i \(0.321971\pi\)
\(384\) 0 0
\(385\) 0.698024i 0.0355746i
\(386\) 0 0
\(387\) 27.7027i 1.40821i
\(388\) 0 0
\(389\) 2.52446i 0.127995i −0.997950 0.0639975i \(-0.979615\pi\)
0.997950 0.0639975i \(-0.0203850\pi\)
\(390\) 0 0
\(391\) 34.6305i 1.75134i
\(392\) 0 0
\(393\) −9.73396 −0.491013
\(394\) 0 0
\(395\) 10.2166i 0.514051i
\(396\) 0 0
\(397\) 13.2211 0.663547 0.331773 0.943359i \(-0.392353\pi\)
0.331773 + 0.943359i \(0.392353\pi\)
\(398\) 0 0
\(399\) −3.00336 −0.150356
\(400\) 0 0
\(401\) 25.1795 1.25740 0.628701 0.777647i \(-0.283587\pi\)
0.628701 + 0.777647i \(0.283587\pi\)
\(402\) 0 0
\(403\) 48.2304i 2.40253i
\(404\) 0 0
\(405\) 6.48711 0.322347
\(406\) 0 0
\(407\) 4.28845 0.212571
\(408\) 0 0
\(409\) 28.1855i 1.39368i 0.717225 + 0.696842i \(0.245412\pi\)
−0.717225 + 0.696842i \(0.754588\pi\)
\(410\) 0 0
\(411\) 7.08980 0.349714
\(412\) 0 0
\(413\) 10.0224 0.493171
\(414\) 0 0
\(415\) 2.70034 0.132554
\(416\) 0 0
\(417\) 7.84101i 0.383976i
\(418\) 0 0
\(419\) 20.9102 1.02153 0.510765 0.859720i \(-0.329362\pi\)
0.510765 + 0.859720i \(0.329362\pi\)
\(420\) 0 0
\(421\) 4.67278i 0.227737i −0.993496 0.113869i \(-0.963676\pi\)
0.993496 0.113869i \(-0.0363243\pi\)
\(422\) 0 0
\(423\) 1.45632i 0.0708085i
\(424\) 0 0
\(425\) 6.91060i 0.335213i
\(426\) 0 0
\(427\) 7.68608i 0.371956i
\(428\) 0 0
\(429\) −1.64752 −0.0795432
\(430\) 0 0
\(431\) −12.2469 −0.589910 −0.294955 0.955511i \(-0.595305\pi\)
−0.294955 + 0.955511i \(0.595305\pi\)
\(432\) 0 0
\(433\) 11.8046i 0.567292i −0.958929 0.283646i \(-0.908456\pi\)
0.958929 0.283646i \(-0.0915441\pi\)
\(434\) 0 0
\(435\) −2.88778 + 0.160944i −0.138459 + 0.00771666i
\(436\) 0 0
\(437\) 21.5615i 1.03143i
\(438\) 0 0
\(439\) 29.5319 1.40948 0.704741 0.709464i \(-0.251063\pi\)
0.704741 + 0.709464i \(0.251063\pi\)
\(440\) 0 0
\(441\) −14.4007 −0.685746
\(442\) 0 0
\(443\) 3.28275i 0.155968i 0.996955 + 0.0779841i \(0.0248483\pi\)
−0.996955 + 0.0779841i \(0.975152\pi\)
\(444\) 0 0
\(445\) 9.67948i 0.458851i
\(446\) 0 0
\(447\) 3.22248i 0.152418i
\(448\) 0 0
\(449\) 28.9378i 1.36566i −0.730578 0.682829i \(-0.760749\pi\)
0.730578 0.682829i \(-0.239251\pi\)
\(450\) 0 0
\(451\) 0.374895 0.0176531
\(452\) 0 0
\(453\) 11.6729i 0.548440i
\(454\) 0 0
\(455\) −7.42309 −0.348000
\(456\) 0 0
\(457\) −14.5353 −0.679933 −0.339966 0.940438i \(-0.610416\pi\)
−0.339966 + 0.940438i \(0.610416\pi\)
\(458\) 0 0
\(459\) −21.1987 −0.989469
\(460\) 0 0
\(461\) 22.4265i 1.04451i −0.852790 0.522254i \(-0.825091\pi\)
0.852790 0.522254i \(-0.174909\pi\)
