Properties

Label 2312.2.b.o.577.6
Level $2312$
Weight $2$
Character 2312.577
Analytic conductor $18.461$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,2,Mod(577,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,-12,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4614129473\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 117x^{8} + 342x^{6} + 438x^{4} + 180x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.6
Root \(-0.0750494i\) of defining polynomial
Character \(\chi\) \(=\) 2312.577
Dual form 2312.2.b.o.577.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0750494i q^{3} +2.06942i q^{5} -2.86317i q^{7} +2.99437 q^{9} +1.65231i q^{11} -3.96428 q^{13} +0.155308 q^{15} +5.57295 q^{19} -0.214879 q^{21} +5.28027i q^{23} +0.717513 q^{25} -0.449874i q^{27} -6.99818i q^{29} -6.39002i q^{31} +0.124005 q^{33} +5.92509 q^{35} +5.70355i q^{37} +0.297517i q^{39} +9.87650i q^{41} +6.67809 q^{43} +6.19660i q^{45} +4.43037 q^{47} -1.19773 q^{49} -8.27111 q^{53} -3.41932 q^{55} -0.418247i q^{57} +2.42912 q^{59} +1.81849i q^{61} -8.57338i q^{63} -8.20375i q^{65} +15.8315 q^{67} +0.396281 q^{69} +8.54703i q^{71} -2.30202i q^{73} -0.0538489i q^{75} +4.73084 q^{77} -14.0262i q^{79} +8.94934 q^{81} +1.00763 q^{83} -0.525209 q^{87} -16.2569 q^{89} +11.3504i q^{91} -0.479567 q^{93} +11.5328i q^{95} -13.8424i q^{97} +4.94762i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{13} + 12 q^{15} - 12 q^{19} + 12 q^{21} - 12 q^{25} + 6 q^{33} + 42 q^{35} + 6 q^{47} - 18 q^{49} - 66 q^{53} - 102 q^{55} - 18 q^{67} - 6 q^{69} + 90 q^{77} - 36 q^{81} + 24 q^{83} - 30 q^{87}+ \cdots + 60 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2312\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1735\) \(1737\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 0.0750494i − 0.0433298i −0.999765 0.0216649i \(-0.993103\pi\)
0.999765 0.0216649i \(-0.00689669\pi\)
\(4\) 0 0
\(5\) 2.06942i 0.925471i 0.886496 + 0.462736i \(0.153132\pi\)
−0.886496 + 0.462736i \(0.846868\pi\)
\(6\) 0 0
\(7\) − 2.86317i − 1.08218i −0.840966 0.541088i \(-0.818013\pi\)
0.840966 0.541088i \(-0.181987\pi\)
\(8\) 0 0
\(9\) 2.99437 0.998123
\(10\) 0 0
\(11\) 1.65231i 0.498190i 0.968479 + 0.249095i \(0.0801332\pi\)
−0.968479 + 0.249095i \(0.919867\pi\)
\(12\) 0 0
\(13\) −3.96428 −1.09949 −0.549747 0.835331i \(-0.685276\pi\)
−0.549747 + 0.835331i \(0.685276\pi\)
\(14\) 0 0
\(15\) 0.155308 0.0401005
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 5.57295 1.27852 0.639262 0.768989i \(-0.279240\pi\)
0.639262 + 0.768989i \(0.279240\pi\)
\(20\) 0 0
\(21\) −0.214879 −0.0468904
\(22\) 0 0
\(23\) 5.28027i 1.10101i 0.834831 + 0.550507i \(0.185565\pi\)
−0.834831 + 0.550507i \(0.814435\pi\)
\(24\) 0 0
\(25\) 0.717513 0.143503
\(26\) 0 0
\(27\) − 0.449874i − 0.0865782i
\(28\) 0 0
\(29\) − 6.99818i − 1.29953i −0.760135 0.649765i \(-0.774867\pi\)
0.760135 0.649765i \(-0.225133\pi\)
\(30\) 0 0
\(31\) − 6.39002i − 1.14768i −0.818967 0.573840i \(-0.805453\pi\)
0.818967 0.573840i \(-0.194547\pi\)
\(32\) 0 0
\(33\) 0.124005 0.0215865
\(34\) 0 0
\(35\) 5.92509 1.00152
\(36\) 0 0
\(37\) 5.70355i 0.937658i 0.883289 + 0.468829i \(0.155324\pi\)
−0.883289 + 0.468829i \(0.844676\pi\)
\(38\) 0 0
\(39\) 0.297517i 0.0476408i
\(40\) 0 0
\(41\) 9.87650i 1.54245i 0.636562 + 0.771225i \(0.280356\pi\)
−0.636562 + 0.771225i \(0.719644\pi\)
\(42\) 0 0
\(43\) 6.67809 1.01840 0.509199 0.860649i \(-0.329942\pi\)
0.509199 + 0.860649i \(0.329942\pi\)
\(44\) 0 0
\(45\) 6.19660i 0.923734i
\(46\) 0 0
\(47\) 4.43037 0.646236 0.323118 0.946359i \(-0.395269\pi\)
0.323118 + 0.946359i \(0.395269\pi\)
\(48\) 0 0
\(49\) −1.19773 −0.171104
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.27111 −1.13612 −0.568062 0.822985i \(-0.692307\pi\)
−0.568062 + 0.822985i \(0.692307\pi\)
\(54\) 0 0
\(55\) −3.41932 −0.461061
\(56\) 0 0
\(57\) − 0.418247i − 0.0553981i
\(58\) 0 0
\(59\) 2.42912 0.316244 0.158122 0.987420i \(-0.449456\pi\)
0.158122 + 0.987420i \(0.449456\pi\)
\(60\) 0 0
\(61\) 1.81849i 0.232834i 0.993200 + 0.116417i \(0.0371409\pi\)
−0.993200 + 0.116417i \(0.962859\pi\)
\(62\) 0 0
\(63\) − 8.57338i − 1.08014i
\(64\) 0 0
\(65\) − 8.20375i − 1.01755i
\(66\) 0 0
\(67\) 15.8315 1.93413 0.967064 0.254535i \(-0.0819224\pi\)
0.967064 + 0.254535i \(0.0819224\pi\)
