Properties

Label 2320.2.a.q.1.2
Level $2320$
Weight $2$
Character 2320.1
Self dual yes
Analytic conductor $18.525$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2320,2,Mod(1,2320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2320.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2320.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,1,0,3,0,1,0,6,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5252932689\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.469.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 290)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.16425\) of defining polynomial
Character \(\chi\) \(=\) 2320.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.683969 q^{3} +1.00000 q^{5} -2.16425 q^{7} -2.53219 q^{9} +4.32850 q^{11} +5.64453 q^{13} -0.683969 q^{15} -4.16425 q^{17} +1.36794 q^{19} +1.48028 q^{21} +0.683969 q^{23} +1.00000 q^{25} +3.78384 q^{27} +1.00000 q^{29} -7.86068 q^{31} -2.96056 q^{33} -2.16425 q^{35} -6.32850 q^{37} -3.86068 q^{39} -2.32850 q^{41} +10.8212 q^{43} -2.53219 q^{45} +8.00000 q^{47} -2.31603 q^{49} +2.84822 q^{51} +8.49274 q^{53} +4.32850 q^{55} -0.935628 q^{57} -2.27659 q^{59} +2.68397 q^{61} +5.48028 q^{63} +5.64453 q^{65} +2.73588 q^{67} -0.467814 q^{69} -2.73588 q^{71} +15.2286 q^{73} -0.683969 q^{75} -9.36794 q^{77} +15.0374 q^{79} +5.00853 q^{81} +6.63206 q^{83} -4.16425 q^{85} -0.683969 q^{87} -5.28905 q^{89} -12.2162 q^{91} +5.37646 q^{93} +1.36794 q^{95} +0.987535 q^{97} -10.9606 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} + 3 q^{5} + q^{7} + 6 q^{9} - 2 q^{11} + 5 q^{13} + q^{15} - 5 q^{17} - 2 q^{19} - q^{23} + 3 q^{25} + 28 q^{27} + 3 q^{29} + 5 q^{31} + q^{35} - 4 q^{37} + 17 q^{39} + 8 q^{41} - 5 q^{43}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.683969 −0.394890 −0.197445 0.980314i \(-0.563264\pi\)
−0.197445 + 0.980314i \(0.563264\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −2.16425 −0.818009 −0.409004 0.912532i \(-0.634124\pi\)
−0.409004 + 0.912532i \(0.634124\pi\)
\(8\) 0 0
\(9\) −2.53219 −0.844062
\(10\) 0 0
\(11\) 4.32850 1.30509 0.652545 0.757750i \(-0.273701\pi\)
0.652545 + 0.757750i \(0.273701\pi\)
\(12\) 0 0
\(13\) 5.64453 1.56551 0.782755 0.622330i \(-0.213814\pi\)
0.782755 + 0.622330i \(0.213814\pi\)
\(14\) 0 0
\(15\) −0.683969 −0.176600
\(16\) 0 0
\(17\) −4.16425 −1.00998 −0.504989 0.863126i \(-0.668504\pi\)
−0.504989 + 0.863126i \(0.668504\pi\)
\(18\) 0 0
\(19\) 1.36794 0.313827 0.156913 0.987612i \(-0.449846\pi\)
0.156913 + 0.987612i \(0.449846\pi\)
\(20\) 0 0
\(21\) 1.48028 0.323023
\(22\) 0 0
\(23\) 0.683969 0.142617 0.0713087 0.997454i \(-0.477282\pi\)
0.0713087 + 0.997454i \(0.477282\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 3.78384 0.728201
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −7.86068 −1.41182 −0.705910 0.708301i \(-0.749462\pi\)
−0.705910 + 0.708301i \(0.749462\pi\)
\(32\) 0 0
\(33\) −2.96056 −0.515367
\(34\) 0 0
\(35\) −2.16425 −0.365825
\(36\) 0 0
\(37\) −6.32850 −1.04040 −0.520199 0.854045i \(-0.674142\pi\)
−0.520199 + 0.854045i \(0.674142\pi\)
\(38\) 0 0
\(39\) −3.86068 −0.618204
\(40\) 0 0
\(41\) −2.32850 −0.363650 −0.181825 0.983331i \(-0.558200\pi\)
−0.181825 + 0.983331i \(0.558200\pi\)
\(42\) 0 0
\(43\) 10.8212 1.65022 0.825112 0.564969i \(-0.191112\pi\)
0.825112 + 0.564969i \(0.191112\pi\)
\(44\) 0 0
\(45\) −2.53219 −0.377476
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) −2.31603 −0.330862
\(50\) 0 0
\(51\) 2.84822 0.398830
\(52\) 0 0
\(53\) 8.49274 1.16657 0.583284 0.812268i \(-0.301767\pi\)
0.583284 + 0.812268i \(0.301767\pi\)
\(54\) 0 0
\(55\) 4.32850 0.583654
\(56\) 0 0
\(57\) −0.935628 −0.123927
\(58\) 0 0
\(59\) −2.27659 −0.296387 −0.148193 0.988958i \(-0.547346\pi\)
−0.148193 + 0.988958i \(0.547346\pi\)
\(60\) 0 0
\(61\) 2.68397 0.343647 0.171824 0.985128i \(-0.445034\pi\)
0.171824 + 0.985128i \(0.445034\pi\)
\(62\) 0 0
\(63\) 5.48028 0.690450
\(64\) 0 0
\(65\) 5.64453 0.700117
\(66\) 0 0
\(67\) 2.73588 0.334241 0.167120 0.985937i \(-0.446553\pi\)
0.167120 + 0.985937i \(0.446553\pi\)
\(68\) 0 0
\(69\) −0.467814 −0.0563182
\(70\) 0 0
\(71\) −2.73588 −0.324689 −0.162344 0.986734i \(-0.551906\pi\)