\(462\) 0 0
\(463\) 10.0370 0.466458 0.233229 0.972422i \(-0.425071\pi\)
0.233229 + 0.972422i \(0.425071\pi\)
\(464\) 0 0
\(465\) 4.53531 0.210320
\(466\) 0 0
\(467\) 4.35691i 0.201614i −0.994906 0.100807i \(-0.967858\pi\)
0.994906 0.100807i \(-0.0321424\pi\)
\(468\) 0 0
\(469\) 11.7115 0.540789
\(470\) 0 0
\(471\) −2.84295 −0.130996
\(472\) 0 0
\(473\) 5.48711 0.252298
\(474\) 0 0
\(475\) 4.30266i 0.197420i
\(476\) 0 0
\(477\) 19.2851 0.883004
\(478\) 0 0
\(479\) 28.0125i 1.27992i −0.768406 0.639962i \(-0.778950\pi\)
0.768406 0.639962i \(-0.221050\pi\)
\(480\) 0 0
\(481\) 45.6053i 2.07942i
\(482\) 0 0
\(483\) 3.49794i 0.159162i
\(484\) 0 0
\(485\) 2.07086i 0.0940328i
\(486\) 0 0
\(487\) −19.5241 −0.884721 −0.442361 0.896837i \(-0.645859\pi\)
−0.442361 + 0.896837i \(0.645859\pi\)
\(488\) 0 0
\(489\) −3.26268 −0.147543
\(490\) 0 0
\(491\) 36.4087i 1.64310i −0.570137 0.821550i \(-0.693110\pi\)
0.570137 0.821550i \(-0.306890\pi\)
\(492\) 0 0
\(493\) −37.1571 + 2.07086i −1.67347 + 0.0932668i
\(494\) 0 0
\(495\) 1.45632i 0.0654566i
\(496\) 0 0
\(497\) 5.57355 0.250008
\(498\) 0 0
\(499\) −31.4679 −1.40870 −0.704349 0.709854i \(-0.748761\pi\)
−0.704349 + 0.709854i \(0.748761\pi\)
\(500\) 0 0
\(501\) 2.69142i 0.120244i
\(502\) 0 0
\(503\) 8.82051i 0.393287i −0.980475 0.196644i \(-0.936996\pi\)
0.980475 0.196644i \(-0.0630042\pi\)
\(504\) 0 0
\(505\) 3.06756i 0.136504i
\(506\) 0 0
\(507\) 10.5384i 0.468029i
\(508\) 0 0
\(509\) 14.9102 0.660883 0.330442 0.943826i \(-0.392802\pi\)
0.330442 + 0.943826i \(0.392802\pi\)
\(510\) 0 0
\(511\) 8.07426i 0.357184i
\(512\) 0 0
\(513\) −13.1987 −0.582735
\(514\) 0 0
\(515\) 0.187447 0.00825991
\(516\) 0 0
\(517\) −0.288455 −0.0126862
\(518\) 0 0
\(519\) 4.46360i 0.195930i
\(520\) 0 0
\(521\) 0.512889 0.0224701 0.0112350 0.999937i \(-0.496424\pi\)
0.0112350 + 0.999937i \(0.496424\pi\)
\(522\) 0 0
\(523\) −32.8092 −1.43465 −0.717323 0.696741i \(-0.754633\pi\)
−0.717323 + 0.696741i \(0.754633\pi\)
\(524\) 0 0
\(525\) 0.698024i 0.0304643i
\(526\) 0 0
\(527\) 58.3557 2.54201
\(528\) 0 0
\(529\) 2.11222 0.0918355
\(530\) 0 0
\(531\) 20.9102 0.907425
\(532\) 0 0
\(533\) 3.98679i 0.172687i
\(534\) 0 0
\(535\) −12.7228 −0.550053
\(536\) 0 0
\(537\) 3.54437i 0.152951i
\(538\) 0 0
\(539\) 2.85236i 0.122860i
\(540\) 0 0
\(541\) 25.8160i 1.10991i −0.831879 0.554957i \(-0.812735\pi\)
0.831879 0.554957i \(-0.187265\pi\)
\(542\) 0 0
\(543\) 1.87286i 0.0803720i
\(544\) 0 0
\(545\) −11.1122 −0.475995
\(546\) 0 0
