Properties

Label 1305.2.d.b.811.5
Level $1305$
Weight $2$
Character 1305.811
Analytic conductor $10.420$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1305,2,Mod(811,1305)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1305.811"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1305, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.16516096.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 9x^{4} + 13x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.5
Root \(1.30397i\) of defining polynomial
Character \(\chi\) \(=\) 1305.811
Dual form 1305.2.d.b.811.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.30397i q^{2} +0.299664 q^{4} -1.00000 q^{5} -1.29966 q^{7} +2.99869i q^{8} -1.30397i q^{10} -0.537080i q^{11} -5.71155 q^{13} -1.69472i q^{14} -3.31087 q^{16} -6.91060i q^{17} -4.30266i q^{19} -0.299664 q^{20} +0.700336 q^{22} -5.01121 q^{23} +1.00000 q^{25} -7.44768i q^{26} -0.389463 q^{28} +(-0.299664 - 5.37682i) q^{29} +8.44438i q^{31} +1.68011i q^{32} +9.01121 q^{34} +1.29966 q^{35} +7.98476i q^{37} +5.61054 q^{38} -2.99869i q^{40} -0.698024i q^{41} -10.2166i q^{43} -0.160944i q^{44} -6.53446i q^{46} -0.537080i q^{47} -5.31087 q^{49} +1.30397i q^{50} -1.71155 q^{52} -7.11222 q^{53} +0.537080i q^{55} -3.89729i q^{56} +(7.01121 - 0.390753i) q^{58} +7.71155 q^{59} -5.91390i q^{61} -11.0112 q^{62} -8.81255 q^{64} +5.71155 q^{65} -9.01121 q^{67} -2.07086i q^{68} +1.69472i q^{70} +4.28845 q^{71} -6.21258i q^{73} -10.4119 q^{74} -1.28935i q^{76} +0.698024i q^{77} -10.2166i q^{79} +3.31087 q^{80} +0.910201 q^{82} +2.70034 q^{83} +6.91060i q^{85} +13.3221 q^{86} +1.61054 q^{88} +9.67948i q^{89} +7.42309 q^{91} -1.50168 q^{92} +0.700336 q^{94} +4.30266i q^{95} +2.07086i q^{97} -6.92522i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 6 q^{5} - 4 q^{13} + 26 q^{16} + 6 q^{20} + 12 q^{22} + 8 q^{23} + 6 q^{25} - 56 q^{28} + 6 q^{29} + 16 q^{34} - 20 q^{38} + 14 q^{49} + 20 q^{52} - 28 q^{53} + 4 q^{58} + 16 q^{59} - 28 q^{62}+ \cdots + 12 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30397i 0.922046i 0.887388 + 0.461023i \(0.152517\pi\)
−0.887388 + 0.461023i \(0.847483\pi\)
\(3\) 0 0
\(4\) 0.299664 0.149832
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.29966 −0.491227 −0.245613 0.969368i \(-0.578989\pi\)
−0.245613 + 0.969368i \(0.578989\pi\)
\(8\) 2.99869i 1.06020i
\(9\) 0 0
\(10\) 1.30397i 0.412351i
\(11\) 0.537080i 0.161936i −0.996717 0.0809679i \(-0.974199\pi\)
0.996717 0.0809679i \(-0.0258011\pi\)
\(12\) 0 0
\(13\) −5.71155 −1.58410 −0.792049 0.610458i \(-0.790985\pi\)
−0.792049 + 0.610458i \(0.790985\pi\)
\(14\) 1.69472i 0.452934i
\(15\) 0 0
\(16\) −3.31087 −0.827718
\(17\) 6.91060i 1.67607i −0.545619 0.838033i \(-0.683705\pi\)
0.545619 0.838033i \(-0.316295\pi\)
\(18\) 0 0
\(19\) 4.30266i 0.987098i −0.869718 0.493549i \(-0.835699\pi\)
0.869718 0.493549i \(-0.164301\pi\)
\(20\) −0.299664 −0.0670069
\(21\) 0 0
\(22\) 0.700336 0.149312
\(23\) −5.01121 −1.04491 −0.522455 0.852667i \(-0.674984\pi\)
−0.522455 + 0.852667i \(0.674984\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 7.44768i 1.46061i
\(27\) 0 0
\(28\) −0.389463 −0.0736015
\(29\) −0.299664 5.37682i −0.0556462 0.998451i
\(30\) 0 0
\(31\) 8.44438i 1.51666i 0.651874 + 0.758328i \(0.273983\pi\)
−0.651874 + 0.758328i \(0.726017\pi\)
\(32\) 1.68011i 0.297004i
\(33\) 0 0
\(34\) 9.01121 1.54541
\(35\) 1.29966 0.219683
\(36\) 0 0
\(37\) 7.98476i 1.31269i 0.754462 + 0.656343i \(0.227898\pi\)
−0.754462 + 0.656343i \(0.772102\pi\)
\(38\) 5.61054 0.910149
\(39\) 0 0
\(40\) 2.99869i 0.474135i
\(41\) 0.698024i 0.109013i −0.998513 0.0545065i \(-0.982641\pi\)
0.998513 0.0545065i \(-0.0173586\pi\)
\(42\) 0 0
\(43\) 10.2166i 1.55801i −0.627017 0.779006i \(-0.715724\pi\)
0.627017 0.779006i \(-0.284276\pi\)
\(44\) 0.160944i 0.0242632i
\(45\) 0 0
\(46\) 6.53446i 0.963454i
\(47\) 0.537080i 0.0783412i −0.999233 0.0391706i \(-0.987528\pi\)
0.999233 0.0391706i \(-0.0124716\pi\)
\(48\) 0 0
\(49\) −5.31087 −0.758696
\(50\) 1.30397i 0.184409i
\(51\) 0 0
\(52\) −1.71155 −0.237349
\(53\) −7.11222 −0.976938 −0.488469 0.872581i \(-0.662444\pi\)
−0.488469 + 0.872581i \(0.662444\pi\)
\(54\) 0 0
\(55\) 0.537080i 0.0724199i
\(56\) 3.89729i 0.520797i
\(57\) 0 0
\(58\) 7.01121 0.390753i 0.920617 0.0513084i
\(59\) 7.71155 1.00396 0.501979 0.864880i \(-0.332606\pi\)
0.501979 + 0.864880i \(0.332606\pi\)
\(60\) 0 0
\(61\) 5.91390i 0.757197i −0.925561 0.378599i \(-0.876406\pi\)
0.925561 0.378599i \(-0.123594\pi\)
\(62\) −11.0112 −1.39842
\(63\) 0 0
\(64\) −8.81255 −1.10157
\(65\) 5.71155 0.708430
\(66\) 0 0
\(67\) −9.01121 −1.10089 −0.550447 0.834870i \(-0.685543\pi\)
−0.550447 + 0.834870i \(0.685543\pi\)