\(68\) 0 0
\(69\) 0.396281 0.0477067
\(70\) 0 0
\(71\) 8.54703i 1.01435i 0.861844 + 0.507173i \(0.169309\pi\)
−0.861844 + 0.507173i \(0.830691\pi\)
\(72\) 0 0
\(73\) − 2.30202i − 0.269431i −0.990884 0.134715i \(-0.956988\pi\)
0.990884 0.134715i \(-0.0430120\pi\)
\(74\) 0 0
\(75\) − 0.0538489i − 0.00621794i
\(76\) 0 0
\(77\) 4.73084 0.539129
\(78\) 0 0
\(79\) − 14.0262i − 1.57807i −0.614351 0.789033i \(-0.710582\pi\)
0.614351 0.789033i \(-0.289418\pi\)
\(80\) 0 0
\(81\) 8.94934 0.994371
\(82\) 0 0
\(83\) 1.00763 0.110601 0.0553006 0.998470i \(-0.482388\pi\)
0.0553006 + 0.998470i \(0.482388\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.525209 −0.0563083
\(88\) 0 0
\(89\) −16.2569 −1.72323 −0.861616 0.507561i \(-0.830547\pi\)
−0.861616 + 0.507561i \(0.830547\pi\)
\(90\) 0 0
\(91\) 11.3504i 1.18985i
\(92\) 0 0
\(93\) −0.479567 −0.0497288
\(94\) 0 0
\(95\) 11.5328i 1.18324i
\(96\) 0 0
\(97\) − 13.8424i − 1.40549i −0.711443 0.702744i \(-0.751958\pi\)
0.711443 0.702744i \(-0.248042\pi\)
\(98\) 0 0
\(99\) 4.94762i 0.497255i
\(100\) 0 0
\(101\) 14.9508 1.48766 0.743832 0.668366i \(-0.233006\pi\)
0.743832 + 0.668366i \(0.233006\pi\)
\(102\) 0 0
\(103\) 16.1276 1.58910 0.794552 0.607196i \(-0.207706\pi\)
0.794552 + 0.607196i \(0.207706\pi\)
\(104\) 0 0
\(105\) − 0.444674i − 0.0433958i
\(106\) 0 0
\(107\) 14.7416i 1.42513i 0.701608 + 0.712563i \(0.252466\pi\)
−0.701608 + 0.712563i \(0.747534\pi\)
\(108\) 0 0
\(109\) 11.4726i 1.09887i 0.835535 + 0.549437i \(0.185158\pi\)
−0.835535 + 0.549437i \(0.814842\pi\)
\(110\) 0 0
\(111\) 0.428048 0.0406285
\(112\) 0 0
\(113\) 3.33361i 0.313599i 0.987630 + 0.156800i \(0.0501177\pi\)
−0.987630 + 0.156800i \(0.949882\pi\)
\(114\) 0 0
\(115\) −10.9271 −1.01896
\(116\) 0 0
\(117\) −11.8705 −1.09743
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 8.26987 0.751806
\(122\) 0 0
\(123\) 0.741226 0.0668341
\(124\) 0 0
\(125\) 11.8319i 1.05828i
\(126\) 0 0
\(127\) −19.8464 −1.76109 −0.880544 0.473965i \(-0.842822\pi\)
−0.880544 + 0.473965i \(0.842822\pi\)
\(128\) 0 0
\(129\) − 0.501187i − 0.0441270i
\(130\) 0 0
\(131\) 14.8864i 1.30063i 0.759664 + 0.650316i \(0.225364\pi\)
−0.759664 + 0.650316i \(0.774636\pi\)
\(132\) 0 0
\(133\) − 15.9563i − 1.38359i
\(134\) 0 0
\(135\) 0.930976 0.0801257
\(136\) 0 0
\(137\) −2.48499 −0.212307 −0.106154 0.994350i \(-0.533853\pi\)
−0.106154 + 0.994350i \(0.533853\pi\)
\(138\) 0 0
\(139\) 3.28018i 0.278221i 0.990277 + 0.139111i \(0.0444244\pi\)
−0.990277 + 0.139111i \(0.955576\pi\)
\(140\) 0 0
\(141\) − 0.332497i − 0.0280013i
\(142\) 0 0
\(143\) − 6.55022i − 0.547757i
\(144\) 0 0
\(145\) 14.4822 1.20268
\(146\) 0 0
\(147\) 0.0898887i 0.00741390i
\(148\) 0 0
\(149\) 8.18480 0.670525 0.335262 0.942125i \(-0.391175\pi\)
0.335262 + 0.942125i \(0.391175\pi\)
\(150\) 0 0
\(151\) 15.8084 1.28647 0.643234 0.765670i \(-0.277592\pi\)
0.643234 + 0.765670i \(0.277592\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 13.2236 1.06215
\(156\) 0 0
\(157\) 3.84395 0.306781 0.153390 0.988166i \(-0.450981\pi\)
0.153390 + 0.988166i \(0.450981\pi\)
\(158\) 0 0
\(159\) 0.620742i 0.0492281i
\(160\) 0 0
\(161\) 15.1183 1.19149
\(162\) 0 0
\(163\) 9.30898i 0.729136i 0.931177 + 0.364568i \(0.118783\pi\)
−0.931177 + 0.364568i \(0.881217\pi\)
\(164\) 0 0
\(165\) 0.256618i 0.0199777i
\(166\) 0 0
\(167\) − 4.36977i − 0.338143i −0.985604 0.169071i \(-0.945923\pi\)
0.985604 0.169071i \(-0.0540769\pi\)
\(168\) 0 0
\(169\) 2.71552 0.208887
\(170\) 0 0
\(171\) 16.6875 1.27612
\(172\) 0 0
\(173\) 1.58579i 0.120565i 0.998181 + 0.0602826i \(0.0192002\pi\)
−0.998181 + 0.0602826i \(0.980800\pi\)
\(174\) 0 0
\(175\) − 2.05436i − 0.155295i
\(176\) 0 0
\(177\) − 0.182304i − 0.0137028i
\(178\) 0 0
\(179\) 22.0093 1.64505 0.822525 0.568729i \(-0.192565\pi\)
0.822525 + 0.568729i \(0.192565\pi\)
\(180\) 0 0
\(181\) 14.1859i 1.05443i 0.849731 + 0.527216i \(0.176764\pi\)
−0.849731 + 0.527216i \(0.823236\pi\)
\(182\) 0 0
\(183\) 0.136477 0.0100886
\(184\) 0 0
\(185\) −11.8030 −0.867776
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1.28806 −0.0936928
\(190\) 0 0
\(191\) −9.40915 −0.680823 −0.340411 0.940277i \(-0.610566\pi\)
−0.340411 + 0.940277i \(0.610566\pi\)
\(192\) 0 0
\(193\) − 7.63065i − 0.549266i −0.961549 0.274633i \(-0.911444\pi\)