\(547\) −39.3221 −1.68129 −0.840645 0.541586i \(-0.817824\pi\)
−0.840645 + 0.541586i \(0.817824\pi\)
\(548\) 0 0
\(549\) 16.0358i 0.684392i
\(550\) 0 0
\(551\) −23.1346 + 1.28935i −0.985569 + 0.0549283i
\(552\) 0 0
\(553\) 13.2781i 0.564642i
\(554\) 0 0
\(555\) −4.28845 −0.182035
\(556\) 0 0
\(557\) −30.2469 −1.28160 −0.640800 0.767708i \(-0.721397\pi\)
−0.640800 + 0.767708i \(0.721397\pi\)
\(558\) 0 0
\(559\) 58.3524i 2.46804i
\(560\) 0 0
\(561\) 1.99340i 0.0841613i
\(562\) 0 0
\(563\) 18.0696i 0.761543i −0.924669 0.380772i \(-0.875658\pi\)
0.924669 0.380772i \(-0.124342\pi\)
\(564\) 0 0
\(565\) 9.60202i 0.403960i
\(566\) 0 0
\(567\) 8.43107 0.354071
\(568\) 0 0
\(569\) 0.0542492i 0.00227425i 0.999999 + 0.00113712i \(0.000361957\pi\)
−0.999999 + 0.00113712i \(0.999638\pi\)
\(570\) 0 0
\(571\) 24.8238 1.03884 0.519421 0.854518i \(-0.326148\pi\)
0.519421 + 0.854518i \(0.326148\pi\)
\(572\) 0 0
\(573\) −1.44227 −0.0602519
\(574\) 0 0
\(575\) −5.01121 −0.208982
\(576\) 0 0
\(577\) 33.8007i 1.40714i −0.710625 0.703571i \(-0.751588\pi\)
0.710625 0.703571i \(-0.248412\pi\)
\(578\) 0 0
\(579\) −2.55773 −0.106295
\(580\) 0 0
\(581\) 3.50953 0.145600
\(582\) 0 0
\(583\) 3.81983i 0.158201i
\(584\) 0 0
\(585\) −15.4871 −0.640313
\(586\) 0 0
\(587\) 16.2323 0.669978 0.334989 0.942222i \(-0.391267\pi\)
0.334989 + 0.942222i \(0.391267\pi\)
\(588\) 0 0
\(589\) 36.3333 1.49709
\(590\) 0 0
\(591\) 8.60532i 0.353976i
\(592\) 0 0
\(593\) 9.08980 0.373273 0.186637 0.982429i \(-0.440241\pi\)
0.186637 + 0.982429i \(0.440241\pi\)
\(594\) 0 0
\(595\) 8.98146i 0.368204i
\(596\) 0 0
\(597\) 0.907196i 0.0371291i
\(598\) 0 0
\(599\) 13.2841i 0.542774i −0.962470 0.271387i \(-0.912518\pi\)
0.962470 0.271387i \(-0.0874824\pi\)
\(600\) 0 0
\(601\) 18.6609i 0.761196i 0.924741 + 0.380598i \(0.124282\pi\)
−0.924741 + 0.380598i \(0.875718\pi\)
\(602\) 0 0
\(603\) 24.4343 0.995042
\(604\) 0 0
\(605\) 10.7115 0.435486
\(606\) 0 0
\(607\) 35.3888i 1.43639i 0.695844 + 0.718193i \(0.255030\pi\)
−0.695844 + 0.718193i \(0.744970\pi\)
\(608\) 0 0
\(609\) −3.75315 + 0.209173i −0.152085 + 0.00847610i
\(610\) 0 0
\(611\) 3.06756i 0.124100i
\(612\) 0 0
\(613\) −7.77557 −0.314052 −0.157026 0.987594i \(-0.550191\pi\)
−0.157026 + 0.987594i \(0.550191\pi\)
\(614\) 0 0
\(615\) −0.374895 −0.0151172
\(616\) 0 0
\(617\) 1.31859i 0.0530843i 0.999648 + 0.0265421i \(0.00844961\pi\)
−0.999648 + 0.0265421i \(0.991550\pi\)
\(618\) 0 0
\(619\) 49.5198i 1.99037i 0.0980212 + 0.995184i \(0.468749\pi\)
−0.0980212 + 0.995184i \(0.531251\pi\)