\(68\) 2.07086i 0.251128i
\(69\) 0 0
\(70\) 1.69472i 0.202558i
\(71\) 4.28845 0.508946 0.254473 0.967080i \(-0.418098\pi\)
0.254473 + 0.967080i \(0.418098\pi\)
\(72\) 0 0
\(73\) 6.21258i 0.727127i −0.931569 0.363563i \(-0.881560\pi\)
0.931569 0.363563i \(-0.118440\pi\)
\(74\) −10.4119 −1.21036
\(75\) 0 0
\(76\) 1.28935i 0.147899i
\(77\) 0.698024i 0.0795472i
\(78\) 0 0
\(79\) 10.2166i 1.14945i −0.818346 0.574726i \(-0.805108\pi\)
0.818346 0.574726i \(-0.194892\pi\)
\(80\) 3.31087 0.370167
\(81\) 0 0
\(82\) 0.910201 0.100515
\(83\) 2.70034 0.296400 0.148200 0.988957i \(-0.452652\pi\)
0.148200 + 0.988957i \(0.452652\pi\)
\(84\) 0 0
\(85\) 6.91060i 0.749560i
\(86\) 13.3221 1.43656
\(87\) 0 0
\(88\) 1.61054 0.171684
\(89\) 9.67948i 1.02602i 0.858382 + 0.513011i \(0.171470\pi\)
−0.858382 + 0.513011i \(0.828530\pi\)
\(90\) 0 0
\(91\) 7.42309 0.778151
\(92\) −1.50168 −0.156561
\(93\) 0 0
\(94\) 0.700336 0.0722341
\(95\) 4.30266i 0.441444i
\(96\) 0 0
\(97\) 2.07086i 0.210264i 0.994458 + 0.105132i \(0.0335265\pi\)
−0.994458 + 0.105132i \(0.966474\pi\)
\(98\) 6.92522i 0.699552i
\(99\) 0 0
\(100\) 0.299664 0.0299664
\(101\) 3.06756i 0.305233i −0.988285 0.152617i \(-0.951230\pi\)
0.988285 0.152617i \(-0.0487700\pi\)
\(102\) 0 0
\(103\) −0.187447 −0.0184697 −0.00923487 0.999957i \(-0.502940\pi\)
−0.00923487 + 0.999957i \(0.502940\pi\)
\(104\) 17.1272i 1.67946i
\(105\) 0 0
\(106\) 9.27411i 0.900781i
\(107\) −12.7228 −1.22996 −0.614978 0.788545i \(-0.710835\pi\)
−0.614978 + 0.788545i \(0.710835\pi\)
\(108\) 0 0
\(109\) −11.1122 −1.06436 −0.532179 0.846632i \(-0.678627\pi\)
−0.532179 + 0.846632i \(0.678627\pi\)
\(110\) −0.700336 −0.0667744
\(111\) 0 0
\(112\) 4.30302 0.406597
\(113\) 9.60202i 0.903282i −0.892200 0.451641i \(-0.850839\pi\)
0.892200 0.451641i \(-0.149161\pi\)
\(114\) 0 0
\(115\) 5.01121 0.467298
\(116\) −0.0897986 1.61124i −0.00833759 0.149600i
\(117\) 0 0
\(118\) 10.0556i 0.925695i
\(119\) 8.98146i 0.823329i
\(120\) 0 0
\(121\) 10.7115 0.973777
\(122\) 7.71155 0.698170
\(123\) 0 0
\(124\) 2.53048i 0.227244i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 6.07484i 0.539055i 0.962993 + 0.269528i \(0.0868676\pi\)
−0.962993 + 0.269528i \(0.913132\pi\)
\(128\) 8.13109i 0.718693i
\(129\) 0 0
\(130\) 7.44768i 0.653205i
\(131\) 18.1239i 1.58349i 0.610852 + 0.791744i \(0.290827\pi\)
−0.610852 + 0.791744i \(0.709173\pi\)
\(132\) 0 0
\(133\) 5.59201i 0.484889i
\(134\) 11.7503i 1.01507i
\(135\) 0 0
\(136\) 20.7228 1.77696
\(137\) 13.2006i 1.12781i 0.825841 + 0.563903i \(0.190701\pi\)
−0.825841 + 0.563903i \(0.809299\pi\)
\(138\) 0 0
\(139\) 14.5993 1.23830 0.619149 0.785273i \(-0.287478\pi\)
0.619149 + 0.785273i \(0.287478\pi\)
\(140\) 0.389463 0.0329156
\(141\) 0 0
\(142\) 5.59201i 0.469271i
\(143\) 3.06756i 0.256522i
\(144\) 0 0
\(145\) 0.299664 + 5.37682i 0.0248857 + 0.446521i
\(146\) 8.10101 0.670444
\(147\) 0 0
\(148\) 2.39275i 0.196682i
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) −21.7340 −1.76868 −0.884342 0.466839i \(-0.845393\pi\)
−0.884342 + 0.466839i \(0.845393\pi\)
\(152\) 12.9024 1.04652
\(153\) 0 0
\(154\) −0.910201 −0.0733461
\(155\) 8.44438i 0.678269i
\(156\) 0 0
\(157\) 5.29334i 0.422454i 0.977437 + 0.211227i \(0.0677460\pi\)
−0.977437 + 0.211227i \(0.932254\pi\)
\(158\) 13.3221 1.05985
\(159\) 0 0
\(160\) 1.68011i 0.132824i
\(161\) 6.51289 0.513288
\(162\) 0 0
\(163\) 6.07484i 0.475819i −0.971287 0.237909i \(-0.923538\pi\)
0.971287 0.237909i \(-0.0764621\pi\)
\(164\) 0.209173i 0.0163336i
\(165\) 0 0
\(166\) 3.52116i 0.273295i
\(167\) −5.01121 −0.387779 −0.193890 0.981023i \(-0.562110\pi\)
−0.193890 + 0.981023i \(0.562110\pi\)
\(168\) 0 0
\(169\) 19.6217 1.50937
\(170\) −9.01121 −0.691128
\(171\) 0 0
\(172\) 3.06154i 0.233440i
\(173\) 8.31087 0.631864 0.315932 0.948782i \(-0.397683\pi\)
0.315932 + 0.948782i \(0.397683\pi\)
\(174\) 0 0
\(175\) −1.29966 −0.0982454
\(176\) 1.77820i 0.134037i
\(177\) 0 0
\(178\) −12.6217 −0.946040
\(179\) −6.59933 −0.493257 −0.246628 0.969110i \(-0.579323\pi\)
−0.246628 + 0.969110i \(0.579323\pi\)
\(180\) 0 0
\(181\) −3.48711 −0.259195 −0.129597 0.991567i \(-0.541369\pi\)
−0.129597 + 0.991567i \(0.541369\pi\)
\(182\) 9.67948i 0.717491i
\(183\) 0 0
\(184\) 15.0271i 1.10781i
\(185\) 7.98476i 0.587051i
\(186\) 0 0
\(187\) −3.71155 −0.271415
\(188\) 0.160944i 0.0117380i
\(189\) 0 0
\(190\) −5.61054 −0.407031
\(191\) 2.68540i 0.194309i 0.995269 + 0.0971544i \(0.0309741\pi\)
−0.995269 + 0.0971544i \(0.969026\pi\)
\(192\) 0 0
\(193\) 4.76228i 0.342796i 0.985202 + 0.171398i \(0.0548285\pi\)
−0.985202 + 0.171398i \(0.945172\pi\)
\(194\) −2.70034 −0.193873
\(195\) 0 0
\(196\) −1.59148 −0.113677
\(197\) −16.0224 −1.14155 −0.570775 0.821106i \(-0.693357\pi\)