−0.162344 + 0.986734i \(0.551906\pi\)
\(72\) 0 0
\(73\) 15.2286 1.78238 0.891188 0.453635i \(-0.149873\pi\)
0.891188 + 0.453635i \(0.149873\pi\)
\(74\) 0 0
\(75\) −0.683969 −0.0789780
\(76\) 0 0
\(77\) −9.36794 −1.06758
\(78\) 0 0
\(79\) 15.0374 1.69184 0.845920 0.533311i \(-0.179052\pi\)
0.845920 + 0.533311i \(0.179052\pi\)
\(80\) 0 0
\(81\) 5.00853 0.556503
\(82\) 0 0
\(83\) 6.63206 0.727963 0.363982 0.931406i \(-0.381417\pi\)
0.363982 + 0.931406i \(0.381417\pi\)
\(84\) 0 0
\(85\) −4.16425 −0.451676
\(86\) 0 0
\(87\) −0.683969 −0.0733292
\(88\) 0 0
\(89\) −5.28905 −0.560639 −0.280319 0.959907i \(-0.590440\pi\)
−0.280319 + 0.959907i \(0.590440\pi\)
\(90\) 0 0
\(91\) −12.2162 −1.28060
\(92\) 0 0
\(93\) 5.37646 0.557513
\(94\) 0 0
\(95\) 1.36794 0.140348
\(96\) 0 0
\(97\) 0.987535 0.100269 0.0501345 0.998742i \(-0.484035\pi\)
0.0501345 + 0.998742i \(0.484035\pi\)
\(98\) 0 0
\(99\) −10.9606 −1.10158
\(100\) 0 0
\(101\) 12.7089 1.26458 0.632291 0.774731i \(-0.282115\pi\)
0.632291 + 0.774731i \(0.282115\pi\)
\(102\) 0 0
\(103\) −9.92112 −0.977557 −0.488778 0.872408i \(-0.662557\pi\)
−0.488778 + 0.872408i \(0.662557\pi\)
\(104\) 0 0
\(105\) 1.48028 0.144460
\(106\) 0 0
\(107\) 12.1038 1.17012 0.585060 0.810990i \(-0.301071\pi\)
0.585060 + 0.810990i \(0.301071\pi\)
\(108\) 0 0
\(109\) 18.9855 1.81848 0.909240 0.416272i \(-0.136664\pi\)
0.909240 + 0.416272i \(0.136664\pi\)
\(110\) 0 0
\(111\) 4.32850 0.410843
\(112\) 0 0
\(113\) 3.72341 0.350269 0.175135 0.984545i \(-0.443964\pi\)
0.175135 + 0.984545i \(0.443964\pi\)
\(114\) 0 0
\(115\) 0.683969 0.0637805
\(116\) 0 0
\(117\) −14.2930 −1.32139
\(118\) 0 0
\(119\) 9.01247 0.826171
\(120\) 0 0
\(121\) 7.73588 0.703262
\(122\) 0 0
\(123\) 1.59262 0.143602
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −2.73588 −0.242770 −0.121385 0.992606i \(-0.538734\pi\)
−0.121385 + 0.992606i \(0.538734\pi\)
\(128\) 0 0
\(129\) −7.40139 −0.651656
\(130\) 0 0
\(131\) −16.4323 −1.43570 −0.717849 0.696199i \(-0.754873\pi\)
−0.717849 + 0.696199i \(0.754873\pi\)
\(132\) 0 0
\(133\) −2.96056 −0.256713
\(134\) 0 0
\(135\) 3.78384 0.325661
\(136\) 0 0
\(137\) 4.38040 0.374243 0.187122 0.982337i \(-0.440084\pi\)
0.187122 + 0.982337i \(0.440084\pi\)
\(138\) 0 0
\(139\) 2.38893 0.202626 0.101313 0.994855i \(-0.467696\pi\)
0.101313 + 0.994855i \(0.467696\pi\)
\(140\) 0 0
\(141\) −5.47175 −0.460805
\(142\) 0 0
\(143\) 24.4323 2.04313
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) 0 0
\(147\) 1.58409 0.130654
\(148\) 0 0
\(149\) 18.1038 1.48312 0.741561 0.670885i \(-0.234086\pi\)
0.741561 + 0.670885i \(0.234086\pi\)
\(150\) 0 0
\(151\) −0.710947 −0.0578560 −0.0289280 0.999581i \(-0.509209\pi\)
−0.0289280 + 0.999581i \(0.509209\pi\)
\(152\) 0 0
\(153\) 10.5447 0.852485
\(154\) 0 0
\(155\) −7.86068 −0.631385
\(156\) 0 0
\(157\) 22.6570 1.80822 0.904112 0.427295i \(-0.140533\pi\)
0.904112 + 0.427295i \(0.140533\pi\)
\(158\) 0 0
\(159\) −5.80877 −0.460666
\(160\) 0 0
\(161\) −1.48028 −0.116662
\(162\) 0 0
\(163\) −18.5781 −1.45515 −0.727575 0.686028i \(-0.759353\pi\)
−0.727575 + 0.686028i \(0.759353\pi\)
\(164\) 0 0
\(165\) −2.96056 −0.230479
\(166\) 0 0
\(167\) 5.83575 0.451584 0.225792 0.974176i \(-0.427503\pi\)
0.225792 + 0.974176i \(0.427503\pi\)
\(168\) 0 0
\(169\) 18.8607 1.45082
\(170\) 0 0
\(171\) −3.46387 −0.264889
\(172\) 0 0
\(173\) −18.3015 −1.39144 −0.695719 0.718314i \(-0.744914\pi\)
−0.695719 + 0.718314i \(0.744914\pi\)
\(174\) 0 0
\(175\) −2.16425 −0.163602
\(176\) 0 0
\(177\) 1.55712 0.117040
\(178\) 0 0
\(179\) −23.0374 −1.72190 −0.860948 0.508693i \(-0.830129\pi\)
−0.860948 + 0.508693i \(0.830129\pi\)
\(180\) 0 0
\(181\) −26.3784 −1.96069 −0.980344 0.197296i \(-0.936784\pi\)
−0.980344 + 0.197296i \(0.936784\pi\)
\(182\) 0 0
\(183\) −1.83575 −0.135703
\(184\) 0 0
\(185\) −6.32850 −0.465280
\(186\) 0 0
\(187\) −18.0249 −1.31811
\(188\) 0 0
\(189\) −8.18918 −0.595675
\(190\) 0 0
\(191\) −1.45330 −0.105157 −0.0525786 0.998617i \(-0.516744\pi\)
−0.0525786 + 0.998617i \(0.516744\pi\)
\(192\) 0 0
\(193\) −11.5656 −0.832513 −0.416257 0.909247i \(-0.636658\pi\)
−0.416257 + 0.909247i \(0.636658\pi\)
\(194\) 0 0
\(195\) −3.86068 −0.276469
\(196\) 0 0