\(620\) 0 0
\(621\) 15.3722i 0.616864i
\(622\) 0 0
\(623\) 12.5801i 0.504010i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 1.24112i 0.0495657i
\(628\) 0 0
\(629\) −55.1795 −2.20015
\(630\) 0 0
\(631\) −10.2244 −0.407028 −0.203514 0.979072i \(-0.565236\pi\)
−0.203514 + 0.979072i \(0.565236\pi\)
\(632\) 0 0
\(633\) −3.75638 −0.149303
\(634\) 0 0
\(635\) 6.07484i 0.241073i
\(636\) 0 0
\(637\) 30.3333 1.20185
\(638\) 0 0
\(639\) 11.6283 0.460010
\(640\) 0 0
\(641\) 31.8848i 1.25937i −0.776849 0.629687i \(-0.783183\pi\)
0.776849 0.629687i \(-0.216817\pi\)
\(642\) 0 0
\(643\) 29.8350 1.17658 0.588288 0.808651i \(-0.299802\pi\)
0.588288 + 0.808651i \(0.299802\pi\)
\(644\) 0 0
\(645\) −5.48711 −0.216055
\(646\) 0 0
\(647\) 23.9438 0.941329 0.470665 0.882312i \(-0.344014\pi\)
0.470665 + 0.882312i \(0.344014\pi\)
\(648\) 0 0
\(649\) 4.14172i 0.162577i
\(650\) 0 0
\(651\) 5.89438 0.231019
\(652\) 0 0
\(653\) 34.1769i 1.33744i 0.743513 + 0.668722i \(0.233158\pi\)
−0.743513 + 0.668722i \(0.766842\pi\)
\(654\) 0 0
\(655\) 18.1239i 0.708158i
\(656\) 0 0
\(657\) 16.8457i 0.657213i
\(658\) 0 0
\(659\) 9.67346i 0.376825i −0.982090 0.188412i \(-0.939666\pi\)
0.982090 0.188412i \(-0.0603341\pi\)
\(660\) 0 0
\(661\) 27.3591 1.06414 0.532072 0.846699i \(-0.321413\pi\)
0.532072 + 0.846699i \(0.321413\pi\)
\(662\) 0 0
\(663\) 21.1987 0.823288
\(664\) 0 0
\(665\) 5.59201i 0.216849i
\(666\) 0 0
\(667\) −1.50168 26.9444i −0.0581453 1.04329i
\(668\) 0 0
\(669\) 1.60522i 0.0620614i
\(670\) 0 0
\(671\) −3.17624 −0.122617
\(672\) 0 0
\(673\) 32.0673 1.23610 0.618051 0.786138i \(-0.287923\pi\)
0.618051 + 0.786138i \(0.287923\pi\)
\(674\) 0 0
\(675\) 3.06756i 0.118070i
\(676\) 0 0
\(677\) 21.7053i 0.834202i 0.908860 + 0.417101i \(0.136954\pi\)
−0.908860 + 0.417101i \(0.863046\pi\)
\(678\) 0 0
\(679\) 2.69142i 0.103287i
\(680\) 0 0
\(681\) 12.8133i 0.491008i
\(682\) 0 0
\(683\) 8.43430 0.322729 0.161365 0.986895i \(-0.448410\pi\)
0.161365 + 0.986895i \(0.448410\pi\)
\(684\) 0 0
\(685\) 13.2006i 0.504370i
\(686\) 0 0
\(687\) −0.172879 −0.00659575
\(688\) 0 0
\(689\) −40.6217 −1.54757
\(690\) 0 0
\(691\) 12.7373 0.484551 0.242275 0.970208i \(-0.422106\pi\)
0.242275 + 0.970208i \(0.422106\pi\)
\(692\) 0 0
\(693\) 1.89272i 0.0718986i
\(694\) 0 0
\(695\) −14.5993 −0.553784
\(696\) 0 0
\(697\) −4.82376 −0.182713
\(698\) 0 0
\(699\) 8.60532i 0.325483i
\(700\) 0 0
\(701\) −31.5319 −1.19095 −0.595473 0.803376i \(-0.703035\pi\)
−0.595473 + 0.803376i \(0.703035\pi\)
\(702\) 0 0