−0.570775 + 0.821106i \(0.693357\pi\)
\(198\) 0 0
\(199\) −1.68913 −0.119739 −0.0598695 0.998206i \(-0.519068\pi\)
−0.0598695 + 0.998206i \(0.519068\pi\)
\(200\) 2.99869i 0.212039i
\(201\) 0 0
\(202\) 4.00000 0.281439
\(203\) 0.389463 + 6.98806i 0.0273349 + 0.490466i
\(204\) 0 0
\(205\) 0.698024i 0.0487521i
\(206\) 0.244426i 0.0170299i
\(207\) 0 0
\(208\) 18.9102 1.31119
\(209\) −2.31087 −0.159846
\(210\) 0 0
\(211\) 6.99408i 0.481492i −0.970588 0.240746i \(-0.922608\pi\)
0.970588 0.240746i \(-0.0773921\pi\)
\(212\) −2.13128 −0.146377
\(213\) 0 0
\(214\) 16.5901i 1.13407i
\(215\) 10.2166i 0.696764i
\(216\) 0 0
\(217\) 10.9749i 0.745022i
\(218\) 14.4900i 0.981386i
\(219\) 0 0
\(220\) 0.160944i 0.0108508i
\(221\) 39.4702i 2.65505i
\(222\) 0 0
\(223\) 2.98879 0.200144 0.100072 0.994980i \(-0.468093\pi\)
0.100072 + 0.994980i \(0.468093\pi\)
\(224\) 2.18357i 0.145896i
\(225\) 0 0
\(226\) 12.5207 0.832867
\(227\) 23.8574 1.58347 0.791735 0.610864i \(-0.209178\pi\)
0.791735 + 0.610864i \(0.209178\pi\)
\(228\) 0 0
\(229\) 0.321887i 0.0212709i 0.999943 + 0.0106355i \(0.00338543\pi\)
−0.999943 + 0.0106355i \(0.996615\pi\)
\(230\) 6.53446i 0.430870i
\(231\) 0 0
\(232\) 16.1234 0.898600i 1.05855 0.0589960i
\(233\) 16.0224 1.04966 0.524832 0.851206i \(-0.324128\pi\)
0.524832 + 0.851206i \(0.324128\pi\)
\(234\) 0 0
\(235\) 0.537080i 0.0350352i
\(236\) 2.31087 0.150425
\(237\) 0 0
\(238\) −11.7115 −0.759147
\(239\) −19.7115 −1.27503 −0.637517 0.770436i \(-0.720038\pi\)
−0.637517 + 0.770436i \(0.720038\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 13.9675i 0.897867i
\(243\) 0 0
\(244\) 1.77218i 0.113452i
\(245\) 5.31087 0.339299
\(246\) 0 0
\(247\) 24.5748i 1.56366i
\(248\) −25.3221 −1.60795
\(249\) 0 0
\(250\) 1.30397i 0.0824703i
\(251\) 24.7900i 1.56473i −0.622818 0.782366i \(-0.714012\pi\)
0.622818 0.782366i \(-0.285988\pi\)
\(252\) 0 0
\(253\) 2.69142i 0.169208i
\(254\) −7.92141 −0.497034
\(255\) 0 0
\(256\) −7.02242 −0.438901
\(257\) −16.8878 −1.05343 −0.526715 0.850042i \(-0.676577\pi\)
−0.526715 + 0.850042i \(0.676577\pi\)
\(258\) 0 0
\(259\) 10.3775i 0.644827i
\(260\) 1.71155 0.106146
\(261\) 0 0
\(262\) −23.6330 −1.46005
\(263\) 7.74635i 0.477661i 0.971061 + 0.238830i \(0.0767640\pi\)
−0.971061 + 0.238830i \(0.923236\pi\)
\(264\) 0 0
\(265\) 7.11222 0.436900
\(266\) −7.29181 −0.447090
\(267\) 0 0
\(268\) −2.70034 −0.164949
\(269\) 11.4517i 0.698220i 0.937082 + 0.349110i \(0.113516\pi\)
−0.937082 + 0.349110i \(0.886484\pi\)
\(270\) 0 0
\(271\) 25.8642i 1.57114i 0.618774 + 0.785569i \(0.287630\pi\)
−0.618774 + 0.785569i \(0.712370\pi\)
\(272\) 22.8801i 1.38731i
\(273\) 0 0
\(274\) −17.2132 −1.03989
\(275\) 0.537080i 0.0323871i
\(276\) 0 0
\(277\) −8.88778 −0.534015 −0.267008 0.963694i \(-0.586035\pi\)
−0.267008 + 0.963694i \(0.586035\pi\)
\(278\) 19.0371i 1.14177i
\(279\) 0 0
\(280\) 3.89729i 0.232908i
\(281\) 22.5353 1.34434 0.672172 0.740395i \(-0.265362\pi\)
0.672172 + 0.740395i \(0.265362\pi\)
\(282\) 0 0
\(283\) −14.4119 −0.856697 −0.428349 0.903614i \(-0.640904\pi\)
−0.428349 + 0.903614i \(0.640904\pi\)
\(284\) 1.28510 0.0762564
\(285\) 0 0
\(286\) −4.00000 −0.236525
\(287\) 0.907196i 0.0535501i
\(288\) 0 0
\(289\) −30.7564 −1.80920
\(290\) −7.01121 + 0.390753i −0.411712 + 0.0229458i
\(291\) 0 0
\(292\) 1.86169i 0.108947i
\(293\) 0.996698i 0.0582277i −0.999576 0.0291139i \(-0.990731\pi\)
0.999576 0.0291139i \(-0.00926854\pi\)
\(294\) 0 0
\(295\) −7.71155 −0.448984
\(296\) −23.9438 −1.39171
\(297\) 0 0
\(298\) 7.82382i 0.453221i
\(299\) 28.6217 1.65524
\(300\) 0 0
\(301\) 13.2781i 0.765337i
\(302\) 28.3404i 1.63081i
\(303\) 0 0
\(304\) 14.2456i 0.817039i
\(305\) 5.91390i 0.338629i
\(306\) 0 0
\(307\) 27.1053i 1.54698i 0.633807 + 0.773491i \(0.281491\pi\)
−0.633807 + 0.773491i \(0.718509\pi\)
\(308\) 0.209173i 0.0119187i
\(309\) 0 0
\(310\) 11.0112 0.625395
\(311\) 18.8761i 1.07037i −0.844736 0.535184i \(-0.820242\pi\)
0.844736 0.535184i \(-0.179758\pi\)
\(312\) 0 0
\(313\) 6.28845 0.355444 0.177722 0.984081i \(-0.443127\pi\)
0.177722 + 0.984081i \(0.443127\pi\)
\(314\) −6.90235 −0.389522
\(315\) 0 0
\(316\) 3.06154i 0.172225i
\(317\) 13.5225i 0.759501i 0.925089 + 0.379750i \(0.123990\pi\)
−0.925089 + 0.379750i \(0.876010\pi\)
\(318\) 0 0
\(319\) −2.88778 + 0.160944i −0.161685 + 0.00901111i
\(320\) 8.81255 0.492637
\(321\) 0 0
\(322\) 8.49261i 0.473274i
\(323\) −29.7340 −1.65444
\(324\) 0 0
\(325\) −5.71155 −0.316820
\(326\) 7.92141 0.438726
\(327\) 0 0
\(328\) 2.09316 0.115575
\(329\) 0.698024i 0.0384833i
\(330\) 0 0
\(331\) 20.8695i 1.14709i −0.819173 0.573547i \(-0.805567\pi\)
0.819173 0.573547i \(-0.194433\pi\)
\(332\) 0.809194 0.0444103
\(333\) 0 0