0.961549 0.274633i \(-0.0885564\pi\)
\(194\) 0 0
\(195\) −0.615687 −0.0440902
\(196\) 0 0
\(197\) − 9.04547i − 0.644463i −0.946661 0.322232i \(-0.895567\pi\)
0.946661 0.322232i \(-0.104433\pi\)
\(198\) 0 0
\(199\) − 11.4553i − 0.812047i −0.913863 0.406023i \(-0.866915\pi\)
0.913863 0.406023i \(-0.133085\pi\)
\(200\) 0 0
\(201\) − 1.18815i − 0.0838053i
\(202\) 0 0
\(203\) −20.0370 −1.40632
\(204\) 0 0
\(205\) −20.4386 −1.42749
\(206\) 0 0
\(207\) 15.8111i 1.09895i
\(208\) 0 0
\(209\) 9.20825i 0.636948i
\(210\) 0 0
\(211\) 9.18283i 0.632172i 0.948731 + 0.316086i \(0.102369\pi\)
−0.948731 + 0.316086i \(0.897631\pi\)
\(212\) 0 0
\(213\) 0.641449 0.0439514
\(214\) 0 0
\(215\) 13.8198i 0.942499i
\(216\) 0 0
\(217\) −18.2957 −1.24199
\(218\) 0 0
\(219\) −0.172765 −0.0116744
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 7.34273 0.491705 0.245853 0.969307i \(-0.420932\pi\)
0.245853 + 0.969307i \(0.420932\pi\)
\(224\) 0 0
\(225\) 2.14850 0.143233
\(226\) 0 0
\(227\) 11.7173i 0.777703i 0.921300 + 0.388852i \(0.127128\pi\)
−0.921300 + 0.388852i \(0.872872\pi\)
\(228\) 0 0
\(229\) 8.45705 0.558857 0.279429 0.960166i \(-0.409855\pi\)
0.279429 + 0.960166i \(0.409855\pi\)
\(230\) 0 0
\(231\) − 0.355047i − 0.0233604i
\(232\) 0 0
\(233\) − 18.7135i − 1.22596i −0.790099 0.612980i \(-0.789971\pi\)
0.790099 0.612980i \(-0.210029\pi\)
\(234\) 0 0
\(235\) 9.16829i 0.598073i
\(236\) 0 0
\(237\) −1.05265 −0.0683772
\(238\) 0 0
\(239\) 7.40650 0.479086 0.239543 0.970886i \(-0.423002\pi\)
0.239543 + 0.970886i \(0.423002\pi\)
\(240\) 0 0
\(241\) − 22.6670i − 1.46011i −0.683390 0.730054i \(-0.739495\pi\)
0.683390 0.730054i \(-0.260505\pi\)
\(242\) 0 0
\(243\) − 2.02126i − 0.129664i
\(244\) 0 0
\(245\) − 2.47860i − 0.158352i
\(246\) 0 0
\(247\) −22.0928 −1.40573
\(248\) 0 0
\(249\) − 0.0756217i − 0.00479233i
\(250\) 0 0
\(251\) −5.67032 −0.357907 −0.178954 0.983857i \(-0.557271\pi\)
−0.178954 + 0.983857i \(0.557271\pi\)
\(252\) 0 0
\(253\) −8.72465 −0.548514
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −28.2181 −1.76020 −0.880100 0.474789i \(-0.842524\pi\)
−0.880100 + 0.474789i \(0.842524\pi\)
\(258\) 0 0
\(259\) 16.3302 1.01471
\(260\) 0 0
\(261\) − 20.9551i − 1.29709i
\(262\) 0 0
\(263\) 4.06551 0.250690 0.125345 0.992113i \(-0.459996\pi\)
0.125345 + 0.992113i \(0.459996\pi\)
\(264\) 0 0
\(265\) − 17.1164i − 1.05145i
\(266\) 0 0
\(267\) 1.22007i 0.0746673i
\(268\) 0 0
\(269\) − 1.95914i − 0.119451i −0.998215 0.0597255i \(-0.980977\pi\)
0.998215 0.0597255i \(-0.0190225\pi\)
\(270\) 0 0
\(271\) 6.00392 0.364712 0.182356 0.983233i \(-0.441628\pi\)
0.182356 + 0.983233i \(0.441628\pi\)
\(272\) 0 0
\(273\) 0.851841 0.0515557
\(274\) 0 0
\(275\) 1.18555i 0.0714916i
\(276\) 0 0
\(277\) − 5.74968i − 0.345465i −0.984969 0.172732i \(-0.944740\pi\)
0.984969 0.172732i \(-0.0552596\pi\)
\(278\) 0 0
\(279\) − 19.1341i − 1.14553i
\(280\) 0 0
\(281\) −20.4528 −1.22011 −0.610056 0.792359i \(-0.708853\pi\)
−0.610056 + 0.792359i \(0.708853\pi\)
\(282\) 0 0
\(283\) − 26.9965i − 1.60478i −0.596801 0.802389i \(-0.703562\pi\)
0.596801 0.802389i \(-0.296438\pi\)
\(284\) 0 0
\(285\) 0.865527 0.0512694
\(286\) 0 0
\(287\) 28.2781 1.66920
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −1.03887 −0.0608995
\(292\) 0 0
\(293\) −5.55130 −0.324310 −0.162155 0.986765i \(-0.551845\pi\)
−0.162155 + 0.986765i \(0.551845\pi\)
\(294\) 0 0
\(295\) 5.02686i 0.292675i
\(296\) 0 0
\(297\) 0.743331 0.0431324
\(298\) 0 0
\(299\) − 20.9325i − 1.21056i
\(300\) 0 0
\(301\) − 19.1205i − 1.10209i
\(302\) 0 0
\(303\) − 1.12205i − 0.0644602i
\(304\) 0 0
\(305\) −3.76322 −0.215481
\(306\) 0 0
\(307\) −16.1215 −0.920104 −0.460052 0.887892i \(-0.652169\pi\)
−0.460052 + 0.887892i \(0.652169\pi\)
\(308\) 0 0
\(309\) − 1.21037i − 0.0688555i
\(310\) 0 0
\(311\) − 18.2242i − 1.03340i −0.856167 0.516699i \(-0.827161\pi\)
0.856167 0.516699i \(-0.172839\pi\)
\(312\) 0 0
\(313\) 9.98052i 0.564132i 0.959395 + 0.282066i \(0.0910198\pi\)
−0.959395 + 0.282066i \(0.908980\pi\)
\(314\) 0 0
\(315\) 17.7419 0.999642
\(316\) 0 0
\(317\) − 4.47278i − 0.251216i −0.992080 0.125608i \(-0.959912\pi\)
0.992080 0.125608i \(-0.0400882\pi\)
\(318\) 0 0
\(319\) 11.5632 0.647413
\(320\) 0 0
\(321\) 1.10635 0.0617504
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −2.84442 −0.157780
