Properties

Label 1305.2.d
Level $1305$
Weight $2$
Character orbit 1305.d
Rep. character $\chi_{1305}(811,\cdot)$
Character field $\Q$
Dimension $50$
Newform subspaces $6$
Sturm bound $360$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(360\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).

Total New Old
Modular forms 188 50 138
Cusp forms 172 50 122
Eisenstein series 16 0 16

Trace form

\( 50 q - 46 q^{4} - 2 q^{5} - 4 q^{7} + 4 q^{13} + 46 q^{16} + 6 q^{20} + 24 q^{22} + 28 q^{23} + 50 q^{25} - 4 q^{28} - 10 q^{29} + 4 q^{34} - 12 q^{35} + 8 q^{38} + 10 q^{49} - 92 q^{52} + 36 q^{53} + 8 q^{58}+ \cdots - 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1305.2.d.a 1305.d 29.b $4$ $10.420$ \(\Q(\sqrt{-2}, \sqrt{3})\) None 145.2.c.a \(0\) \(0\) \(4\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{2}q^{4}+q^{5}+(-1+\beta _{2}+\cdots)q^{7}+\cdots\)
1305.2.d.b 1305.d 29.b $6$ $10.420$ 6.0.16516096.1 None 145.2.c.b \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{2})q^{4}-q^{5}-\beta _{2}q^{7}+\cdots\)
1305.2.d.c 1305.d 29.b $10$ $10.420$ 10.0.\(\cdots\).1 None 435.2.d.b \(0\) \(0\) \(-10\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{2})q^{4}-q^{5}+(1+\beta _{2}+\cdots)q^{7}+\cdots\)
1305.2.d.d 1305.d 29.b $10$ $10.420$ 10.0.\(\cdots\).1 None 435.2.d.a \(0\) \(0\) \(10\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{2})q^{4}+q^{5}-\beta _{5}q^{7}+\cdots\)
1305.2.d.e 1305.d 29.b $10$ $10.420$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 1305.2.d.e \(0\) \(0\) \(-10\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{2})q^{4}-q^{5}+\beta _{7}q^{7}+\cdots\)
1305.2.d.f 1305.d 29.b $10$ $10.420$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 1305.2.d.e \(0\) \(0\) \(10\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{2})q^{4}+q^{5}+\beta _{7}q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(261, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)