\(197\) 13.9645 0.994929 0.497465 0.867484i \(-0.334264\pi\)
0.497465 + 0.867484i \(0.334264\pi\)
\(198\) 0 0
\(199\) 12.3285 0.873944 0.436972 0.899475i \(-0.356051\pi\)
0.436972 + 0.899475i \(0.356051\pi\)
\(200\) 0 0
\(201\) −1.87126 −0.131988
\(202\) 0 0
\(203\) −2.16425 −0.151900
\(204\) 0 0
\(205\) −2.32850 −0.162629
\(206\) 0 0
\(207\) −1.73194 −0.120378
\(208\) 0 0
\(209\) 5.92112 0.409572
\(210\) 0 0
\(211\) −4.32850 −0.297986 −0.148993 0.988838i \(-0.547603\pi\)
−0.148993 + 0.988838i \(0.547603\pi\)
\(212\) 0 0
\(213\) 1.87126 0.128216
\(214\) 0 0
\(215\) 10.8212 0.738002
\(216\) 0 0
\(217\) 17.0125 1.15488
\(218\) 0 0
\(219\) −10.4159 −0.703842
\(220\) 0 0
\(221\) −23.5052 −1.58113
\(222\) 0 0
\(223\) 11.4198 0.764729 0.382365 0.924011i \(-0.375110\pi\)
0.382365 + 0.924011i \(0.375110\pi\)
\(224\) 0 0
\(225\) −2.53219 −0.168812
\(226\) 0 0
\(227\) 28.2745 1.87665 0.938324 0.345758i \(-0.112378\pi\)
0.938324 + 0.345758i \(0.112378\pi\)
\(228\) 0 0
\(229\) 11.4533 0.756855 0.378428 0.925631i \(-0.376465\pi\)
0.378428 + 0.925631i \(0.376465\pi\)
\(230\) 0 0
\(231\) 6.40738 0.421575
\(232\) 0 0
\(233\) −0.0788848 −0.00516792 −0.00258396 0.999997i \(-0.500823\pi\)
−0.00258396 + 0.999997i \(0.500823\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 0 0
\(237\) −10.2851 −0.668090
\(238\) 0 0
\(239\) −10.9606 −0.708980 −0.354490 0.935060i \(-0.615345\pi\)
−0.354490 + 0.935060i \(0.615345\pi\)
\(240\) 0 0
\(241\) 17.3659 1.11864 0.559318 0.828953i \(-0.311063\pi\)
0.559318 + 0.828953i \(0.311063\pi\)
\(242\) 0 0
\(243\) −14.7772 −0.947959
\(244\) 0 0
\(245\) −2.31603 −0.147966
\(246\) 0 0
\(247\) 7.72136 0.491299
\(248\) 0 0
\(249\) −4.53613 −0.287465
\(250\) 0 0
\(251\) 26.0249 1.64268 0.821340 0.570440i \(-0.193227\pi\)
0.821340 + 0.570440i \(0.193227\pi\)
\(252\) 0 0
\(253\) 2.96056 0.186129
\(254\) 0 0
\(255\) 2.84822 0.178362
\(256\) 0 0
\(257\) −10.3285 −0.644274 −0.322137 0.946693i \(-0.604401\pi\)
−0.322137 + 0.946693i \(0.604401\pi\)
\(258\) 0 0
\(259\) 13.6964 0.851055
\(260\) 0 0
\(261\) −2.53219 −0.156738
\(262\) 0 0
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) 0 0
\(265\) 8.49274 0.521705
\(266\) 0 0
\(267\) 3.61755 0.221390
\(268\) 0 0
\(269\) −13.8607 −0.845101 −0.422550 0.906339i \(-0.638865\pi\)
−0.422550 + 0.906339i \(0.638865\pi\)
\(270\) 0 0
\(271\) −6.73588 −0.409175 −0.204588 0.978848i \(-0.565585\pi\)
−0.204588 + 0.978848i \(0.565585\pi\)
\(272\) 0 0
\(273\) 8.35547 0.505696
\(274\) 0 0
\(275\) 4.32850 0.261018
\(276\) 0 0
\(277\) 17.3929 1.04504 0.522518 0.852628i \(-0.324993\pi\)
0.522518 + 0.852628i \(0.324993\pi\)
\(278\) 0 0
\(279\) 19.9047 1.19166
\(280\) 0 0
\(281\) −11.9396 −0.712255 −0.356127 0.934437i \(-0.615903\pi\)
−0.356127 + 0.934437i \(0.615903\pi\)
\(282\) 0 0
\(283\) 23.4967 1.39673 0.698366 0.715740i \(-0.253911\pi\)
0.698366 + 0.715740i \(0.253911\pi\)
\(284\) 0 0
\(285\) −0.935628 −0.0554218
\(286\) 0 0
\(287\) 5.03944 0.297469
\(288\) 0 0
\(289\) 0.340961 0.0200565
\(290\) 0 0
\(291\) −0.675443 −0.0395952
\(292\) 0 0
\(293\) 5.51373 0.322116 0.161058 0.986945i \(-0.448509\pi\)
0.161058 + 0.986945i \(0.448509\pi\)
\(294\) 0 0
\(295\) −2.27659 −0.132548
\(296\) 0 0
\(297\) 16.3784 0.950369
\(298\) 0 0
\(299\) 3.86068 0.223269
\(300\) 0 0
\(301\) −23.4198 −1.34990
\(302\) 0 0
\(303\) −8.69249 −0.499371
\(304\) 0 0
\(305\) 2.68397 0.153684
\(306\) 0 0
\(307\) 4.65699 0.265789 0.132894 0.991130i \(-0.457573\pi\)
0.132894 + 0.991130i \(0.457573\pi\)
\(308\) 0 0
\(309\) 6.78574 0.386027
\(310\) 0 0
\(311\) 4.35547 0.246976 0.123488 0.992346i \(-0.460592\pi\)
0.123488 + 0.992346i \(0.460592\pi\)
\(312\) 0 0
\(313\) 1.34301 0.0759113 0.0379557 0.999279i \(-0.487915\pi\)
0.0379557 + 0.999279i \(0.487915\pi\)
\(314\) 0 0
\(315\) 5.48028 0.308779
\(316\) 0 0
\(317\) −11.3679 −0.638487 −0.319244 0.947673i \(-0.603429\pi\)
−0.319244 + 0.947673i \(0.603429\pi\)
\(318\) 0 0
\(319\) 4.32850 0.242349
\(320\) 0 0
\(321\) −8.27864 −0.462068
\(322\) 0 0
\(323\) −5.69643 −0.316958
\(324\) 0 0
\(325\) 5.64453 0.313102
\(326\) 0 0
\(327\) −12.9855 −0.718099
\(328\) 0 0
\(329\) −17.3140 −0.954551
\(330\) 0 0
\(331\) −12.3285 −0.677635 −0.338818 0.940852i \(-0.610027\pi\)