\(326\) 0 0
\(327\) 0.861010 0.0476140
\(328\) 0 0
\(329\) − 12.6849i − 0.699341i
\(330\) 0 0
\(331\) −0.514782 −0.0282950 −0.0141475 0.999900i \(-0.504503\pi\)
−0.0141475 + 0.999900i \(0.504503\pi\)
\(332\) 0 0
\(333\) 17.0785i 0.935898i
\(334\) 0 0
\(335\) 32.7620i 1.78998i
\(336\) 0 0
\(337\) 3.35929i 0.182992i 0.995805 + 0.0914960i \(0.0291649\pi\)
−0.995805 + 0.0914960i \(0.970835\pi\)
\(338\) 0 0
\(339\) 0.250185 0.0135882
\(340\) 0 0
\(341\) 10.5583 0.571764
\(342\) 0 0
\(343\) − 16.6129i − 0.897011i
\(344\) 0 0
\(345\) 0.820071i 0.0441512i
\(346\) 0 0
\(347\) − 23.5337i − 1.26336i −0.775231 0.631678i \(-0.782366\pi\)
0.775231 0.631678i \(-0.217634\pi\)
\(348\) 0 0
\(349\) −25.3356 −1.35619 −0.678093 0.734976i \(-0.737193\pi\)
−0.678093 + 0.734976i \(0.737193\pi\)
\(350\) 0 0
\(351\) 1.78343i 0.0951922i
\(352\) 0 0
\(353\) 17.0119 0.905454 0.452727 0.891649i \(-0.350451\pi\)
0.452727 + 0.891649i \(0.350451\pi\)
\(354\) 0 0
\(355\) −17.6874 −0.938748
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.00460 0.316911 0.158455 0.987366i \(-0.449349\pi\)
0.158455 + 0.987366i \(0.449349\pi\)
\(360\) 0 0
\(361\) 12.0578 0.634621
\(362\) 0 0
\(363\) − 0.620649i − 0.0325756i
\(364\) 0 0
\(365\) 4.76383 0.249350
\(366\) 0 0
\(367\) 7.43083i 0.387886i 0.981013 + 0.193943i \(0.0621277\pi\)
−0.981013 + 0.193943i \(0.937872\pi\)
\(368\) 0 0
\(369\) 29.5739i 1.53955i
\(370\) 0 0
\(371\) 23.6816i 1.22949i
\(372\) 0 0
\(373\) −20.8566 −1.07991 −0.539957 0.841692i \(-0.681560\pi\)
−0.539957 + 0.841692i \(0.681560\pi\)
\(374\) 0 0
\(375\) 0.887978 0.0458550
\(376\) 0 0
\(377\) 27.7428i 1.42882i
\(378\) 0 0
\(379\) − 2.34051i − 0.120224i −0.998192 0.0601119i \(-0.980854\pi\)
0.998192 0.0601119i \(-0.0191457\pi\)
\(380\) 0 0
\(381\) 1.48946i 0.0763075i
\(382\) 0 0
\(383\) −31.7087 −1.62024 −0.810119 0.586265i \(-0.800598\pi\)
−0.810119 + 0.586265i \(0.800598\pi\)
\(384\) 0 0
\(385\) 9.79008i 0.498949i
\(386\) 0 0
\(387\) 19.9967 1.01649
\(388\) 0 0
\(389\) 10.8275 0.548975 0.274487 0.961591i \(-0.411492\pi\)
0.274487 + 0.961591i \(0.411492\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 1.11722 0.0563561
\(394\) 0 0
\(395\) 29.0260 1.46045
\(396\) 0 0
\(397\) 5.82927i 0.292562i 0.989243 + 0.146281i \(0.0467304\pi\)
−0.989243 + 0.146281i \(0.953270\pi\)
\(398\) 0 0
\(399\) −1.19751 −0.0599505
\(400\) 0 0
\(401\) 25.5361i 1.27521i 0.770363 + 0.637605i \(0.220075\pi\)
−0.770363 + 0.637605i \(0.779925\pi\)
\(402\) 0 0
\(403\) 25.3318i 1.26187i
\(404\) 0 0
\(405\) 18.5199i 0.920262i
\(406\) 0 0
\(407\) −9.42404 −0.467132
\(408\) 0 0
\(409\) −19.4417 −0.961329 −0.480664 0.876905i \(-0.659604\pi\)
−0.480664 + 0.876905i \(0.659604\pi\)
\(410\) 0 0
\(411\) 0.186497i 0.00919922i
\(412\) 0 0
\(413\) − 6.95497i − 0.342232i
\(414\) 0 0
\(415\) 2.08520i 0.102358i
\(416\) 0 0
\(417\) 0.246176 0.0120553
\(418\) 0 0
\(419\) − 37.6604i − 1.83983i −0.392116 0.919916i \(-0.628257\pi\)
0.392116 0.919916i \(-0.371743\pi\)
\(420\) 0 0
\(421\) −13.2597 −0.646238 −0.323119 0.946358i \(-0.604731\pi\)
−0.323119 + 0.946358i \(0.604731\pi\)
\(422\) 0 0
\(423\) 13.2662 0.645023
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5.20664 0.251967
\(428\) 0 0
\(429\) −0.491590 −0.0237342
\(430\) 0 0
\(431\) − 31.8730i − 1.53527i −0.640887 0.767635i \(-0.721433\pi\)
0.640887 0.767635i \(-0.278567\pi\)
\(432\) 0 0
\(433\) −37.8807 −1.82043 −0.910215 0.414137i \(-0.864083\pi\)
−0.910215 + 0.414137i \(0.864083\pi\)
\(434\) 0 0
\(435\) − 1.08688i − 0.0521118i
\(436\) 0 0
\(437\) 29.4267i 1.40767i
\(438\) 0 0
\(439\) 4.95029i 0.236264i 0.992998 + 0.118132i \(0.0376907\pi\)
−0.992998 + 0.118132i \(0.962309\pi\)
\(440\) 0 0
\(441\) −3.58644 −0.170783
\(442\) 0 0
\(443\) −25.7002 −1.22106 −0.610528 0.791995i \(-0.709043\pi\)
−0.610528 + 0.791995i \(0.709043\pi\)
\(444\) 0 0
\(445\) − 33.6424i − 1.59480i
\(446\) 0 0
\(447\) − 0.614264i − 0.0290537i
\(448\) 0 0
\(449\) 13.9403i 0.657882i 0.944350 + 0.328941i \(0.106692\pi\)
−0.944350 + 0.328941i \(0.893308\pi\)
\(450\) 0 0
\(451\) −16.3190 −0.768434
\(452\) 0 0
\(453\) − 1.18641i − 0.0557424i
\(454\) 0 0
\(455\) −23.4887 −1.10117
\(456\) 0 0
\(457\) −7.21894 −0.337688 −0.168844 0.985643i \(-0.554003\pi\)