\(703\) −34.3557 −1.29575
\(704\) 0 0
\(705\) 0.288455 0.0108638
\(706\) 0 0
\(707\) 3.98679i 0.149939i
\(708\) 0 0
\(709\) −5.71155 −0.214502 −0.107251 0.994232i \(-0.534205\pi\)
−0.107251 + 0.994232i \(0.534205\pi\)
\(710\) 0 0
\(711\) 27.7027i 1.03893i
\(712\) 0 0
\(713\) 42.3165i 1.58477i
\(714\) 0 0
\(715\) 3.06756i 0.114720i
\(716\) 0 0
\(717\) 10.5867i 0.395367i
\(718\) 0 0
\(719\) −3.33665 −0.124436 −0.0622180 0.998063i \(-0.519817\pi\)
−0.0622180 + 0.998063i \(0.519817\pi\)
\(720\) 0 0
\(721\) 0.243619 0.00907283
\(722\) 0 0
\(723\) 1.07416i 0.0399484i
\(724\) 0 0
\(725\) 0.299664 + 5.37682i 0.0111292 + 0.199690i
\(726\) 0 0
\(727\) 38.3358i 1.42179i 0.703296 + 0.710897i \(0.251711\pi\)
−0.703296 + 0.710897i \(0.748289\pi\)
\(728\) 0 0
\(729\) 12.6475 0.468427
\(730\) 0 0
\(731\) −70.6026 −2.61133
\(732\) 0 0
\(733\) 34.7200i 1.28241i −0.767369 0.641205i \(-0.778435\pi\)
0.767369 0.641205i \(-0.221565\pi\)
\(734\) 0 0
\(735\) 2.85236i 0.105211i
\(736\) 0 0
\(737\) 4.83974i 0.178274i
\(738\) 0 0
\(739\) 4.30266i 0.158276i 0.996864 + 0.0791380i \(0.0252168\pi\)
−0.996864 + 0.0791380i \(0.974783\pi\)
\(740\) 0 0
\(741\) 13.1987 0.484865
\(742\) 0 0
\(743\) 23.7159i 0.870051i 0.900418 + 0.435025i \(0.143261\pi\)
−0.900418 + 0.435025i \(0.856739\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) 0 0
\(747\) 7.32208 0.267901
\(748\) 0 0
\(749\) −16.5353 −0.604187
\(750\) 0 0
\(751\) 45.1689i 1.64824i −0.566418 0.824118i \(-0.691671\pi\)
0.566418 0.824118i \(-0.308329\pi\)
\(752\) 0 0
\(753\) 13.3142 0.485198
\(754\) 0 0
\(755\) 21.7340 0.790980
\(756\) 0 0
\(757\) 3.63387i 0.132075i 0.997817 + 0.0660376i \(0.0210357\pi\)
−0.997817 + 0.0660376i \(0.978964\pi\)
\(758\) 0 0
\(759\) −1.44551 −0.0524686
\(760\) 0 0
\(761\) 30.4197 1.10271 0.551357 0.834269i \(-0.314110\pi\)
0.551357 + 0.834269i \(0.314110\pi\)
\(762\) 0 0
\(763\) −14.4421 −0.522841
\(764\) 0 0
\(765\) 18.7384i 0.677488i
\(766\) 0 0
\(767\) −44.0448 −1.59037
\(768\) 0 0
\(769\) 20.7086i 0.746771i −0.927676 0.373385i \(-0.878197\pi\)
0.927676 0.373385i \(-0.121803\pi\)
\(770\) 0 0
\(771\) 9.07009i 0.326651i
\(772\) 0 0
\(773\) 32.0828i 1.15394i 0.816766 + 0.576969i \(0.195765\pi\)
−0.816766 + 0.576969i \(0.804235\pi\)
\(774\) 0 0
\(775\) 8.44438i 0.303331i
\(776\) 0 0
\(777\) −5.57355 −0.199950
\(778\) 0 0
\(779\) −3.00336 −0.107607
\(780\) 0 0
\(781\) 2.30324i 0.0824165i
\(782\) 0 0
\(783\) −16.4937 + 0.919237i −0.589437 + 0.0328508i
\(784\) 0 0
\(785\) 5.29334i 0.188927i