−0.338818 + 0.940852i \(0.610027\pi\)
\(332\) 0 0
\(333\) 16.0249 0.878161
\(334\) 0 0
\(335\) 2.73588 0.149477
\(336\) 0 0
\(337\) −17.8067 −0.969994 −0.484997 0.874516i \(-0.661179\pi\)
−0.484997 + 0.874516i \(0.661179\pi\)
\(338\) 0 0
\(339\) −2.54670 −0.138318
\(340\) 0 0
\(341\) −34.0249 −1.84255
\(342\) 0 0
\(343\) 20.1622 1.08866
\(344\) 0 0
\(345\) −0.467814 −0.0251862
\(346\) 0 0
\(347\) −23.2891 −1.25022 −0.625111 0.780536i \(-0.714946\pi\)
−0.625111 + 0.780536i \(0.714946\pi\)
\(348\) 0 0
\(349\) −23.6964 −1.26844 −0.634221 0.773152i \(-0.718679\pi\)
−0.634221 + 0.773152i \(0.718679\pi\)
\(350\) 0 0
\(351\) 21.3580 1.14001
\(352\) 0 0
\(353\) −6.43231 −0.342357 −0.171179 0.985240i \(-0.554758\pi\)
−0.171179 + 0.985240i \(0.554758\pi\)
\(354\) 0 0
\(355\) −2.73588 −0.145205
\(356\) 0 0
\(357\) −6.16425 −0.326247
\(358\) 0 0
\(359\) 12.3555 0.652097 0.326048 0.945353i \(-0.394283\pi\)
0.326048 + 0.945353i \(0.394283\pi\)
\(360\) 0 0
\(361\) −17.1287 −0.901513
\(362\) 0 0
\(363\) −5.29110 −0.277711
\(364\) 0 0
\(365\) 15.2286 0.797102
\(366\) 0 0
\(367\) −18.4743 −0.964350 −0.482175 0.876075i \(-0.660153\pi\)
−0.482175 + 0.876075i \(0.660153\pi\)
\(368\) 0 0
\(369\) 5.89619 0.306943
\(370\) 0 0
\(371\) −18.3804 −0.954263
\(372\) 0 0
\(373\) 2.57163 0.133154 0.0665769 0.997781i \(-0.478792\pi\)
0.0665769 + 0.997781i \(0.478792\pi\)
\(374\) 0 0
\(375\) −0.683969 −0.0353200
\(376\) 0 0
\(377\) 5.64453 0.290708
\(378\) 0 0
\(379\) −23.7214 −1.21848 −0.609242 0.792984i \(-0.708526\pi\)
−0.609242 + 0.792984i \(0.708526\pi\)
\(380\) 0 0
\(381\) 1.87126 0.0958673
\(382\) 0 0
\(383\) −5.55712 −0.283955 −0.141978 0.989870i \(-0.545346\pi\)
−0.141978 + 0.989870i \(0.545346\pi\)
\(384\) 0 0
\(385\) −9.36794 −0.477434
\(386\) 0 0
\(387\) −27.4014 −1.39289
\(388\) 0 0
\(389\) 27.4718 1.39287 0.696437 0.717618i \(-0.254768\pi\)
0.696437 + 0.717618i \(0.254768\pi\)
\(390\) 0 0
\(391\) −2.84822 −0.144041
\(392\) 0 0
\(393\) 11.2392 0.566942
\(394\) 0 0
\(395\) 15.0374 0.756613
\(396\) 0 0
\(397\) −14.5716 −0.731329 −0.365665 0.930747i \(-0.619158\pi\)
−0.365665 + 0.930747i \(0.619158\pi\)
\(398\) 0 0
\(399\) 2.02493 0.101373
\(400\) 0 0
\(401\) −10.0270 −0.500723 −0.250362 0.968152i \(-0.580550\pi\)
−0.250362 + 0.968152i \(0.580550\pi\)
\(402\) 0 0
\(403\) −44.3698 −2.21022
\(404\) 0 0
\(405\) 5.00853 0.248876
\(406\) 0 0
\(407\) −27.3929 −1.35781
\(408\) 0 0
\(409\) −39.0893 −1.93284 −0.966421 0.256965i \(-0.917278\pi\)
−0.966421 + 0.256965i \(0.917278\pi\)
\(410\) 0 0
\(411\) −2.99606 −0.147785
\(412\) 0 0
\(413\) 4.92710 0.242447
\(414\) 0 0
\(415\) 6.63206 0.325555
\(416\) 0 0
\(417\) −1.63395 −0.0800151
\(418\) 0 0
\(419\) −31.8607 −1.55650 −0.778248 0.627957i \(-0.783891\pi\)
−0.778248 + 0.627957i \(0.783891\pi\)
\(420\) 0 0
\(421\) 36.1287 1.76081 0.880404 0.474225i \(-0.157272\pi\)
0.880404 + 0.474225i \(0.157272\pi\)
\(422\) 0 0
\(423\) −20.2575 −0.984953
\(424\) 0 0
\(425\) −4.16425 −0.201996
\(426\) 0 0
\(427\) −5.80877 −0.281106
\(428\) 0 0
\(429\) −16.7109 −0.806812
\(430\) 0 0
\(431\) 9.36794 0.451238 0.225619 0.974216i \(-0.427560\pi\)
0.225619 + 0.974216i \(0.427560\pi\)
\(432\) 0 0
\(433\) −10.8148 −0.519724 −0.259862 0.965646i \(-0.583677\pi\)
−0.259862 + 0.965646i \(0.583677\pi\)
\(434\) 0 0
\(435\) −0.683969 −0.0327938
\(436\) 0 0
\(437\) 0.935628 0.0447571
\(438\) 0 0
\(439\) −29.6964 −1.41733 −0.708667 0.705543i \(-0.750703\pi\)
−0.708667 + 0.705543i \(0.750703\pi\)
\(440\) 0 0
\(441\) 5.86462 0.279268
\(442\) 0 0
\(443\) 23.2621 1.10521 0.552607 0.833442i \(-0.313633\pi\)
0.552607 + 0.833442i \(0.313633\pi\)
\(444\) 0 0
\(445\) −5.28905 −0.250725
\(446\) 0 0
\(447\) −12.3825 −0.585670
\(448\) 0 0
\(449\) −5.72136 −0.270008 −0.135004 0.990845i \(-0.543105\pi\)
−0.135004 + 0.990845i \(0.543105\pi\)
\(450\) 0 0
\(451\) −10.0789 −0.474596
\(452\) 0 0
\(453\) 0.486265 0.0228467
\(454\) 0 0
\(455\) −12.2162 −0.572702
\(456\) 0 0
\(457\) −31.9710 −1.49554 −0.747770 0.663958i \(-0.768875\pi\)
−0.747770 + 0.663958i \(0.768875\pi\)
\(458\) 0 0
\(459\) −15.7569 −0.735468
\(460\) 0 0
\(461\) 6.18918 0.288259 0.144129 0.989559i \(-0.453962\pi\)
0.144129 + 0.989559i \(0.453962\pi\)