−0.168844 + 0.985643i \(0.554003\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.0248950 0.00115948 0.000579739 1.00000i \(-0.499815\pi\)
0.000579739 1.00000i \(0.499815\pi\)
\(462\) 0 0
\(463\) −41.3218 −1.92039 −0.960194 0.279334i \(-0.909886\pi\)
−0.960194 + 0.279334i \(0.909886\pi\)
\(464\) 0 0
\(465\) − 0.992424i − 0.0460226i
\(466\) 0 0
\(467\) 2.01187 0.0930985 0.0465492 0.998916i \(-0.485178\pi\)
0.0465492 + 0.998916i \(0.485178\pi\)
\(468\) 0 0
\(469\) − 45.3283i − 2.09307i
\(470\) 0 0
\(471\) − 0.288486i − 0.0132927i
\(472\) 0 0
\(473\) 11.0343i 0.507357i
\(474\) 0 0
\(475\) 3.99867 0.183471
\(476\) 0 0
\(477\) −24.7668 −1.13399
\(478\) 0 0
\(479\) − 40.6285i − 1.85637i −0.372124 0.928183i \(-0.621371\pi\)
0.372124 0.928183i \(-0.378629\pi\)
\(480\) 0 0
\(481\) − 22.6105i − 1.03095i
\(482\) 0 0
\(483\) − 1.13462i − 0.0516270i
\(484\) 0 0
\(485\) 28.6458 1.30074
\(486\) 0 0
\(487\) 30.6041i 1.38680i 0.720552 + 0.693401i \(0.243889\pi\)
−0.720552 + 0.693401i \(0.756111\pi\)
\(488\) 0 0
\(489\) 0.698633 0.0315933
\(490\) 0 0
\(491\) −15.3815 −0.694157 −0.347078 0.937836i \(-0.612826\pi\)
−0.347078 + 0.937836i \(0.612826\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −10.2387 −0.460195
\(496\) 0 0
\(497\) 24.4716 1.09770
\(498\) 0 0
\(499\) 12.2998i 0.550617i 0.961356 + 0.275308i \(0.0887799\pi\)
−0.961356 + 0.275308i \(0.911220\pi\)
\(500\) 0 0
\(501\) −0.327949 −0.0146517
\(502\) 0 0
\(503\) 23.2615i 1.03718i 0.855024 + 0.518589i \(0.173543\pi\)
−0.855024 + 0.518589i \(0.826457\pi\)
\(504\) 0 0
\(505\) 30.9395i 1.37679i
\(506\) 0 0
\(507\) − 0.203799i − 0.00905101i
\(508\) 0 0
\(509\) −17.9307 −0.794762 −0.397381 0.917654i \(-0.630081\pi\)
−0.397381 + 0.917654i \(0.630081\pi\)
\(510\) 0 0
\(511\) −6.59106 −0.291571
\(512\) 0 0
\(513\) − 2.50712i − 0.110692i
\(514\) 0 0
\(515\) 33.3748i 1.47067i
\(516\) 0 0
\(517\) 7.32035i 0.321949i
\(518\) 0 0
\(519\) 0.119012 0.00522407
\(520\) 0 0
\(521\) 12.5178i 0.548413i 0.961671 + 0.274206i \(0.0884151\pi\)
−0.961671 + 0.274206i \(0.911585\pi\)
\(522\) 0 0
\(523\) −10.5810 −0.462677 −0.231338 0.972873i \(-0.574310\pi\)
−0.231338 + 0.972873i \(0.574310\pi\)
\(524\) 0 0
\(525\) −0.154179 −0.00672890
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −4.88129 −0.212230
\(530\) 0 0
\(531\) 7.27367 0.315651
\(532\) 0 0
\(533\) − 39.1532i − 1.69591i
\(534\) 0 0
\(535\) −30.5066 −1.31891
\(536\) 0 0
\(537\) − 1.65178i − 0.0712797i
\(538\) 0 0
\(539\) − 1.97902i − 0.0852423i
\(540\) 0 0
\(541\) 31.4314i 1.35134i 0.737203 + 0.675671i \(0.236146\pi\)
−0.737203 + 0.675671i \(0.763854\pi\)
\(542\) 0 0
\(543\) 1.06465 0.0456883
\(544\) 0 0
\(545\) −23.7415 −1.01698
\(546\) 0 0
\(547\) − 4.84354i − 0.207095i −0.994625 0.103547i \(-0.966981\pi\)
0.994625 0.103547i \(-0.0330193\pi\)
\(548\) 0 0
\(549\) 5.44523i 0.232397i
\(550\) 0 0
\(551\) − 39.0005i − 1.66148i
\(552\) 0 0
\(553\) −40.1592 −1.70774
\(554\) 0 0
\(555\) 0.885810i 0.0376005i
\(556\) 0 0
\(557\) 13.3327 0.564927 0.282463 0.959278i \(-0.408848\pi\)
0.282463 + 0.959278i \(0.408848\pi\)
\(558\) 0 0
\(559\) −26.4738 −1.11972
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −30.2597 −1.27529 −0.637647 0.770329i \(-0.720092\pi\)
−0.637647 + 0.770329i \(0.720092\pi\)
\(564\) 0 0
\(565\) −6.89862 −0.290227
\(566\) 0 0
\(567\) − 25.6235i − 1.07608i
\(568\) 0 0
\(569\) 30.4438 1.27627 0.638136 0.769924i \(-0.279706\pi\)
0.638136 + 0.769924i \(0.279706\pi\)
\(570\) 0 0
\(571\) − 37.5161i − 1.57000i −0.619496 0.785000i \(-0.712663\pi\)
0.619496 0.785000i \(-0.287337\pi\)
\(572\) 0 0
\(573\) 0.706151i 0.0294999i
\(574\) 0 0
\(575\) 3.78867i 0.157998i
\(576\) 0 0
\(577\) −24.2745 −1.01056 −0.505280 0.862955i \(-0.668611\pi\)
−0.505280 + 0.862955i \(0.668611\pi\)
\(578\) 0 0
\(579\) −0.572676 −0.0237996
\(580\) 0 0
\(581\) − 2.88500i − 0.119690i
\(582\) 0 0
\(583\) − 13.6664i − 0.566007i
\(584\) 0 0
\(585\) − 24.5650i − 1.01564i
\(586\) 0 0
\(587\) −18.4536 −0.761661 −0.380831 0.924645i \(-0.624362\pi\)
−0.380831 + 0.924645i \(0.624362\pi\)
\(588\) 0 0
\(589\) − 35.6113i − 1.46734i
\(590\) 0 0
\(591\) −0.678857 −0.0279245
\(592\) 0 0
\(593\) 12.0405 0.494444 0.247222 0.968959i \(-0.420482\pi\)
0.247222 + 0.968959i \(0.420482\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.859715 −0.0351858
\(598\) 0 0