\(334\) 6.53446i 0.357550i
\(335\) 9.01121 0.492335
\(336\) 0 0
\(337\) 31.1093i 1.69463i 0.531089 + 0.847316i \(0.321783\pi\)
−0.531089 + 0.847316i \(0.678217\pi\)
\(338\) 25.5862i 1.39170i
\(339\) 0 0
\(340\) 2.07086i 0.112308i
\(341\) 4.53531 0.245601
\(342\) 0 0
\(343\) 16.0000 0.863919
\(344\) 30.6363 1.65180
\(345\) 0 0
\(346\) 10.8371i 0.582607i
\(347\) −32.7676 −1.75906 −0.879528 0.475847i \(-0.842142\pi\)
−0.879528 + 0.475847i \(0.842142\pi\)
\(348\) 0 0
\(349\) 24.0224 1.28589 0.642945 0.765912i \(-0.277712\pi\)
0.642945 + 0.765912i \(0.277712\pi\)
\(350\) 1.69472i 0.0905867i
\(351\) 0 0
\(352\) 0.902351 0.0480955
\(353\) −28.3557 −1.50922 −0.754611 0.656172i \(-0.772174\pi\)
−0.754611 + 0.656172i \(0.772174\pi\)
\(354\) 0 0
\(355\) −4.28845 −0.227608
\(356\) 2.90059i 0.153731i
\(357\) 0 0
\(358\) 8.60532i 0.454805i
\(359\) 30.7039i 1.62049i −0.586090 0.810246i \(-0.699334\pi\)
0.586090 0.810246i \(-0.300666\pi\)
\(360\) 0 0
\(361\) 0.487111 0.0256374
\(362\) 4.54709i 0.238990i
\(363\) 0 0
\(364\) 2.22443 0.116592
\(365\) 6.21258i 0.325181i
\(366\) 0 0
\(367\) 1.93313i 0.100908i 0.998726 + 0.0504542i \(0.0160669\pi\)
−0.998726 + 0.0504542i \(0.983933\pi\)
\(368\) 16.5915 0.864891
\(369\) 0 0
\(370\) 10.4119 0.541288
\(371\) 9.24349 0.479898
\(372\) 0 0
\(373\) 0.801344 0.0414920 0.0207460 0.999785i \(-0.493396\pi\)
0.0207460 + 0.999785i \(0.493396\pi\)
\(374\) 4.83974i 0.250257i
\(375\) 0 0
\(376\) 1.61054 0.0830571
\(377\) 1.71155 + 30.7100i 0.0881491 + 1.58164i
\(378\) 0 0
\(379\) 25.8642i 1.32855i −0.747486 0.664277i \(-0.768739\pi\)
0.747486 0.664277i \(-0.231261\pi\)
\(380\) 1.28935i 0.0661424i
\(381\) 0 0
\(382\) −3.50168 −0.179162
\(383\) 20.7676 1.06117 0.530587 0.847630i \(-0.321971\pi\)
0.530587 + 0.847630i \(0.321971\pi\)
\(384\) 0 0
\(385\) 0.698024i 0.0355746i
\(386\) −6.20987 −0.316074
\(387\) 0 0
\(388\) 0.620562i 0.0315043i
\(389\) 2.52446i 0.127995i 0.997950 + 0.0639975i \(0.0203850\pi\)
−0.997950 + 0.0639975i \(0.979615\pi\)
\(390\) 0 0
\(391\) 34.6305i 1.75134i
\(392\) 15.9257i 0.804368i
\(393\) 0 0
\(394\) 20.8927i 1.05256i
\(395\) 10.2166i 0.514051i
\(396\) 0 0
\(397\) 13.2211 0.663547 0.331773 0.943359i \(-0.392353\pi\)
0.331773 + 0.943359i \(0.392353\pi\)
\(398\) 2.20257i 0.110405i
\(399\) 0 0
\(400\) −3.31087 −0.165544
\(401\) −25.1795 −1.25740 −0.628701 0.777647i \(-0.716413\pi\)
−0.628701 + 0.777647i \(0.716413\pi\)
\(402\) 0 0
\(403\) 48.2304i 2.40253i
\(404\) 0.919237i 0.0457337i
\(405\) 0 0
\(406\) −9.11222 + 0.507847i −0.452232 + 0.0252040i
\(407\) 4.28845 0.212571
\(408\) 0 0
\(409\) 28.1855i 1.39368i 0.717225 + 0.696842i \(0.245412\pi\)
−0.717225 + 0.696842i \(0.754588\pi\)
\(410\) −0.910201 −0.0449516
\(411\) 0 0
\(412\) −0.0561712 −0.00276736
\(413\) −10.0224 −0.493171
\(414\) 0 0
\(415\) −2.70034 −0.132554
\(416\) 9.59600i 0.470483i
\(417\) 0 0
\(418\) 3.01331i 0.147386i
\(419\) 20.9102 1.02153 0.510765 0.859720i \(-0.329362\pi\)
0.510765 + 0.859720i \(0.329362\pi\)
\(420\) 0 0
\(421\) 4.67278i 0.227737i −0.993496 0.113869i \(-0.963676\pi\)
0.993496 0.113869i \(-0.0363243\pi\)
\(422\) 9.12007 0.443958
\(423\) 0 0
\(424\) 21.3273i 1.03575i
\(425\) 6.91060i 0.335213i
\(426\) 0 0
\(427\) 7.68608i 0.371956i
\(428\) −3.81255 −0.184287
\(429\) 0 0
\(430\) −13.3221 −0.642448
\(431\) −12.2469 −0.589910 −0.294955 0.955511i \(-0.595305\pi\)
−0.294955 + 0.955511i \(0.595305\pi\)
\(432\) 0 0
\(433\) 11.8046i 0.567292i −0.958929 0.283646i \(-0.908456\pi\)
0.958929 0.283646i \(-0.0915441\pi\)
\(434\) 14.3109 0.686944
\(435\) 0 0
\(436\) −3.32993 −0.159475
\(437\) 21.5615i 1.03143i
\(438\) 0 0
\(439\) −29.5319 −1.40948 −0.704741 0.709464i \(-0.748937\pi\)
−0.704741 + 0.709464i \(0.748937\pi\)
\(440\) −1.61054 −0.0767794
\(441\) 0 0
\(442\) −51.4679 −2.44808
\(443\) 3.28275i 0.155968i 0.996955 + 0.0779841i \(0.0248483\pi\)
−0.996955 + 0.0779841i \(0.975152\pi\)
\(444\) 0 0
\(445\) 9.67948i 0.458851i
\(446\) 3.89729i 0.184542i
\(447\) 0 0
\(448\) 11.4534 0.541120
\(449\) 28.9378i 1.36566i 0.730578 + 0.682829i \(0.239251\pi\)
−0.730578 + 0.682829i \(0.760749\pi\)
\(450\) 0 0
\(451\) −0.374895 −0.0176531
\(452\) 2.87738i 0.135341i
\(453\) 0 0
\(454\) 31.1093i 1.46003i
\(455\) −7.42309 −0.348000
\(456\) 0 0
\(457\) −14.5353 −0.679933 −0.339966 0.940438i \(-0.610416\pi\)
−0.339966 + 0.940438i \(0.610416\pi\)
\(458\) −0.419731 −0.0196127
\(459\) 0 0
\(460\) 1.50168 0.0700162
\(461\) 22.4265i 1.04451i 0.852790 + 0.522254i \(0.174909\pi\)
−0.852790 + 0.522254i \(0.825091\pi\)
\(462\) 0 0
\(463\) −10.0370 −0.466458 −0.233229 0.972422i \(-0.574929\pi\)
−0.233229 + 0.972422i \(0.574929\pi\)
\(464\) 0.992150 + 17.8020i 0.0460594 + 0.826436i
\(465\) 0 0