\(462\) 0 0
\(463\) 12.0000 0.557687 0.278844 0.960337i \(-0.410049\pi\)
0.278844 + 0.960337i \(0.410049\pi\)
\(464\) 0 0
\(465\) 5.37646 0.249328
\(466\) 0 0
\(467\) 15.4284 0.713940 0.356970 0.934116i \(-0.383810\pi\)
0.356970 + 0.934116i \(0.383810\pi\)
\(468\) 0 0
\(469\) −5.92112 −0.273412
\(470\) 0 0
\(471\) −15.4967 −0.714049
\(472\) 0 0
\(473\) 46.8397 2.15369
\(474\) 0 0
\(475\) 1.36794 0.0627653
\(476\) 0 0
\(477\) −21.5052 −0.984656
\(478\) 0 0
\(479\) −32.0314 −1.46355 −0.731776 0.681545i \(-0.761308\pi\)
−0.731776 + 0.681545i \(0.761308\pi\)
\(480\) 0 0
\(481\) −35.7214 −1.62875
\(482\) 0 0
\(483\) 1.01247 0.0460688
\(484\) 0 0
\(485\) 0.987535 0.0448417
\(486\) 0 0
\(487\) −24.8916 −1.12795 −0.563973 0.825793i \(-0.690728\pi\)
−0.563973 + 0.825793i \(0.690728\pi\)
\(488\) 0 0
\(489\) 12.7069 0.574624
\(490\) 0 0
\(491\) −16.0000 −0.722070 −0.361035 0.932552i \(-0.617576\pi\)
−0.361035 + 0.932552i \(0.617576\pi\)
\(492\) 0 0
\(493\) −4.16425 −0.187548
\(494\) 0 0
\(495\) −10.9606 −0.492640
\(496\) 0 0
\(497\) 5.92112 0.265598
\(498\) 0 0
\(499\) 24.8547 1.11265 0.556324 0.830965i \(-0.312211\pi\)
0.556324 + 0.830965i \(0.312211\pi\)
\(500\) 0 0
\(501\) −3.99147 −0.178326
\(502\) 0 0
\(503\) 19.3929 0.864685 0.432343 0.901709i \(-0.357687\pi\)
0.432343 + 0.901709i \(0.357687\pi\)
\(504\) 0 0
\(505\) 12.7089 0.565539
\(506\) 0 0
\(507\) −12.9001 −0.572915
\(508\) 0 0
\(509\) 17.6715 0.783276 0.391638 0.920119i \(-0.371909\pi\)
0.391638 + 0.920119i \(0.371909\pi\)
\(510\) 0 0
\(511\) −32.9585 −1.45800
\(512\) 0 0
\(513\) 5.17607 0.228529
\(514\) 0 0
\(515\) −9.92112 −0.437177
\(516\) 0 0
\(517\) 34.6280 1.52294
\(518\) 0 0
\(519\) 12.5177 0.549465
\(520\) 0 0
\(521\) −2.31004 −0.101205 −0.0506024 0.998719i \(-0.516114\pi\)
−0.0506024 + 0.998719i \(0.516114\pi\)
\(522\) 0 0
\(523\) 1.36794 0.0598158 0.0299079 0.999553i \(-0.490479\pi\)
0.0299079 + 0.999553i \(0.490479\pi\)
\(524\) 0 0
\(525\) 1.48028 0.0646047
\(526\) 0 0
\(527\) 32.7338 1.42591
\(528\) 0 0
\(529\) −22.5322 −0.979660
\(530\) 0 0
\(531\) 5.76475 0.250169
\(532\) 0 0
\(533\) −13.1433 −0.569298
\(534\) 0 0
\(535\) 12.1038 0.523294
\(536\) 0 0
\(537\) 15.7569 0.679959
\(538\) 0 0
\(539\) −10.0249 −0.431804
\(540\) 0 0
\(541\) 0.717425 0.0308445 0.0154223 0.999881i \(-0.495091\pi\)
0.0154223 + 0.999881i \(0.495091\pi\)
\(542\) 0 0
\(543\) 18.0420 0.774256
\(544\) 0 0
\(545\) 18.9855 0.813249
\(546\) 0 0
\(547\) −31.9460 −1.36591 −0.682957 0.730458i \(-0.739306\pi\)
−0.682957 + 0.730458i \(0.739306\pi\)
\(548\) 0 0
\(549\) −6.79631 −0.290059
\(550\) 0 0
\(551\) 1.36794 0.0582761
\(552\) 0 0
\(553\) −32.5447 −1.38394
\(554\) 0 0
\(555\) 4.32850 0.183734
\(556\) 0 0
\(557\) −3.72341 −0.157766 −0.0788830 0.996884i \(-0.525135\pi\)
−0.0788830 + 0.996884i \(0.525135\pi\)
\(558\) 0 0
\(559\) 61.0808 2.58344
\(560\) 0 0
\(561\) 12.3285 0.520510
\(562\) 0 0
\(563\) −23.2621 −0.980380 −0.490190 0.871616i \(-0.663073\pi\)
−0.490190 + 0.871616i \(0.663073\pi\)
\(564\) 0 0
\(565\) 3.72341 0.156645
\(566\) 0 0
\(567\) −10.8397 −0.455224
\(568\) 0 0
\(569\) 14.2745 0.598420 0.299210 0.954187i \(-0.403277\pi\)
0.299210 + 0.954187i \(0.403277\pi\)
\(570\) 0 0
\(571\) −6.82977 −0.285817 −0.142908 0.989736i \(-0.545645\pi\)
−0.142908 + 0.989736i \(0.545645\pi\)
\(572\) 0 0
\(573\) 0.994013 0.0415255
\(574\) 0 0
\(575\) 0.683969 0.0285235
\(576\) 0 0
\(577\) −42.9500 −1.78803 −0.894016 0.448036i \(-0.852124\pi\)
−0.894016 + 0.448036i \(0.852124\pi\)
\(578\) 0 0
\(579\) 7.91054 0.328751
\(580\) 0 0
\(581\) −14.3534 −0.595480
\(582\) 0 0
\(583\) 36.7608 1.52248
\(584\) 0 0
\(585\) −14.2930 −0.590943
\(586\) 0 0
\(587\) 1.08930 0.0449603 0.0224802 0.999747i \(-0.492844\pi\)
0.0224802 + 0.999747i \(0.492844\pi\)
\(588\) 0 0
\(589\) −10.7529 −0.443067
\(590\) 0 0
\(591\) −9.55128 −0.392887
\(592\) 0 0
\(593\) 7.21017 0.296086 0.148043 0.988981i \(-0.452703\pi\)
0.148043 + 0.988981i \(0.452703\pi\)
\(594\) 0 0
\(595\) 9.01247 0.369475
\(596\) 0 0
\(597\) −8.43231 −0.345112
\(598\) 0 0
\(599\) 42.3179 1.72906 0.864532 0.502578i \(-0.167615\pi\)
0.864532 + 0.502578i \(0.167615\pi\)
\(600\) 0 0
\(601\) −16.6819 −0.680470 −0.340235 0.940340i \(-0.610507\pi\)