\(786\) 0 0
\(787\) 6.45348 0.230042 0.115021 0.993363i \(-0.463306\pi\)
0.115021 + 0.993363i \(0.463306\pi\)
\(788\) 0 0
\(789\) −4.16041 −0.148115
\(790\) 0 0
\(791\) 12.4794i 0.443716i
\(792\) 0 0
\(793\) 33.7775i 1.19947i
\(794\) 0 0
\(795\) 3.81983i 0.135475i
\(796\) 0 0
\(797\) 36.9225i 1.30786i −0.756554 0.653932i \(-0.773118\pi\)
0.756554 0.653932i \(-0.226882\pi\)
\(798\) 0 0
\(799\) 3.71155 0.131305
\(800\) 0 0
\(801\) 26.2463i 0.927369i
\(802\) 0 0
\(803\) −3.33665 −0.117748
\(804\) 0 0
\(805\) −6.51289 −0.229549
\(806\) 0 0
\(807\) 6.15046 0.216506
\(808\) 0 0
\(809\) 22.2596i 0.782604i 0.920262 + 0.391302i \(0.127975\pi\)
−0.920262 + 0.391302i \(0.872025\pi\)
\(810\) 0 0
\(811\) 16.2469 0.570504 0.285252 0.958453i \(-0.407923\pi\)
0.285252 + 0.958453i \(0.407923\pi\)
\(812\) 0 0
\(813\) 13.8911 0.487184
\(814\) 0 0
\(815\) 6.07484i 0.212793i
\(816\) 0 0
\(817\) −43.9584 −1.53791
\(818\) 0 0
\(819\) −20.1280 −0.703331
\(820\) 0 0
\(821\) −0.352476 −0.0123015 −0.00615075 0.999981i \(-0.501958\pi\)
−0.00615075 + 0.999981i \(0.501958\pi\)
\(822\) 0 0
\(823\) 15.0021i 0.522939i −0.965212 0.261469i \(-0.915793\pi\)
0.965212 0.261469i \(-0.0842070\pi\)
\(824\) 0 0
\(825\) 0.288455 0.0100427
\(826\) 0 0
\(827\) 27.4152i 0.953319i −0.879088 0.476659i \(-0.841848\pi\)
0.879088 0.476659i \(-0.158152\pi\)
\(828\) 0 0
\(829\) 50.9219i 1.76859i 0.466929 + 0.884295i \(0.345360\pi\)
−0.466929 + 0.884295i \(0.654640\pi\)
\(830\) 0 0
\(831\) 4.77345i 0.165589i
\(832\) 0 0
\(833\) 36.7013i 1.27163i
\(834\) 0 0
\(835\) −5.01121 −0.173420
\(836\) 0 0
\(837\) 25.9036 0.895360
\(838\) 0 0
\(839\) 37.5371i 1.29592i −0.761673 0.647962i \(-0.775622\pi\)
0.761673 0.647962i \(-0.224378\pi\)
\(840\) 0 0
\(841\) −28.8204 + 3.22248i −0.993807 + 0.111120i
\(842\) 0 0
\(843\) 12.1033i 0.416859i
\(844\) 0 0
\(845\) 19.6217 0.675009
\(846\) 0 0
\(847\) 13.9214 0.478345
\(848\) 0 0
\(849\) 7.74033i 0.265648i
\(850\) 0 0
\(851\) 40.0133i 1.37164i
\(852\) 0 0
\(853\) 0.942449i 0.0322688i −0.999870 0.0161344i \(-0.994864\pi\)
0.999870 0.0161344i \(-0.00513597\pi\)
\(854\) 0 0
\(855\) 11.6669i 0.398998i
\(856\) 0 0
\(857\) −2.66335 −0.0909783 −0.0454891 0.998965i \(-0.514485\pi\)
−0.0454891 + 0.998965i \(0.514485\pi\)
\(858\) 0 0
\(859\) 22.9636i 0.783508i 0.920070 + 0.391754i \(0.128132\pi\)
−0.920070 + 0.391754i \(0.871868\pi\)
\(860\) 0 0
\(861\) −0.487237 −0.0166050
\(862\) 0 0
\(863\) 13.7485 0.468005 0.234003 0.972236i \(-0.424818\pi\)
0.234003 + 0.972236i \(0.424818\pi\)