\(466\) 20.8927i 0.967838i
\(467\) 4.35691i 0.201614i −0.994906 0.100807i \(-0.967858\pi\)
0.994906 0.100807i \(-0.0321424\pi\)
\(468\) 0 0
\(469\) 11.7115 0.540789
\(470\) −0.700336 −0.0323041
\(471\) 0 0
\(472\) 23.1245i 1.06439i
\(473\) −5.48711 −0.252298
\(474\) 0 0
\(475\) 4.30266i 0.197420i
\(476\) 2.69142i 0.123361i
\(477\) 0 0
\(478\) 25.7032i 1.17564i
\(479\) 28.0125i 1.27992i −0.768406 0.639962i \(-0.778950\pi\)
0.768406 0.639962i \(-0.221050\pi\)
\(480\) 0 0
\(481\) 45.6053i 2.07942i
\(482\) 2.60794i 0.118788i
\(483\) 0 0
\(484\) 3.20987 0.145903
\(485\) 2.07086i 0.0940328i
\(486\) 0 0
\(487\) 19.5241 0.884721 0.442361 0.896837i \(-0.354141\pi\)
0.442361 + 0.896837i \(0.354141\pi\)
\(488\) 17.7340 0.802779
\(489\) 0 0
\(490\) 6.92522i 0.312849i
\(491\) 36.4087i 1.64310i −0.570137 0.821550i \(-0.693110\pi\)
0.570137 0.821550i \(-0.306890\pi\)
\(492\) 0 0
\(493\) −37.1571 + 2.07086i −1.67347 + 0.0932668i
\(494\) −32.0448 −1.44177
\(495\) 0 0
\(496\) 27.9583i 1.25536i
\(497\) −5.57355 −0.250008
\(498\) 0 0
\(499\) 31.4679 1.40870 0.704349 0.709854i \(-0.251239\pi\)
0.704349 + 0.709854i \(0.251239\pi\)
\(500\) −0.299664 −0.0134014
\(501\) 0 0
\(502\) 32.3254 1.44276
\(503\) 8.82051i 0.393287i −0.980475 0.196644i \(-0.936996\pi\)
0.980475 0.196644i \(-0.0630042\pi\)
\(504\) 0 0
\(505\) 3.06756i 0.136504i
\(506\) −3.50953 −0.156018
\(507\) 0 0
\(508\) 1.82041i 0.0807678i
\(509\) −14.9102 −0.660883 −0.330442 0.943826i \(-0.607198\pi\)
−0.330442 + 0.943826i \(0.607198\pi\)
\(510\) 0 0
\(511\) 8.07426i 0.357184i
\(512\) 25.4192i 1.12338i
\(513\) 0 0
\(514\) 22.0212i 0.971311i
\(515\) 0.187447 0.00825991
\(516\) 0 0
\(517\) −0.288455 −0.0126862
\(518\) 13.5319 0.594560
\(519\) 0 0
\(520\) 17.1272i 0.751076i
\(521\) −0.512889 −0.0224701 −0.0112350 0.999937i \(-0.503576\pi\)
−0.0112350 + 0.999937i \(0.503576\pi\)
\(522\) 0 0
\(523\) 32.8092 1.43465 0.717323 0.696741i \(-0.245367\pi\)
0.717323 + 0.696741i \(0.245367\pi\)
\(524\) 5.43107i 0.237257i
\(525\) 0 0
\(526\) −10.1010 −0.440425
\(527\) 58.3557 2.54201
\(528\) 0 0
\(529\) 2.11222 0.0918355
\(530\) 9.27411i 0.402842i
\(531\) 0 0
\(532\) 1.67573i 0.0726519i
\(533\) 3.98679i 0.172687i
\(534\) 0 0
\(535\) 12.7228 0.550053
\(536\) 27.0218i 1.16717i
\(537\) 0 0
\(538\) −14.9326 −0.643791
\(539\) 2.85236i 0.122860i
\(540\) 0 0
\(541\) 25.8160i 1.10991i −0.831879 0.554957i \(-0.812735\pi\)
0.831879 0.554957i \(-0.187265\pi\)
\(542\) −33.7261 −1.44866
\(543\) 0 0
\(544\) 11.6105 0.497798
\(545\) 11.1122 0.475995
\(546\) 0 0
\(547\) 39.3221 1.68129 0.840645 0.541586i \(-0.182176\pi\)
0.840645 + 0.541586i \(0.182176\pi\)
\(548\) 3.95576i 0.168982i
\(549\) 0 0
\(550\) 0.700336 0.0298624
\(551\) −23.1346 + 1.28935i −0.985569 + 0.0549283i
\(552\) 0 0
\(553\) 13.2781i 0.564642i
\(554\) 11.5894i 0.492386i
\(555\) 0 0
\(556\) 4.37489 0.185537
\(557\) 30.2469 1.28160 0.640800 0.767708i \(-0.278603\pi\)
0.640800 + 0.767708i \(0.278603\pi\)
\(558\) 0 0
\(559\) 58.3524i 2.46804i
\(560\) −4.30302 −0.181836
\(561\) 0 0
\(562\) 29.3853i 1.23955i
\(563\) 18.0696i 0.761543i −0.924669 0.380772i \(-0.875658\pi\)
0.924669 0.380772i \(-0.124342\pi\)
\(564\) 0 0
\(565\) 9.60202i 0.403960i
\(566\) 18.7927i 0.789914i
\(567\) 0 0
\(568\) 12.8598i 0.539583i
\(569\) 0.0542492i 0.00227425i −0.999999 0.00113712i \(-0.999638\pi\)
0.999999 0.00113712i \(-0.000361957\pi\)
\(570\) 0 0
\(571\) −24.8238 −1.03884 −0.519421 0.854518i \(-0.673852\pi\)
−0.519421 + 0.854518i \(0.673852\pi\)
\(572\) 0.919237i 0.0384352i
\(573\) 0 0
\(574\) −1.18296 −0.0493756
\(575\) −5.01121 −0.208982
\(576\) 0 0
\(577\) 33.8007i 1.40714i −0.710625 0.703571i \(-0.751588\pi\)
0.710625 0.703571i \(-0.248412\pi\)
\(578\) 40.1054i 1.66816i
\(579\) 0 0
\(580\) 0.0897986 + 1.61124i 0.00372868 + 0.0669031i
\(581\) −3.50953 −0.145600
\(582\) 0 0
\(583\) 3.81983i 0.158201i
\(584\) 18.6296 0.770898
\(585\) 0 0
\(586\) 1.29966 0.0536886
\(587\) 16.2323 0.669978 0.334989 0.942222i \(-0.391267\pi\)
0.334989 + 0.942222i \(0.391267\pi\)
\(588\) 0 0
\(589\) 36.3333 1.49709
\(590\) 10.0556i 0.413983i
\(591\) 0 0
\(592\) 26.4365i 1.08653i
\(593\) −9.08980 −0.373273 −0.186637 0.982429i \(-0.559759\pi\)
−0.186637 + 0.982429i \(0.559759\pi\)
\(594\) 0 0
\(595\) 8.98146i 0.368204i
\(596\) −1.79798 −0.0736483
\(597\) 0 0
\(598\) 37.3219i 1.52621i
\(599\) 13.2841i 0.542774i −0.962470 0.271387i \(-0.912518\pi\)
0.962470 0.271387i \(-0.0874824\pi\)
\(600\) 0 0
\(601\) 18.6609i 0.761196i 0.924741 + 0.380598i \(0.124282\pi\)
−0.924741 + 0.380598i \(0.875718\pi\)
\(602\) −17.3142 −0.705675
\(603\) 0 0
\(604\) −6.51289 −0.265006
\(605\) −10.7115 −0.435486
\(606\) 0 0
\(607\) 35.3888i 1.43639i −0.695844 0.718193i \(-0.744970\pi\)