−0.340235 + 0.940340i \(0.610507\pi\)
\(602\) 0 0
\(603\) −6.92775 −0.282120
\(604\) 0 0
\(605\) 7.73588 0.314508
\(606\) 0 0
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) 0 0
\(609\) 1.48028 0.0599839
\(610\) 0 0
\(611\) 45.1562 1.82682
\(612\) 0 0
\(613\) 37.1996 1.50248 0.751239 0.660031i \(-0.229457\pi\)
0.751239 + 0.660031i \(0.229457\pi\)
\(614\) 0 0
\(615\) 1.59262 0.0642206
\(616\) 0 0
\(617\) 4.77138 0.192089 0.0960443 0.995377i \(-0.469381\pi\)
0.0960443 + 0.995377i \(0.469381\pi\)
\(618\) 0 0
\(619\) −6.80279 −0.273427 −0.136714 0.990611i \(-0.543654\pi\)
−0.136714 + 0.990611i \(0.543654\pi\)
\(620\) 0 0
\(621\) 2.58803 0.103854
\(622\) 0 0
\(623\) 11.4468 0.458607
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −4.04986 −0.161736
\(628\) 0 0
\(629\) 26.3534 1.05078
\(630\) 0 0
\(631\) −17.0893 −0.680314 −0.340157 0.940369i \(-0.610480\pi\)
−0.340157 + 0.940369i \(0.610480\pi\)
\(632\) 0 0
\(633\) 2.96056 0.117672
\(634\) 0 0
\(635\) −2.73588 −0.108570
\(636\) 0 0
\(637\) −13.0729 −0.517967
\(638\) 0 0
\(639\) 6.92775 0.274058
\(640\) 0 0
\(641\) 11.1433 0.440132 0.220066 0.975485i \(-0.429373\pi\)
0.220066 + 0.975485i \(0.429373\pi\)
\(642\) 0 0
\(643\) 24.9356 0.983365 0.491683 0.870775i \(-0.336382\pi\)
0.491683 + 0.870775i \(0.336382\pi\)
\(644\) 0 0
\(645\) −7.40139 −0.291430
\(646\) 0 0
\(647\) −0.814761 −0.0320316 −0.0160158 0.999872i \(-0.505098\pi\)
−0.0160158 + 0.999872i \(0.505098\pi\)
\(648\) 0 0
\(649\) −9.85420 −0.386811
\(650\) 0 0
\(651\) −11.6360 −0.456051
\(652\) 0 0
\(653\) −29.9959 −1.17383 −0.586915 0.809648i \(-0.699658\pi\)
−0.586915 + 0.809648i \(0.699658\pi\)
\(654\) 0 0
\(655\) −16.4323 −0.642064
\(656\) 0 0
\(657\) −38.5617 −1.50444
\(658\) 0 0
\(659\) −27.6715 −1.07793 −0.538964 0.842329i \(-0.681184\pi\)
−0.538964 + 0.842329i \(0.681184\pi\)
\(660\) 0 0
\(661\) −6.55318 −0.254889 −0.127445 0.991846i \(-0.540677\pi\)
−0.127445 + 0.991846i \(0.540677\pi\)
\(662\) 0 0
\(663\) 16.0768 0.624373
\(664\) 0 0
\(665\) −2.96056 −0.114805
\(666\) 0 0
\(667\) 0.683969 0.0264834
\(668\) 0 0
\(669\) −7.81082 −0.301984
\(670\) 0 0
\(671\) 11.6175 0.448491
\(672\) 0 0
\(673\) −18.9855 −0.731837 −0.365918 0.930647i \(-0.619245\pi\)
−0.365918 + 0.930647i \(0.619245\pi\)
\(674\) 0 0
\(675\) 3.78384 0.145640
\(676\) 0 0
\(677\) 33.6175 1.29203 0.646014 0.763326i \(-0.276435\pi\)
0.646014 + 0.763326i \(0.276435\pi\)
\(678\) 0 0
\(679\) −2.13727 −0.0820209
\(680\) 0 0
\(681\) −19.3389 −0.741069
\(682\) 0 0
\(683\) 18.6819 0.714844 0.357422 0.933943i \(-0.383656\pi\)
0.357422 + 0.933943i \(0.383656\pi\)
\(684\) 0 0
\(685\) 4.38040 0.167367
\(686\) 0 0
\(687\) −7.83370 −0.298874
\(688\) 0 0
\(689\) 47.9375 1.82627
\(690\) 0 0
\(691\) −38.7174 −1.47288 −0.736440 0.676503i \(-0.763495\pi\)
−0.736440 + 0.676503i \(0.763495\pi\)
\(692\) 0 0
\(693\) 23.7214 0.901100
\(694\) 0 0
\(695\) 2.38893 0.0906172
\(696\) 0 0
\(697\) 9.69643 0.367279
\(698\) 0 0
\(699\) 0.0539548 0.00204076
\(700\) 0 0
\(701\) 28.7318 1.08518 0.542592 0.839996i \(-0.317443\pi\)
0.542592 + 0.839996i \(0.317443\pi\)
\(702\) 0 0
\(703\) −8.65699 −0.326505
\(704\) 0 0
\(705\) −5.47175 −0.206078
\(706\) 0 0
\(707\) −27.5052 −1.03444
\(708\) 0 0
\(709\) −47.2102 −1.77302 −0.886508 0.462714i \(-0.846876\pi\)
−0.886508 + 0.462714i \(0.846876\pi\)
\(710\) 0 0
\(711\) −38.0775 −1.42802
\(712\) 0 0
\(713\) −5.37646 −0.201350
\(714\) 0 0
\(715\) 24.4323 0.913717
\(716\) 0 0
\(717\) 7.49668 0.279969
\(718\) 0 0
\(719\) 14.6321 0.545684 0.272842 0.962059i \(-0.412036\pi\)
0.272842 + 0.962059i \(0.412036\pi\)
\(720\) 0 0
\(721\) 21.4718 0.799650
\(722\) 0 0
\(723\) −11.8777 −0.441738
\(724\) 0 0
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) 1.59262 0.0590670 0.0295335 0.999564i \(-0.490598\pi\)
0.0295335 + 0.999564i \(0.490598\pi\)
\(728\) 0 0
\(729\) −4.91842 −0.182164
\(730\) 0 0
\(731\) −45.0623 −1.66669
\(732\) 0 0
\(733\) −12.3036 −0.454443 −0.227221 0.973843i \(-0.572964\pi\)
−0.227221 + 0.973843i \(0.572964\pi\)
\(734\) 0 0
\(735\) 1.58409 0.0584302
\(736\) 0 0
\(737\) 11.8422 0.436214
\(738\) 0 0
\(739\) 25.3140 0.931190 0.465595 0.884998i \(-0.345840\pi\)