\(864\) 0 0
\(865\) −8.31087 −0.282578
\(866\) 0 0
\(867\) 16.5186i 0.561002i
\(868\) 0 0
\(869\) 5.48711 0.186138
\(870\) 0 0
\(871\) −51.4679 −1.74392
\(872\) 0 0
\(873\) 5.61523i 0.190047i
\(874\) 0 0
\(875\) 1.29966 0.0439367
\(876\) 0 0
\(877\) −42.1313 −1.42267 −0.711336 0.702852i \(-0.751910\pi\)
−0.711336 + 0.702852i \(0.751910\pi\)
\(878\) 0 0
\(879\) −0.535307 −0.0180555
\(880\) 0 0
\(881\) 13.1232i 0.442131i 0.975259 + 0.221065i \(0.0709535\pi\)
−0.975259 + 0.221065i \(0.929047\pi\)
\(882\) 0 0
\(883\) 49.5465 1.66737 0.833687 0.552238i \(-0.186226\pi\)
0.833687 + 0.552238i \(0.186226\pi\)
\(884\) 0 0
\(885\) 4.14172i 0.139222i
\(886\) 0 0
\(887\) 3.43767i 0.115426i −0.998333 0.0577129i \(-0.981619\pi\)
0.998333 0.0577129i \(-0.0183808\pi\)
\(888\) 0 0
\(889\) 7.89526i 0.264798i
\(890\) 0 0
\(891\) 3.48410i 0.116722i
\(892\) 0 0
\(893\) 2.31087 0.0773304
\(894\) 0 0
\(895\) −6.59933 −0.220591
\(896\) 0 0
\(897\) 15.3722i 0.513262i
\(898\) 0 0
\(899\) 45.4039 2.53048i 1.51431 0.0843961i
\(900\) 0 0
\(901\) 49.1497i 1.63741i
\(902\) 0 0
\(903\) −7.13140 −0.237318
\(904\) 0 0
\(905\) −3.48711 −0.115916
\(906\) 0 0
\(907\) 3.44971i 0.114546i −0.998359 0.0572729i \(-0.981759\pi\)
0.998359 0.0572729i \(-0.0182405\pi\)
\(908\) 0 0
\(909\) 8.31782i 0.275885i
\(910\) 0 0
\(911\) 30.8709i 1.02280i 0.859343 + 0.511399i \(0.170873\pi\)
−0.859343 + 0.511399i \(0.829127\pi\)
\(912\) 0 0
\(913\) 1.45030i 0.0479978i
\(914\) 0 0
\(915\) 3.17624 0.105003
\(916\) 0 0
\(917\) 23.5549i 0.777852i
\(918\) 0 0
\(919\) 49.5768 1.63539 0.817694 0.575654i \(-0.195252\pi\)
0.817694 + 0.575654i \(0.195252\pi\)
\(920\) 0 0
\(921\) 14.5577 0.479693
\(922\) 0 0
\(923\) −24.4937 −0.806220
\(924\) 0 0
\(925\) 7.98476i 0.262537i
\(926\) 0 0
\(927\) 0.508272 0.0166938
\(928\) 0 0
\(929\) 58.0897 1.90586 0.952930 0.303190i \(-0.0980516\pi\)
0.952930 + 0.303190i \(0.0980516\pi\)
\(930\) 0 0
\(931\) 22.8509i 0.748908i
\(932\) 0 0
\(933\) 10.1380 0.331903
\(934\) 0 0
\(935\) 3.71155 0.121381
\(936\) 0 0
\(937\) 54.9550 1.79530 0.897651 0.440706i \(-0.145272\pi\)
0.897651 + 0.440706i \(0.145272\pi\)
\(938\) 0 0
\(939\) 3.37740i 0.110217i
\(940\) 0 0
\(941\) 43.6924 1.42433 0.712165 0.702012i \(-0.247715\pi\)
0.712165 + 0.702012i \(0.247715\pi\)
\(942\) 0 0
\(943\) 3.49794i 0.113909i
\(944\) 0 0
\(945\) 3.98679i 0.129690i
\(946\) 0 0
\(947\) 13.9279i 0.452596i −0.974058 0.226298i \(-0.927338\pi\)
0.974058 0.226298i \(-0.0726623\pi\)
\(948\) 0 0
\(949\) 35.4834i 1.15184i
\(950\) 0 0