0.695844 0.718193i \(-0.255030\pi\)
\(608\) 7.22892 0.293172
\(609\) 0 0
\(610\) −7.71155 −0.312231
\(611\) 3.06756i 0.124100i
\(612\) 0 0
\(613\) −7.77557 −0.314052 −0.157026 0.987594i \(-0.550191\pi\)
−0.157026 + 0.987594i \(0.550191\pi\)
\(614\) −35.3445 −1.42639
\(615\) 0 0
\(616\) −2.09316 −0.0843357
\(617\) 1.31859i 0.0530843i −0.999648 0.0265421i \(-0.991550\pi\)
0.999648 0.0265421i \(-0.00844961\pi\)
\(618\) 0 0
\(619\) 49.5198i 1.99037i −0.0980212 0.995184i \(-0.531251\pi\)
0.0980212 0.995184i \(-0.468749\pi\)
\(620\) 2.53048i 0.101626i
\(621\) 0 0
\(622\) 24.6139 0.986927
\(623\) 12.5801i 0.504010i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 8.19995i 0.327736i
\(627\) 0 0
\(628\) 1.58622i 0.0632972i
\(629\) 55.1795 2.20015
\(630\) 0 0
\(631\) 10.2244 0.407028 0.203514 0.979072i \(-0.434764\pi\)
0.203514 + 0.979072i \(0.434764\pi\)
\(632\) 30.6363 1.21865
\(633\) 0 0
\(634\) −17.6330 −0.700294
\(635\) 6.07484i 0.241073i
\(636\) 0 0
\(637\) 30.3333 1.20185
\(638\) −0.209866 3.76558i −0.00830866 0.149081i
\(639\) 0 0
\(640\) 8.13109i 0.321409i
\(641\) 31.8848i 1.25937i 0.776849 + 0.629687i \(0.216817\pi\)
−0.776849 + 0.629687i \(0.783183\pi\)
\(642\) 0 0
\(643\) −29.8350 −1.17658 −0.588288 0.808651i \(-0.700198\pi\)
−0.588288 + 0.808651i \(0.700198\pi\)
\(644\) 1.95168 0.0769069
\(645\) 0 0
\(646\) 38.7722i 1.52547i
\(647\) 23.9438 0.941329 0.470665 0.882312i \(-0.344014\pi\)
0.470665 + 0.882312i \(0.344014\pi\)
\(648\) 0 0
\(649\) 4.14172i 0.162577i
\(650\) 7.44768i 0.292122i
\(651\) 0 0
\(652\) 1.82041i 0.0712929i
\(653\) 34.1769i 1.33744i −0.743513 0.668722i \(-0.766842\pi\)
0.743513 0.668722i \(-0.233158\pi\)
\(654\) 0 0
\(655\) 18.1239i 0.708158i
\(656\) 2.31107i 0.0902320i
\(657\) 0 0
\(658\) −0.910201 −0.0354833
\(659\) 9.67346i 0.376825i −0.982090 0.188412i \(-0.939666\pi\)
0.982090 0.188412i \(-0.0603341\pi\)
\(660\) 0 0
\(661\) 27.3591 1.06414 0.532072 0.846699i \(-0.321413\pi\)
0.532072 + 0.846699i \(0.321413\pi\)
\(662\) 27.2132 1.05767
\(663\) 0 0
\(664\) 8.09747i 0.314243i
\(665\) 5.59201i 0.216849i
\(666\) 0 0
\(667\) 1.50168 + 26.9444i 0.0581453 + 1.04329i
\(668\) −1.50168 −0.0581017
\(669\) 0 0
\(670\) 11.7503i 0.453955i
\(671\) −3.17624 −0.122617
\(672\) 0 0
\(673\) 32.0673 1.23610 0.618051 0.786138i \(-0.287923\pi\)
0.618051 + 0.786138i \(0.287923\pi\)
\(674\) −40.5656 −1.56253
\(675\) 0 0
\(676\) 5.87993 0.226151
\(677\) 21.7053i 0.834202i −0.908860 0.417101i \(-0.863046\pi\)
0.908860 0.417101i \(-0.136954\pi\)
\(678\) 0 0
\(679\) 2.69142i 0.103287i
\(680\) −20.7228 −0.794681
\(681\) 0 0
\(682\) 5.91390i 0.226455i
\(683\) 8.43430 0.322729 0.161365 0.986895i \(-0.448410\pi\)
0.161365 + 0.986895i \(0.448410\pi\)
\(684\) 0 0
\(685\) 13.2006i 0.504370i
\(686\) 20.8635i 0.796572i
\(687\) 0 0
\(688\) 33.8257i 1.28959i
\(689\) 40.6217 1.54757
\(690\) 0 0
\(691\) −12.7373 −0.484551 −0.242275 0.970208i \(-0.577894\pi\)
−0.242275 + 0.970208i \(0.577894\pi\)
\(692\) 2.49047 0.0946735
\(693\) 0 0
\(694\) 42.7279i 1.62193i
\(695\) −14.5993 −0.553784
\(696\) 0 0
\(697\) −4.82376 −0.182713
\(698\) 31.3245i 1.18565i
\(699\) 0 0
\(700\) −0.389463 −0.0147203
\(701\) 31.5319 1.19095 0.595473 0.803376i \(-0.296965\pi\)
0.595473 + 0.803376i \(0.296965\pi\)
\(702\) 0 0
\(703\) 34.3557 1.29575
\(704\) 4.73305i 0.178383i
\(705\) 0 0
\(706\) 36.9750i 1.39157i
\(707\) 3.98679i 0.149939i
\(708\) 0 0
\(709\) −5.71155 −0.214502 −0.107251 0.994232i \(-0.534205\pi\)
−0.107251 + 0.994232i \(0.534205\pi\)
\(710\) 5.59201i 0.209865i
\(711\) 0 0
\(712\) −29.0258 −1.08779
\(713\) 42.3165i 1.58477i
\(714\) 0 0
\(715\) 3.06756i 0.114720i
\(716\) −1.97758 −0.0739057
\(717\) 0 0
\(718\) 40.0370 1.49417
\(719\) −3.33665 −0.124436 −0.0622180 0.998063i \(-0.519817\pi\)
−0.0622180 + 0.998063i \(0.519817\pi\)
\(720\) 0 0
\(721\) 0.243619 0.00907283
\(722\) 0.635178i 0.0236389i
\(723\) 0 0
\(724\) −1.04496 −0.0388357
\(725\) −0.299664 5.37682i −0.0111292 0.199690i
\(726\) 0 0
\(727\) 38.3358i 1.42179i −0.703296 0.710897i \(-0.748289\pi\)
0.703296 0.710897i \(-0.251711\pi\)
\(728\) 22.2596i 0.824994i
\(729\) 0 0
\(730\) −8.10101 −0.299832
\(731\) −70.6026 −2.61133
\(732\) 0 0
\(733\) 34.7200i 1.28241i −0.767369 0.641205i \(-0.778435\pi\)
0.767369 0.641205i \(-0.221565\pi\)
\(734\) −2.52074 −0.0930422
\(735\) 0 0
\(736\) 8.41936i 0.310342i
\(737\) 4.83974i 0.178274i
\(738\) 0 0
\(739\) 4.30266i 0.158276i −0.996864 0.0791380i \(-0.974783\pi\)
0.996864 0.0791380i \(-0.0252168\pi\)
\(740\) 2.39275i 0.0879591i
\(741\) 0 0
\(742\) 12.0532i 0.442488i
\(743\) 23.7159i 0.870051i 0.900418 + 0.435025i \(0.143261\pi\)
−0.900418 + 0.435025i \(0.856739\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) 1.04493i 0.0382575i