0.465595 + 0.884998i \(0.345840\pi\)
\(740\) 0 0
\(741\) −5.28117 −0.194009
\(742\) 0 0
\(743\) 16.6570 0.611086 0.305543 0.952178i \(-0.401162\pi\)
0.305543 + 0.952178i \(0.401162\pi\)
\(744\) 0 0
\(745\) 18.1038 0.663272
\(746\) 0 0
\(747\) −16.7936 −0.614446
\(748\) 0 0
\(749\) −26.1957 −0.957168
\(750\) 0 0
\(751\) 13.3140 0.485834 0.242917 0.970047i \(-0.421896\pi\)
0.242917 + 0.970047i \(0.421896\pi\)
\(752\) 0 0
\(753\) −17.8002 −0.648677
\(754\) 0 0
\(755\) −0.710947 −0.0258740
\(756\) 0 0
\(757\) −20.4572 −0.743531 −0.371766 0.928327i \(-0.621247\pi\)
−0.371766 + 0.928327i \(0.621247\pi\)
\(758\) 0 0
\(759\) −2.02493 −0.0735003
\(760\) 0 0
\(761\) 30.9670 1.12255 0.561277 0.827628i \(-0.310310\pi\)
0.561277 + 0.827628i \(0.310310\pi\)
\(762\) 0 0
\(763\) −41.0893 −1.48753
\(764\) 0 0
\(765\) 10.5447 0.381243
\(766\) 0 0
\(767\) −12.8503 −0.463996
\(768\) 0 0
\(769\) −4.18270 −0.150832 −0.0754160 0.997152i \(-0.524028\pi\)
−0.0754160 + 0.997152i \(0.524028\pi\)
\(770\) 0 0
\(771\) 7.06437 0.254417
\(772\) 0 0
\(773\) 42.0499 1.51243 0.756214 0.654324i \(-0.227047\pi\)
0.756214 + 0.654324i \(0.227047\pi\)
\(774\) 0 0
\(775\) −7.86068 −0.282364
\(776\) 0 0
\(777\) −9.36794 −0.336073
\(778\) 0 0
\(779\) −3.18524 −0.114123
\(780\) 0 0
\(781\) −11.8422 −0.423748
\(782\) 0 0
\(783\) 3.78384 0.135224
\(784\) 0 0
\(785\) 22.6570 0.808663
\(786\) 0 0
\(787\) 33.0524 1.17819 0.589095 0.808063i \(-0.299484\pi\)
0.589095 + 0.808063i \(0.299484\pi\)
\(788\) 0 0
\(789\) −10.9435 −0.389599
\(790\) 0 0
\(791\) −8.05839 −0.286523
\(792\) 0 0
\(793\) 15.1497 0.537983
\(794\) 0 0
\(795\) −5.80877 −0.206016
\(796\) 0 0
\(797\) 11.9041 0.421664 0.210832 0.977522i \(-0.432383\pi\)
0.210832 + 0.977522i \(0.432383\pi\)
\(798\) 0 0
\(799\) −33.3140 −1.17856
\(800\) 0 0
\(801\) 13.3929 0.473214
\(802\) 0 0
\(803\) 65.9170 2.32616
\(804\) 0 0
\(805\) −1.48028 −0.0521730
\(806\) 0 0
\(807\) 9.48028 0.333722
\(808\) 0 0
\(809\) −53.6674 −1.88685 −0.943423 0.331592i \(-0.892414\pi\)
−0.943423 + 0.331592i \(0.892414\pi\)
\(810\) 0 0
\(811\) −47.3034 −1.66105 −0.830524 0.556983i \(-0.811959\pi\)
−0.830524 + 0.556983i \(0.811959\pi\)
\(812\) 0 0
\(813\) 4.60713 0.161579
\(814\) 0 0
\(815\) −18.5781 −0.650763
\(816\) 0 0
\(817\) 14.8028 0.517884
\(818\) 0 0
\(819\) 30.9336 1.08091
\(820\) 0 0
\(821\) 31.3679 1.09475 0.547374 0.836888i \(-0.315627\pi\)
0.547374 + 0.836888i \(0.315627\pi\)
\(822\) 0 0
\(823\) 23.4598 0.817757 0.408878 0.912589i \(-0.365920\pi\)
0.408878 + 0.912589i \(0.365920\pi\)
\(824\) 0 0
\(825\) −2.96056 −0.103073
\(826\) 0 0
\(827\) 13.1788 0.458270 0.229135 0.973395i \(-0.426410\pi\)
0.229135 + 0.973395i \(0.426410\pi\)
\(828\) 0 0
\(829\) −20.2312 −0.702657 −0.351329 0.936252i \(-0.614270\pi\)
−0.351329 + 0.936252i \(0.614270\pi\)
\(830\) 0 0
\(831\) −11.8962 −0.412674
\(832\) 0 0
\(833\) 9.64453 0.334163
\(834\) 0 0
\(835\) 5.83575 0.201955
\(836\) 0 0
\(837\) −29.7436 −1.02809
\(838\) 0 0
\(839\) 33.3638 1.15185 0.575924 0.817503i \(-0.304642\pi\)
0.575924 + 0.817503i \(0.304642\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 8.16630 0.281262
\(844\) 0 0
\(845\) 18.8607 0.648827
\(846\) 0 0
\(847\) −16.7424 −0.575274
\(848\) 0 0
\(849\) −16.0710 −0.551556
\(850\) 0 0
\(851\) −4.32850 −0.148379
\(852\) 0 0
\(853\) −55.0852 −1.88608 −0.943041 0.332677i \(-0.892048\pi\)
−0.943041 + 0.332677i \(0.892048\pi\)
\(854\) 0 0
\(855\) −3.46387 −0.118462
\(856\) 0 0
\(857\) −8.02493 −0.274126 −0.137063 0.990562i \(-0.543766\pi\)
−0.137063 + 0.990562i \(0.543766\pi\)
\(858\) 0 0
\(859\) 30.0748 1.02614 0.513069 0.858347i \(-0.328508\pi\)
0.513069 + 0.858347i \(0.328508\pi\)
\(860\) 0 0
\(861\) −3.44682 −0.117467
\(862\) 0 0
\(863\) 20.5802 0.700557 0.350278 0.936646i \(-0.386087\pi\)
0.350278 + 0.936646i \(0.386087\pi\)
\(864\) 0 0
\(865\) −18.3015 −0.622270
\(866\) 0 0
\(867\) −0.233207 −0.00792012
\(868\) 0 0
\(869\) 65.0893 2.20800
\(870\) 0 0
\(871\) 15.4427 0.523257
\(872\) 0 0
\(873\) −2.50062 −0.0846332
\(874\) 0 0
\(875\) −2.16425 −0.0731649
\(876\) 0 0
\(877\) −19.7234 −0.666012 −0.333006 0.942925i \(-0.608063\pi\)
−0.333006 + 0.942925i \(0.608063\pi\)
\(878\) 0 0
\(879\) −3.77122 −0.127200