\(599\) 21.0725 0.860999 0.430499 0.902591i \(-0.358337\pi\)
0.430499 + 0.902591i \(0.358337\pi\)
\(600\) 0 0
\(601\) 19.5781i 0.798609i 0.916818 + 0.399305i \(0.130748\pi\)
−0.916818 + 0.399305i \(0.869252\pi\)
\(602\) 0 0
\(603\) 47.4054 1.93050
\(604\) 0 0
\(605\) 17.1138i 0.695775i
\(606\) 0 0
\(607\) − 7.14287i − 0.289920i −0.989438 0.144960i \(-0.953695\pi\)
0.989438 0.144960i \(-0.0463054\pi\)
\(608\) 0 0
\(609\) 1.50376i 0.0609355i
\(610\) 0 0
\(611\) −17.5632 −0.710533
\(612\) 0 0
\(613\) 9.73218 0.393079 0.196539 0.980496i \(-0.437030\pi\)
0.196539 + 0.980496i \(0.437030\pi\)
\(614\) 0 0
\(615\) 1.53390i 0.0618530i
\(616\) 0 0
\(617\) − 15.7203i − 0.632875i −0.948613 0.316437i \(-0.897513\pi\)
0.948613 0.316437i \(-0.102487\pi\)
\(618\) 0 0
\(619\) 46.8385i 1.88260i 0.337573 + 0.941299i \(0.390394\pi\)
−0.337573 + 0.941299i \(0.609606\pi\)
\(620\) 0 0
\(621\) 2.37546 0.0953238
\(622\) 0 0
\(623\) 46.5463i 1.86484i
\(624\) 0 0
\(625\) −20.8976 −0.835904
\(626\) 0 0
\(627\) 0.691073 0.0275988
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.994345 0.0395843 0.0197921 0.999804i \(-0.493700\pi\)
0.0197921 + 0.999804i \(0.493700\pi\)
\(632\) 0 0
\(633\) 0.689166 0.0273919
\(634\) 0 0
\(635\) − 41.0706i − 1.62984i
\(636\) 0 0
\(637\) 4.74813 0.188128
\(638\) 0 0
\(639\) 25.5929i 1.01244i
\(640\) 0 0
\(641\) − 12.9583i − 0.511821i −0.966700 0.255911i \(-0.917625\pi\)
0.966700 0.255911i \(-0.0823753\pi\)
\(642\) 0 0
\(643\) 5.44186i 0.214606i 0.994226 + 0.107303i \(0.0342215\pi\)
−0.994226 + 0.107303i \(0.965778\pi\)
\(644\) 0 0
\(645\) 1.03716 0.0408383
\(646\) 0 0
\(647\) −13.4339 −0.528143 −0.264072 0.964503i \(-0.585065\pi\)
−0.264072 + 0.964503i \(0.585065\pi\)
\(648\) 0 0
\(649\) 4.01366i 0.157550i
\(650\) 0 0
\(651\) 1.37308i 0.0538153i
\(652\) 0 0
\(653\) − 29.8838i − 1.16944i −0.811234 0.584722i \(-0.801203\pi\)
0.811234 0.584722i \(-0.198797\pi\)
\(654\) 0 0
\(655\) −30.8062 −1.20370
\(656\) 0 0
\(657\) − 6.89309i − 0.268925i
\(658\) 0 0
\(659\) 26.0153 1.01341 0.506707 0.862119i \(-0.330863\pi\)
0.506707 + 0.862119i \(0.330863\pi\)
\(660\) 0 0
\(661\) 29.6768 1.15430 0.577148 0.816640i \(-0.304166\pi\)
0.577148 + 0.816640i \(0.304166\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 33.0202 1.28047
\(666\) 0 0
\(667\) 36.9523 1.43080
\(668\) 0 0
\(669\) − 0.551067i − 0.0213055i
\(670\) 0 0
\(671\) −3.00471 −0.115996
\(672\) 0 0
\(673\) − 27.1439i − 1.04632i −0.852235 0.523159i \(-0.824753\pi\)
0.852235 0.523159i \(-0.175247\pi\)
\(674\) 0 0
\(675\) − 0.322790i − 0.0124242i
\(676\) 0 0
\(677\) − 22.8605i − 0.878602i −0.898340 0.439301i \(-0.855226\pi\)
0.898340 0.439301i \(-0.144774\pi\)
\(678\) 0 0
\(679\) −39.6332 −1.52098
\(680\) 0 0
\(681\) 0.879375 0.0336977
\(682\) 0 0
\(683\) 9.49776i 0.363422i 0.983352 + 0.181711i \(0.0581635\pi\)
−0.983352 + 0.181711i \(0.941837\pi\)
\(684\) 0 0
\(685\) − 5.14248i − 0.196484i
\(686\) 0 0
\(687\) − 0.634696i − 0.0242152i
\(688\) 0 0
\(689\) 32.7890 1.24916
\(690\) 0 0
\(691\) − 34.6226i − 1.31711i −0.752534 0.658554i \(-0.771169\pi\)
0.752534 0.658554i \(-0.228831\pi\)
\(692\) 0 0
\(693\) 14.1659 0.538117
\(694\) 0 0
\(695\) −6.78806 −0.257486
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −1.40443 −0.0531206
\(700\) 0 0
\(701\) −5.15517 −0.194708 −0.0973541 0.995250i \(-0.531038\pi\)
−0.0973541 + 0.995250i \(0.531038\pi\)
\(702\) 0 0
\(703\) 31.7856i 1.19882i
\(704\) 0 0
\(705\) 0.688075 0.0259144
\(706\) 0 0
\(707\) − 42.8068i − 1.60991i
\(708\) 0 0
\(709\) 2.45568i 0.0922250i 0.998936 + 0.0461125i \(0.0146833\pi\)
−0.998936 + 0.0461125i \(0.985317\pi\)
\(710\) 0 0
\(711\) − 41.9995i − 1.57510i
\(712\) 0 0
\(713\) 33.7410 1.26361
\(714\) 0 0
\(715\) 13.5551 0.506934
\(716\) 0 0
\(717\) − 0.555853i − 0.0207587i
\(718\) 0 0
\(719\) − 35.6674i − 1.33017i −0.746767 0.665086i \(-0.768395\pi\)
0.746767 0.665086i \(-0.231605\pi\)
\(720\) 0 0
\(721\) − 46.1761i − 1.71969i
\(722\) 0 0
\(723\) −1.70114 −0.0632661
\(724\) 0 0
\(725\) − 5.02129i − 0.186486i
\(726\) 0 0
\(727\) −14.4438 −0.535692 −0.267846 0.963462i \(-0.586312\pi\)
−0.267846 + 0.963462i \(0.586312\pi\)
\(728\) 0 0
\(729\) 26.6963 0.988753
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 22.8514 0.844036 0.422018 0.906587i \(-0.361322\pi\)
0.422018 + 0.906587i \(0.361322\pi\)