\(747\) 0 0
\(748\) −1.11222 −0.0406667
\(749\) 16.5353 0.604187
\(750\) 0 0
\(751\) 45.1689i 1.64824i 0.566418 + 0.824118i \(0.308329\pi\)
−0.566418 + 0.824118i \(0.691671\pi\)
\(752\) 1.77820i 0.0648444i
\(753\) 0 0
\(754\) −40.0448 + 2.23180i −1.45835 + 0.0812774i
\(755\) 21.7340 0.790980
\(756\) 0 0
\(757\) 3.63387i 0.132075i 0.997817 + 0.0660376i \(0.0210357\pi\)
−0.997817 + 0.0660376i \(0.978964\pi\)
\(758\) 33.7261 1.22499
\(759\) 0 0
\(760\) −12.9024 −0.468017
\(761\) −30.4197 −1.10271 −0.551357 0.834269i \(-0.685890\pi\)
−0.551357 + 0.834269i \(0.685890\pi\)
\(762\) 0 0
\(763\) 14.4421 0.522841
\(764\) 0.804718i 0.0291137i
\(765\) 0 0
\(766\) 27.0803i 0.978451i
\(767\) −44.0448 −1.59037
\(768\) 0 0
\(769\) 20.7086i 0.746771i −0.927676 0.373385i \(-0.878197\pi\)
0.927676 0.373385i \(-0.121803\pi\)
\(770\) 0.910201 0.0328014
\(771\) 0 0
\(772\) 1.42708i 0.0513619i
\(773\) 32.0828i 1.15394i −0.816766 0.576969i \(-0.804235\pi\)
0.816766 0.576969i \(-0.195765\pi\)
\(774\) 0 0
\(775\) 8.44438i 0.303331i
\(776\) −6.20987 −0.222921
\(777\) 0 0
\(778\) −3.29181 −0.118017
\(779\) −3.00336 −0.107607
\(780\) 0 0
\(781\) 2.30324i 0.0824165i
\(782\) −45.1571 −1.61481
\(783\) 0 0
\(784\) 17.5836 0.627987
\(785\) 5.29334i 0.188927i
\(786\) 0 0
\(787\) −6.45348 −0.230042 −0.115021 0.993363i \(-0.536694\pi\)
−0.115021 + 0.993363i \(0.536694\pi\)
\(788\) −4.80134 −0.171041
\(789\) 0 0
\(790\) −13.3221 −0.473978
\(791\) 12.4794i 0.443716i
\(792\) 0 0
\(793\) 33.7775i 1.19947i
\(794\) 17.2399i 0.611820i
\(795\) 0 0
\(796\) −0.506171 −0.0179407
\(797\) 36.9225i 1.30786i 0.756554 + 0.653932i \(0.226882\pi\)
−0.756554 + 0.653932i \(0.773118\pi\)
\(798\) 0 0
\(799\) −3.71155 −0.131305
\(800\) 1.68011i 0.0594007i
\(801\) 0 0
\(802\) 32.8333i 1.15938i
\(803\) −3.33665 −0.117748
\(804\) 0 0
\(805\) −6.51289 −0.229549
\(806\) 62.8910 2.21524
\(807\) 0 0
\(808\) 9.19866 0.323608
\(809\) 22.2596i 0.782604i −0.920262 0.391302i \(-0.872025\pi\)
0.920262 0.391302i \(-0.127975\pi\)
\(810\) 0 0
\(811\) −16.2469 −0.570504 −0.285252 0.958453i \(-0.592077\pi\)
−0.285252 + 0.958453i \(0.592077\pi\)
\(812\) 0.116708 + 2.09407i 0.00409565 + 0.0734875i
\(813\) 0 0
\(814\) 5.59201i 0.196000i
\(815\) 6.07484i 0.212793i
\(816\) 0 0
\(817\) −43.9584 −1.53791
\(818\) −36.7530 −1.28504
\(819\) 0 0
\(820\) 0.209173i 0.00730463i
\(821\) 0.352476 0.0123015 0.00615075 0.999981i \(-0.498042\pi\)
0.00615075 + 0.999981i \(0.498042\pi\)
\(822\) 0 0
\(823\) 15.0021i 0.522939i 0.965212 + 0.261469i \(0.0842070\pi\)
−0.965212 + 0.261469i \(0.915793\pi\)
\(824\) 0.562097i 0.0195816i
\(825\) 0 0
\(826\) 13.0689i 0.454726i
\(827\) 27.4152i 0.953319i −0.879088 0.476659i \(-0.841848\pi\)
0.879088 0.476659i \(-0.158152\pi\)
\(828\) 0 0
\(829\) 50.9219i 1.76859i 0.466929 + 0.884295i \(0.345360\pi\)
−0.466929 + 0.884295i \(0.654640\pi\)
\(830\) 3.52116i 0.122221i
\(831\) 0 0
\(832\) 50.3333 1.74499
\(833\) 36.7013i 1.27163i
\(834\) 0 0
\(835\) 5.01121 0.173420
\(836\) −0.692486 −0.0239501
\(837\) 0 0
\(838\) 27.2663i 0.941897i
\(839\) 37.5371i 1.29592i −0.761673 0.647962i \(-0.775622\pi\)
0.761673 0.647962i \(-0.224378\pi\)
\(840\) 0 0
\(841\) −28.8204 + 3.22248i −0.993807 + 0.111120i
\(842\) 6.09316 0.209984
\(843\) 0 0
\(844\) 2.09588i 0.0721430i
\(845\) −19.6217 −0.675009
\(846\) 0 0
\(847\) −13.9214 −0.478345
\(848\) 23.5476 0.808630
\(849\) 0 0
\(850\) 9.01121 0.309082
\(851\) 40.0133i 1.37164i
\(852\) 0 0
\(853\) 0.942449i 0.0322688i −0.999870 0.0161344i \(-0.994864\pi\)
0.999870 0.0161344i \(-0.00513597\pi\)
\(854\) −10.0224 −0.342960
\(855\) 0 0
\(856\) 38.1516i 1.30400i
\(857\) 2.66335 0.0909783 0.0454891 0.998965i \(-0.485515\pi\)
0.0454891 + 0.998965i \(0.485515\pi\)
\(858\) 0 0
\(859\) 22.9636i 0.783508i −0.920070 0.391754i \(-0.871868\pi\)
0.920070 0.391754i \(-0.128132\pi\)
\(860\) 3.06154i 0.104398i
\(861\) 0 0
\(862\) 15.9695i 0.543924i
\(863\) 13.7485 0.468005 0.234003 0.972236i \(-0.424818\pi\)
0.234003 + 0.972236i \(0.424818\pi\)
\(864\) 0 0
\(865\) −8.31087 −0.282578
\(866\) 15.3928 0.523069
\(867\) 0 0
\(868\) 3.28877i 0.111628i
\(869\) −5.48711 −0.186138
\(870\) 0 0
\(871\) 51.4679 1.74392
\(872\) 33.3221i 1.12843i
\(873\) 0 0
\(874\) −28.1156 −0.951024
\(875\) 1.29966 0.0439367
\(876\) 0 0
\(877\) −42.1313 −1.42267 −0.711336 0.702852i \(-0.751910\pi\)
−0.711336 + 0.702852i \(0.751910\pi\)
\(878\) 38.5088i 1.29961i
\(879\) 0 0
\(880\) 1.77820i 0.0599432i
\(881\) 13.1232i 0.442131i −0.975259 0.221065i \(-0.929047\pi\)
0.975259 0.221065i \(-0.0709535\pi\)
\(882\) 0 0
\(883\) −49.5465 −1.66737 −0.833687 0.552238i \(-0.813774\pi\)
−0.833687 + 0.552238i \(0.813774\pi\)