\(880\) 0 0
\(881\) 10.1707 0.342660 0.171330 0.985214i \(-0.445193\pi\)
0.171330 + 0.985214i \(0.445193\pi\)
\(882\) 0 0
\(883\) 13.2102 0.444558 0.222279 0.974983i \(-0.428650\pi\)
0.222279 + 0.974983i \(0.428650\pi\)
\(884\) 0 0
\(885\) 1.55712 0.0523419
\(886\) 0 0
\(887\) −17.5216 −0.588318 −0.294159 0.955756i \(-0.595040\pi\)
−0.294159 + 0.955756i \(0.595040\pi\)
\(888\) 0 0
\(889\) 5.92112 0.198588
\(890\) 0 0
\(891\) 21.6794 0.726287
\(892\) 0 0
\(893\) 10.9435 0.366210
\(894\) 0 0
\(895\) −23.0374 −0.770055
\(896\) 0 0
\(897\) −2.64059 −0.0881666
\(898\) 0 0
\(899\) −7.86068 −0.262168
\(900\) 0 0
\(901\) −35.3659 −1.17821
\(902\) 0 0
\(903\) 16.0185 0.533061
\(904\) 0 0
\(905\) −26.3784 −0.876846
\(906\) 0 0
\(907\) 25.0210 0.830808 0.415404 0.909637i \(-0.363640\pi\)
0.415404 + 0.909637i \(0.363640\pi\)
\(908\) 0 0
\(909\) −32.1813 −1.06739
\(910\) 0 0
\(911\) 49.0623 1.62551 0.812754 0.582607i \(-0.197967\pi\)
0.812754 + 0.582607i \(0.197967\pi\)
\(912\) 0 0
\(913\) 28.7069 0.950058
\(914\) 0 0
\(915\) −1.83575 −0.0606881
\(916\) 0 0
\(917\) 35.5636 1.17441
\(918\) 0 0
\(919\) −33.3140 −1.09893 −0.549463 0.835518i \(-0.685168\pi\)
−0.549463 + 0.835518i \(0.685168\pi\)
\(920\) 0 0
\(921\) −3.18524 −0.104957
\(922\) 0 0
\(923\) −15.4427 −0.508304
\(924\) 0 0
\(925\) −6.32850 −0.208080
\(926\) 0 0
\(927\) 25.1221 0.825118
\(928\) 0 0
\(929\) −1.68996 −0.0554457 −0.0277228 0.999616i \(-0.508826\pi\)
−0.0277228 + 0.999616i \(0.508826\pi\)
\(930\) 0 0
\(931\) −3.16819 −0.103833
\(932\) 0 0
\(933\) −2.97901 −0.0975284
\(934\) 0 0
\(935\) −18.0249 −0.589478
\(936\) 0 0
\(937\) 23.1931 0.757686 0.378843 0.925461i \(-0.376322\pi\)
0.378843 + 0.925461i \(0.376322\pi\)
\(938\) 0 0
\(939\) −0.918576 −0.0299766
\(940\) 0 0
\(941\) 53.4598 1.74274 0.871370 0.490627i \(-0.163232\pi\)
0.871370 + 0.490627i \(0.163232\pi\)
\(942\) 0 0
\(943\) −1.59262 −0.0518628
\(944\) 0 0
\(945\) −8.18918 −0.266394
\(946\) 0 0
\(947\) 17.3949 0.565259 0.282629 0.959229i \(-0.408793\pi\)
0.282629 + 0.959229i \(0.408793\pi\)
\(948\) 0 0
\(949\) 85.9584 2.79033
\(950\) 0 0
\(951\) 7.77532 0.252132
\(952\) 0 0
\(953\) 60.1786 1.94938 0.974688 0.223569i \(-0.0717708\pi\)
0.974688 + 0.223569i \(0.0717708\pi\)
\(954\) 0 0
\(955\) −1.45330 −0.0470277
\(956\) 0 0
\(957\) −2.96056 −0.0957012
\(958\) 0 0
\(959\) −9.48028 −0.306134
\(960\) 0 0
\(961\) 30.7903 0.993236
\(962\) 0 0
\(963\) −30.6491 −0.987654
\(964\) 0 0
\(965\) −11.5656 −0.372311
\(966\) 0 0
\(967\) −5.09340 −0.163793 −0.0818963 0.996641i \(-0.526098\pi\)
−0.0818963 + 0.996641i \(0.526098\pi\)
\(968\) 0 0
\(969\) 3.89619 0.125164
\(970\) 0 0
\(971\) 11.4468 0.367346 0.183673 0.982987i \(-0.441201\pi\)
0.183673 + 0.982987i \(0.441201\pi\)
\(972\) 0 0
\(973\) −5.17023 −0.165750
\(974\) 0 0
\(975\) −3.86068 −0.123641
\(976\) 0 0
\(977\) −41.9959 −1.34357 −0.671784 0.740747i \(-0.734472\pi\)
−0.671784 + 0.740747i \(0.734472\pi\)
\(978\) 0 0
\(979\) −22.8936 −0.731684
\(980\) 0 0
\(981\) −48.0748 −1.53491
\(982\) 0 0
\(983\) 2.75293 0.0878048 0.0439024 0.999036i \(-0.486021\pi\)
0.0439024 + 0.999036i \(0.486021\pi\)
\(984\) 0 0
\(985\) 13.9645 0.444946
\(986\) 0 0
\(987\) 11.8422 0.376942
\(988\) 0 0
\(989\) 7.40139 0.235351
\(990\) 0 0
\(991\) 61.7422 1.96131 0.980653 0.195755i \(-0.0627158\pi\)
0.980653 + 0.195755i \(0.0627158\pi\)
\(992\) 0 0
\(993\) 8.43231 0.267591
\(994\) 0 0
\(995\) 12.3285 0.390840
\(996\) 0 0
\(997\) 45.4967 1.44089 0.720447 0.693510i \(-0.243937\pi\)
0.720447 + 0.693510i \(0.243937\pi\)
\(998\) 0 0
\(999\) −23.9460 −0.757619
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.2.a.q.1.2 3
4.3 odd 2 290.2.a.d.1.2 3
8.3 odd 2 9280.2.a.bp.1.2 3
8.5 even 2 9280.2.a.bn.1.2 3
12.11 even 2 2610.2.a.w.1.3 3
20.3 even 4 1450.2.b.j.349.2 6
20.7 even 4 1450.2.b.j.349.5 6
20.19 odd 2 1450.2.a.r.1.2 3
116.115 odd 2 8410.2.a.w.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
290.2.a.d.1.2 3 4.3 odd 2
1450.2.a.r.1.2 3 20.19 odd 2
1450.2.b.j.349.2 6 20.3 even 4
1450.2.b.j.349.5 6 20.7 even 4
2320.2.a.q.1.2 3 1.1 even 1 trivial
2610.2.a.w.1.3 3 12.11 even 2
8410.2.a.w.1.2 3 116.115 odd 2
9280.2.a.bn.1.2 3 8.5 even 2
9280.2.a.bp.1.2 3 8.3 odd 2