\(734\) 0 0
\(735\) −0.186017 −0.00686135
\(736\) 0 0
\(737\) 26.1586i 0.963563i
\(738\) 0 0
\(739\) 13.1134 0.482383 0.241192 0.970478i \(-0.422462\pi\)
0.241192 + 0.970478i \(0.422462\pi\)
\(740\) 0 0
\(741\) 1.65805i 0.0609099i
\(742\) 0 0
\(743\) − 5.86298i − 0.215092i −0.994200 0.107546i \(-0.965701\pi\)
0.994200 0.107546i \(-0.0342993\pi\)
\(744\) 0 0
\(745\) 16.9378i 0.620551i
\(746\) 0 0
\(747\) 3.01720 0.110394
\(748\) 0 0
\(749\) 42.2077 1.54224
\(750\) 0 0
\(751\) − 10.5603i − 0.385351i −0.981262 0.192676i \(-0.938283\pi\)
0.981262 0.192676i \(-0.0617165\pi\)
\(752\) 0 0
\(753\) 0.425554i 0.0155081i
\(754\) 0 0
\(755\) 32.7141i 1.19059i
\(756\) 0 0
\(757\) −52.3557 −1.90290 −0.951451 0.307801i \(-0.900407\pi\)
−0.951451 + 0.307801i \(0.900407\pi\)
\(758\) 0 0
\(759\) 0.654780i 0.0237670i
\(760\) 0 0
\(761\) −1.60283 −0.0581027 −0.0290513 0.999578i \(-0.509249\pi\)
−0.0290513 + 0.999578i \(0.509249\pi\)
\(762\) 0 0
\(763\) 32.8479 1.18917
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.62971 −0.347709
\(768\) 0 0
\(769\) 19.0060 0.685373 0.342686 0.939450i \(-0.388663\pi\)
0.342686 + 0.939450i \(0.388663\pi\)
\(770\) 0 0
\(771\) 2.11775i 0.0762691i
\(772\) 0 0
\(773\) −42.9719 −1.54559 −0.772795 0.634655i \(-0.781142\pi\)
−0.772795 + 0.634655i \(0.781142\pi\)
\(774\) 0 0
\(775\) − 4.58492i − 0.164695i
\(776\) 0 0
\(777\) − 1.22557i − 0.0439672i
\(778\) 0 0
\(779\) 55.0413i 1.97206i
\(780\) 0 0
\(781\) −14.1223 −0.505337
\(782\) 0 0
\(783\) −3.14830 −0.112511
\(784\) 0 0
\(785\) 7.95474i 0.283917i
\(786\) 0 0
\(787\) − 15.6985i − 0.559592i −0.960059 0.279796i \(-0.909733\pi\)
0.960059 0.279796i \(-0.0902669\pi\)
\(788\) 0 0
\(789\) − 0.305114i − 0.0108623i
\(790\) 0 0
\(791\) 9.54468 0.339370
\(792\) 0 0
\(793\) − 7.20901i − 0.255999i
\(794\) 0 0
\(795\) −1.28457 −0.0455592
\(796\) 0 0
\(797\) −10.2757 −0.363984 −0.181992 0.983300i \(-0.558255\pi\)
−0.181992 + 0.983300i \(0.558255\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −48.6792 −1.72000
\(802\) 0 0
\(803\) 3.80365 0.134228
\(804\) 0 0
\(805\) 31.2861i 1.10269i
\(806\) 0 0
\(807\) −0.147032 −0.00517578
\(808\) 0 0
\(809\) 7.07102i 0.248604i 0.992244 + 0.124302i \(0.0396691\pi\)
−0.992244 + 0.124302i \(0.960331\pi\)
\(810\) 0 0
\(811\) − 25.2175i − 0.885506i −0.896644 0.442753i \(-0.854002\pi\)
0.896644 0.442753i \(-0.145998\pi\)
\(812\) 0 0
\(813\) − 0.450591i − 0.0158029i
\(814\) 0 0
\(815\) −19.2642 −0.674794
\(816\) 0 0
\(817\) 37.2167 1.30205
\(818\) 0 0
\(819\) 33.9873i 1.18761i
\(820\) 0 0
\(821\) 17.1538i 0.598672i 0.954148 + 0.299336i \(0.0967652\pi\)
−0.954148 + 0.299336i \(0.903235\pi\)
\(822\) 0 0
\(823\) 19.1448i 0.667345i 0.942689 + 0.333673i \(0.108288\pi\)
−0.942689 + 0.333673i \(0.891712\pi\)
\(824\) 0 0
\(825\) 0.0889752 0.00309772
\(826\) 0 0
\(827\) − 12.2442i − 0.425772i −0.977077 0.212886i \(-0.931714\pi\)
0.977077 0.212886i \(-0.0682863\pi\)
\(828\) 0 0
\(829\) −22.8247 −0.792734 −0.396367 0.918092i \(-0.629729\pi\)
−0.396367 + 0.918092i \(0.629729\pi\)
\(830\) 0 0
\(831\) −0.431510 −0.0149689
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 9.04287 0.312942
\(836\) 0 0
\(837\) −2.87470 −0.0993642
\(838\) 0 0
\(839\) − 42.9945i − 1.48434i −0.670214 0.742168i \(-0.733798\pi\)
0.670214 0.742168i \(-0.266202\pi\)
\(840\) 0 0
\(841\) −19.9745 −0.688777
\(842\) 0 0
\(843\) 1.53497i 0.0528672i
\(844\) 0 0
\(845\) 5.61955i 0.193319i
\(846\) 0 0
\(847\) − 23.6780i − 0.813586i
\(848\) 0 0
\(849\) −2.02607 −0.0695347
\(850\) 0 0
\(851\) −30.1163 −1.03237
\(852\) 0 0
\(853\) − 6.75339i − 0.231232i −0.993294 0.115616i \(-0.963116\pi\)
0.993294 0.115616i \(-0.0368842\pi\)
\(854\) 0 0
\(855\) 34.5333i 1.18102i
\(856\) 0 0
\(857\) − 22.3142i − 0.762237i −0.924526 0.381119i \(-0.875539\pi\)
0.924526 0.381119i \(-0.124461\pi\)
\(858\) 0 0
\(859\) 49.3533 1.68391 0.841956 0.539546i \(-0.181404\pi\)
0.841956 + 0.539546i \(0.181404\pi\)
\(860\) 0 0
\(861\) − 2.12225i − 0.0723262i
\(862\) 0 0
\(863\) 9.00113 0.306402 0.153201 0.988195i \(-0.451042\pi\)
0.153201 + 0.988195i \(0.451042\pi\)
\(864\) 0 0
\(865\) −3.28166 −0.111580
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 23.1756 0.786177
\(870\) 0 0
\(871\) −62.7606 −2.12656
\(872\) 0 0
\(873\) − 41.4494i − 1.40285i
\(874\) 0 0