\(951\) 7.26268 0.235508
\(952\) 0 0
\(953\) −12.3525 −0.400136 −0.200068 0.979782i \(-0.564116\pi\)
−0.200068 + 0.979782i \(0.564116\pi\)
\(954\) 0 0
\(955\) 2.68540i 0.0868975i
\(956\) 0 0
\(957\) 0.0864396 + 1.55097i 0.00279420 + 0.0501358i
\(958\) 0 0
\(959\) 17.1564i 0.554009i
\(960\) 0 0
\(961\) −40.3075 −1.30024
\(962\) 0 0
\(963\) −34.4983 −1.11169
\(964\) 0 0
\(965\) 4.76228i 0.153303i
\(966\) 0 0
\(967\) 26.5080i 0.852439i 0.904620 + 0.426219i \(0.140155\pi\)
−0.904620 + 0.426219i \(0.859845\pi\)
\(968\) 0 0
\(969\) 15.9695i 0.513015i
\(970\) 0 0
\(971\) 22.2656i 0.714536i 0.934002 + 0.357268i \(0.116292\pi\)
−0.934002 + 0.357268i \(0.883708\pi\)
\(972\) 0 0
\(973\) −18.9742 −0.608286
\(974\) 0 0
\(975\) 3.06756i 0.0982404i
\(976\) 0 0
\(977\) −18.0864 −0.578636 −0.289318 0.957233i \(-0.593429\pi\)
−0.289318 + 0.957233i \(0.593429\pi\)
\(978\) 0 0
\(979\) −5.19866 −0.166150
\(980\) 0 0
\(981\) −30.1313 −0.962018
\(982\) 0 0
\(983\) 21.8894i 0.698165i −0.937092 0.349082i \(-0.886493\pi\)
0.937092 0.349082i \(-0.113507\pi\)
\(984\) 0 0
\(985\) 16.0224 0.510517
\(986\) 0 0
\(987\) 0.374895 0.0119330
\(988\) 0 0
\(989\) 51.1973i 1.62798i
\(990\) 0 0
\(991\) 14.8878 0.472926 0.236463 0.971640i \(-0.424012\pi\)
0.236463 + 0.971640i \(0.424012\pi\)
\(992\) 0 0
\(993\) −11.2086 −0.355694
\(994\) 0 0
\(995\) 1.68913 0.0535489
\(996\) 0 0
\(997\) 38.4735i 1.21847i −0.792991 0.609234i \(-0.791477\pi\)
0.792991 0.609234i \(-0.208523\pi\)
\(998\) 0 0
\(999\) −24.4937 −0.774946
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.2.g.i.1681.4 6
4.3 odd 2 145.2.c.b.86.2 6
12.11 even 2 1305.2.d.b.811.5 6
20.3 even 4 725.2.d.c.724.4 12
20.7 even 4 725.2.d.c.724.9 12
20.19 odd 2 725.2.c.e.376.5 6
29.28 even 2 inner 2320.2.g.i.1681.3 6
116.75 even 4 4205.2.a.m.1.2 6
116.99 even 4 4205.2.a.m.1.5 6
116.115 odd 2 145.2.c.b.86.5 yes 6
348.347 even 2 1305.2.d.b.811.2 6
580.347 even 4 725.2.d.c.724.3 12
580.463 even 4 725.2.d.c.724.10 12
580.579 odd 2 725.2.c.e.376.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.c.b.86.2 6 4.3 odd 2
145.2.c.b.86.5 yes 6 116.115 odd 2
725.2.c.e.376.2 6 580.579 odd 2
725.2.c.e.376.5 6 20.19 odd 2
725.2.d.c.724.3 12 580.347 even 4
725.2.d.c.724.4 12 20.3 even 4
725.2.d.c.724.9 12 20.7 even 4
725.2.d.c.724.10 12 580.463 even 4
1305.2.d.b.811.2 6 348.347 even 2
1305.2.d.b.811.5 6 12.11 even 2
2320.2.g.i.1681.3 6 29.28 even 2 inner
2320.2.g.i.1681.4 6 1.1 even 1 trivial
4205.2.a.m.1.2 6 116.75 even 4
4205.2.a.m.1.5 6 116.99 even 4