\(884\) 11.8278i 0.397812i
\(885\) 0 0
\(886\) −4.28060 −0.143810
\(887\) 3.43767i 0.115426i −0.998333 0.0577129i \(-0.981619\pi\)
0.998333 0.0577129i \(-0.0183808\pi\)
\(888\) 0 0
\(889\) 7.89526i 0.264798i
\(890\) 12.6217 0.423082
\(891\) 0 0
\(892\) 0.895633 0.0299880
\(893\) −2.31087 −0.0773304
\(894\) 0 0
\(895\) 6.59933 0.220591
\(896\) 10.5677i 0.353041i
\(897\) 0 0
\(898\) −37.7340 −1.25920
\(899\) 45.4039 2.53048i 1.51431 0.0843961i
\(900\) 0 0
\(901\) 49.1497i 1.63741i
\(902\) 0.488851i 0.0162770i
\(903\) 0 0
\(904\) 28.7935 0.957657
\(905\) 3.48711 0.115916
\(906\) 0 0
\(907\) 3.44971i 0.114546i 0.998359 + 0.0572729i \(0.0182405\pi\)
−0.998359 + 0.0572729i \(0.981759\pi\)
\(908\) 7.14920 0.237255
\(909\) 0 0
\(910\) 9.67948i 0.320872i
\(911\) 30.8709i 1.02280i 0.859343 + 0.511399i \(0.170873\pi\)
−0.859343 + 0.511399i \(0.829127\pi\)
\(912\) 0 0
\(913\) 1.45030i 0.0479978i
\(914\) 18.9536i 0.626929i
\(915\) 0 0
\(916\) 0.0964580i 0.00318706i
\(917\) 23.5549i 0.777852i
\(918\) 0 0
\(919\) −49.5768 −1.63539 −0.817694 0.575654i \(-0.804748\pi\)
−0.817694 + 0.575654i \(0.804748\pi\)
\(920\) 15.0271i 0.495428i
\(921\) 0 0
\(922\) −29.2435 −0.963083
\(923\) −24.4937 −0.806220
\(924\) 0 0
\(925\) 7.98476i 0.262537i
\(926\) 13.0879i 0.430096i
\(927\) 0 0
\(928\) 9.03363 0.503467i 0.296543 0.0165271i
\(929\) −58.0897 −1.90586 −0.952930 0.303190i \(-0.901948\pi\)
−0.952930 + 0.303190i \(0.901948\pi\)
\(930\) 0 0
\(931\) 22.8509i 0.748908i
\(932\) 4.80134 0.157273
\(933\) 0 0
\(934\) 5.68128 0.185897
\(935\) 3.71155 0.121381
\(936\) 0 0
\(937\) 54.9550 1.79530 0.897651 0.440706i \(-0.145272\pi\)
0.897651 + 0.440706i \(0.145272\pi\)
\(938\) 15.2715i 0.498632i
\(939\) 0 0
\(940\) 0.160944i 0.00524940i
\(941\) −43.6924 −1.42433 −0.712165 0.702012i \(-0.752285\pi\)
−0.712165 + 0.702012i \(0.752285\pi\)
\(942\) 0 0
\(943\) 3.49794i 0.113909i
\(944\) −25.5319 −0.830994
\(945\) 0 0
\(946\) 7.15502i 0.232630i
\(947\) 13.9279i 0.452596i −0.974058 0.226298i \(-0.927338\pi\)
0.974058 0.226298i \(-0.0726623\pi\)
\(948\) 0 0
\(949\) 35.4834i 1.15184i
\(950\) 5.61054 0.182030
\(951\) 0 0
\(952\) −26.9326 −0.872891
\(953\) 12.3525 0.400136 0.200068 0.979782i \(-0.435884\pi\)
0.200068 + 0.979782i \(0.435884\pi\)
\(954\) 0 0
\(955\) 2.68540i 0.0868975i
\(956\) −5.90684 −0.191041
\(957\) 0 0
\(958\) 36.5275 1.18015
\(959\) 17.1564i 0.554009i
\(960\) 0 0
\(961\) −40.3075 −1.30024
\(962\) 59.4679 1.91732
\(963\) 0 0
\(964\) 0.599328 0.0193031
\(965\) 4.76228i 0.153303i
\(966\) 0 0
\(967\) 26.5080i 0.852439i −0.904620 0.426219i \(-0.859845\pi\)
0.904620 0.426219i \(-0.140155\pi\)
\(968\) 32.1206i 1.03240i
\(969\) 0 0
\(970\) 2.70034 0.0867026
\(971\) 22.2656i 0.714536i 0.934002 + 0.357268i \(0.116292\pi\)
−0.934002 + 0.357268i \(0.883708\pi\)
\(972\) 0 0
\(973\) −18.9742 −0.608286
\(974\) 25.4588i 0.815753i
\(975\) 0 0
\(976\) 19.5802i 0.626746i
\(977\) 18.0864 0.578636 0.289318 0.957233i \(-0.406571\pi\)
0.289318 + 0.957233i \(0.406571\pi\)
\(978\) 0 0
\(979\) 5.19866 0.166150
\(980\) 1.59148 0.0508379
\(981\) 0 0
\(982\) 47.4758 1.51501
\(983\) 21.8894i 0.698165i −0.937092 0.349082i \(-0.886493\pi\)
0.937092 0.349082i \(-0.113507\pi\)
\(984\) 0 0
\(985\) 16.0224 0.510517
\(986\) −2.70034 48.4517i −0.0859962 1.54302i
\(987\) 0 0
\(988\) 7.36420i 0.234286i
\(989\) 51.1973i 1.62798i
\(990\) 0 0
\(991\) −14.8878 −0.472926 −0.236463 0.971640i \(-0.575988\pi\)
−0.236463 + 0.971640i \(0.575988\pi\)
\(992\) −14.1874 −0.450452
\(993\) 0 0
\(994\) 7.26774i 0.230519i
\(995\) 1.68913 0.0535489
\(996\) 0 0
\(997\) 38.4735i 1.21847i −0.792991 0.609234i \(-0.791477\pi\)
0.792991 0.609234i \(-0.208523\pi\)
\(998\) 41.0332i 1.29888i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.d.b.811.5 6
3.2 odd 2 145.2.c.b.86.2 6
12.11 even 2 2320.2.g.i.1681.4 6
15.2 even 4 725.2.d.c.724.9 12
15.8 even 4 725.2.d.c.724.4 12
15.14 odd 2 725.2.c.e.376.5 6
29.28 even 2 inner 1305.2.d.b.811.2 6
87.17 even 4 4205.2.a.m.1.2 6
87.41 even 4 4205.2.a.m.1.5 6
87.86 odd 2 145.2.c.b.86.5 yes 6
348.347 even 2 2320.2.g.i.1681.3 6
435.173 even 4 725.2.d.c.724.10 12
435.347 even 4 725.2.d.c.724.3 12
435.434 odd 2 725.2.c.e.376.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.c.b.86.2 6 3.2 odd 2
145.2.c.b.86.5 yes 6 87.86 odd 2
725.2.c.e.376.2 6 435.434 odd 2
725.2.c.e.376.5 6 15.14 odd 2
725.2.d.c.724.3 12 435.347 even 4
725.2.d.c.724.4 12 15.8 even 4
725.2.d.c.724.9 12 15.2 even 4
725.2.d.c.724.10 12 435.173 even 4
1305.2.d.b.811.2 6 29.28 even 2 inner
1305.2.d.b.811.5 6 1.1 even 1 trivial
2320.2.g.i.1681.3 6 348.347 even 2
2320.2.g.i.1681.4 6 12.11 even 2
4205.2.a.m.1.2 6 87.17 even 4
4205.2.a.m.1.5 6 87.41 even 4