\(875\) 33.8768 1.14524
\(876\) 0 0
\(877\) 55.1621i 1.86269i 0.364134 + 0.931346i \(0.381365\pi\)
−0.364134 + 0.931346i \(0.618635\pi\)
\(878\) 0 0
\(879\) 0.416622i 0.0140523i
\(880\) 0 0
\(881\) − 8.00493i − 0.269693i −0.990867 0.134846i \(-0.956946\pi\)
0.990867 0.134846i \(-0.0430541\pi\)
\(882\) 0 0
\(883\) 49.4099 1.66277 0.831387 0.555693i \(-0.187547\pi\)
0.831387 + 0.555693i \(0.187547\pi\)
\(884\) 0 0
\(885\) 0.377263 0.0126815
\(886\) 0 0
\(887\) 3.38687i 0.113720i 0.998382 + 0.0568600i \(0.0181089\pi\)
−0.998382 + 0.0568600i \(0.981891\pi\)
\(888\) 0 0
\(889\) 56.8237i 1.90581i
\(890\) 0 0
\(891\) 14.7871i 0.495386i
\(892\) 0 0
\(893\) 24.6903 0.826228
\(894\) 0 0
\(895\) 45.5464i 1.52245i
\(896\) 0 0
\(897\) −1.57097 −0.0524532
\(898\) 0 0
\(899\) −44.7185 −1.49145
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −1.43498 −0.0477532
\(904\) 0 0
\(905\) −29.3566 −0.975846
\(906\) 0 0
\(907\) 35.6952i 1.18524i 0.805483 + 0.592619i \(0.201906\pi\)
−0.805483 + 0.592619i \(0.798094\pi\)
\(908\) 0 0
\(909\) 44.7683 1.48487
\(910\) 0 0
\(911\) 30.1013i 0.997301i 0.866803 + 0.498650i \(0.166171\pi\)
−0.866803 + 0.498650i \(0.833829\pi\)
\(912\) 0 0
\(913\) 1.66491i 0.0551005i
\(914\) 0 0
\(915\) 0.282427i 0.00933675i
\(916\) 0 0
\(917\) 42.6223 1.40751
\(918\) 0 0
\(919\) −35.6600 −1.17632 −0.588158 0.808746i \(-0.700147\pi\)
−0.588158 + 0.808746i \(0.700147\pi\)
\(920\) 0 0
\(921\) 1.20991i 0.0398679i
\(922\) 0 0
\(923\) − 33.8828i − 1.11527i
\(924\) 0 0
\(925\) 4.09237i 0.134556i
\(926\) 0 0
\(927\) 48.2921 1.58612
\(928\) 0 0
\(929\) − 27.7694i − 0.911086i −0.890214 0.455543i \(-0.849445\pi\)
0.890214 0.455543i \(-0.150555\pi\)
\(930\) 0 0
\(931\) −6.67488 −0.218760
\(932\) 0 0
\(933\) −1.36771 −0.0447769
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 34.9960 1.14327 0.571635 0.820508i \(-0.306309\pi\)
0.571635 + 0.820508i \(0.306309\pi\)
\(938\) 0 0
\(939\) 0.749032 0.0244437
\(940\) 0 0
\(941\) 20.3155i 0.662267i 0.943584 + 0.331134i \(0.107431\pi\)
−0.943584 + 0.331134i \(0.892569\pi\)
\(942\) 0 0
\(943\) −52.1506 −1.69826
\(944\) 0 0
\(945\) − 2.66554i − 0.0867100i
\(946\) 0 0
\(947\) − 18.7350i − 0.608807i −0.952543 0.304403i \(-0.901543\pi\)
0.952543 0.304403i \(-0.0984571\pi\)
\(948\) 0 0
\(949\) 9.12584i 0.296237i
\(950\) 0 0
\(951\) −0.335679 −0.0108852
\(952\) 0 0
\(953\) 23.4719 0.760330 0.380165 0.924919i \(-0.375867\pi\)
0.380165 + 0.924919i \(0.375867\pi\)
\(954\) 0 0
\(955\) − 19.4715i − 0.630082i
\(956\) 0 0
\(957\) − 0.867809i − 0.0280523i
\(958\) 0 0
\(959\) 7.11494i 0.229753i
\(960\) 0 0
\(961\) −9.83232 −0.317172
\(962\) 0 0
\(963\) 44.1418i 1.42245i
\(964\) 0 0
\(965\) 15.7910 0.508330
\(966\) 0 0
\(967\) −7.08838 −0.227947 −0.113974 0.993484i \(-0.536358\pi\)
−0.113974 + 0.993484i \(0.536358\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −46.1859 −1.48218 −0.741088 0.671408i \(-0.765690\pi\)
−0.741088 + 0.671408i \(0.765690\pi\)
\(972\) 0 0
\(973\) 9.39171 0.301084
\(974\) 0 0
\(975\) 0.213472i 0.00683659i
\(976\) 0 0
\(977\) −21.3334 −0.682516 −0.341258 0.939970i \(-0.610853\pi\)
−0.341258 + 0.939970i \(0.610853\pi\)
\(978\) 0 0
\(979\) − 26.8615i − 0.858497i
\(980\) 0 0
\(981\) 34.3531i 1.09681i
\(982\) 0 0
\(983\) − 46.3727i − 1.47906i −0.673124 0.739530i \(-0.735048\pi\)
0.673124 0.739530i \(-0.264952\pi\)
\(984\) 0 0
\(985\) 18.7189 0.596432
\(986\) 0 0
\(987\) −0.951994 −0.0303023
\(988\) 0 0
\(989\) 35.2621i 1.12127i
\(990\) 0 0
\(991\) 21.5269i 0.683824i 0.939732 + 0.341912i \(0.111074\pi\)
−0.939732 + 0.341912i \(0.888926\pi\)
\(992\) 0 0
\(993\) 0.0386341i 0.00122602i
\(994\) 0 0
\(995\) 23.7058 0.751526
\(996\) 0 0
\(997\) − 5.98544i − 0.189561i −0.995498 0.0947804i \(-0.969785\pi\)
0.995498 0.0947804i \(-0.0302149\pi\)
\(998\) 0 0
\(999\) 2.56588 0.0811808
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.b.o.577.6 12
17.4 even 4 2312.2.a.u.1.3 6
17.13 even 4 2312.2.a.v.1.4 yes 6
17.16 even 2 inner 2312.2.b.o.577.7 12
68.47 odd 4 4624.2.a.bs.1.3 6
68.55 odd 4 4624.2.a.br.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2312.2.a.u.1.3 6 17.4 even 4
2312.2.a.v.1.4 yes 6 17.13 even 4
2312.2.b.o.577.6 12 1.1 even 1 trivial
2312.2.b.o.577.7 12 17.16 even 2 inner
4624.2.a.br.1.4 6 68.55 odd 4
4624.2.a.bs.1.3 6 68.47 odd 4