Properties

Label 2312.2.a.u.1.3
Level $2312$
Weight $2$
Character 2312.1
Self dual yes
Analytic conductor $18.461$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,2,Mod(1,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-6,0,-3,0,0,0,6,0,-6,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4614129473\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.3418281.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} - 4x^{3} + 18x^{2} + 12x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.0750494\) of defining polynomial
Character \(\chi\) \(=\) 2312.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0750494 q^{3} +2.06942 q^{5} +2.86317 q^{7} -2.99437 q^{9} -1.65231 q^{11} -3.96428 q^{13} -0.155308 q^{15} -5.57295 q^{19} -0.214879 q^{21} -5.28027 q^{23} -0.717513 q^{25} +0.449874 q^{27} -6.99818 q^{29} -6.39002 q^{31} +0.124005 q^{33} +5.92509 q^{35} +5.70355 q^{37} +0.297517 q^{39} -9.87650 q^{41} -6.67809 q^{43} -6.19660 q^{45} +4.43037 q^{47} +1.19773 q^{49} +8.27111 q^{53} -3.41932 q^{55} +0.418247 q^{57} -2.42912 q^{59} -1.81849 q^{61} -8.57338 q^{63} -8.20375 q^{65} +15.8315 q^{67} +0.396281 q^{69} +8.54703 q^{71} -2.30202 q^{73} +0.0538489 q^{75} -4.73084 q^{77} +14.0262 q^{79} +8.94934 q^{81} -1.00763 q^{83} +0.525209 q^{87} -16.2569 q^{89} -11.3504 q^{91} +0.479567 q^{93} -11.5328 q^{95} -13.8424 q^{97} +4.94762 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{5} - 3 q^{7} + 6 q^{11} - 6 q^{13} - 6 q^{15} + 6 q^{19} + 6 q^{21} - 9 q^{23} + 6 q^{25} - 12 q^{27} - 27 q^{29} - 9 q^{31} + 3 q^{33} + 21 q^{35} - 15 q^{37} + 12 q^{39} - 21 q^{41} - 24 q^{45}+ \cdots + 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0750494 −0.0433298 −0.0216649 0.999765i \(-0.506897\pi\)
−0.0216649 + 0.999765i \(0.506897\pi\)
\(4\) 0 0
\(5\) 2.06942 0.925471 0.462736 0.886496i \(-0.346868\pi\)
0.462736 + 0.886496i \(0.346868\pi\)
\(6\) 0 0
\(7\) 2.86317 1.08218 0.541088 0.840966i \(-0.318013\pi\)
0.541088 + 0.840966i \(0.318013\pi\)
\(8\) 0 0
\(9\) −2.99437 −0.998123
\(10\) 0 0
\(11\) −1.65231 −0.498190 −0.249095 0.968479i \(-0.580133\pi\)
−0.249095 + 0.968479i \(0.580133\pi\)
\(12\) 0 0
\(13\) −3.96428 −1.09949 −0.549747 0.835331i \(-0.685276\pi\)
−0.549747 + 0.835331i \(0.685276\pi\)
\(14\) 0 0
\(15\) −0.155308 −0.0401005
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −5.57295 −1.27852 −0.639262 0.768989i \(-0.720760\pi\)
−0.639262 + 0.768989i \(0.720760\pi\)
\(20\) 0 0
\(21\) −0.214879 −0.0468904
\(22\) 0 0
\(23\) −5.28027 −1.10101 −0.550507 0.834831i \(-0.685565\pi\)
−0.550507 + 0.834831i \(0.685565\pi\)
\(24\) 0 0
\(25\) −0.717513 −0.143503
\(26\) 0 0
\(27\) 0.449874 0.0865782
\(28\) 0 0
\(29\) −6.99818 −1.29953 −0.649765 0.760135i \(-0.725133\pi\)
−0.649765 + 0.760135i \(0.725133\pi\)
\(30\) 0 0
\(31\) −6.39002 −1.14768 −0.573840 0.818967i \(-0.694547\pi\)
−0.573840 + 0.818967i \(0.694547\pi\)
\(32\) 0 0
\(33\) 0.124005 0.0215865
\(34\) 0 0
\(35\) 5.92509 1.00152
\(36\) 0 0
\(37\) 5.70355 0.937658 0.468829 0.883289i \(-0.344676\pi\)
0.468829 + 0.883289i \(0.344676\pi\)
\(38\) 0 0
\(39\) 0.297517 0.0476408
\(40\) 0 0
\(41\) −9.87650 −1.54245 −0.771225 0.636562i \(-0.780356\pi\)
−0.771225 + 0.636562i \(0.780356\pi\)
\(42\) 0 0
\(43\) −6.67809 −1.01840 −0.509199 0.860649i \(-0.670058\pi\)
−0.509199 + 0.860649i \(0.670058\pi\)
\(44\) 0 0
\(45\) −6.19660 −0.923734
\(46\) 0 0
\(47\) 4.43037 0.646236 0.323118 0.946359i \(-0.395269\pi\)
0.323118 + 0.946359i \(0.395269\pi\)
\(48\) 0 0
\(49\) 1.19773 0.171104
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.27111 1.13612 0.568062 0.822985i \(-0.307693\pi\)
0.568062 + 0.822985i \(0.307693\pi\)
\(54\) 0 0
\(55\) −3.41932 −0.461061
\(56\) 0 0
\(57\) 0.418247 0.0553981
\(58\) 0 0
\(59\) −2.42912 −0.316244 −0.158122 0.987420i \(-0.550544\pi\)
−0.158122 + 0.987420i \(0.550544\pi\)
\(60\) 0 0
\(61\) −1.81849 −0.232834 −0.116417 0.993200i \(-0.537141\pi\)
−0.116417 + 0.993200i \(0.537141\pi\)
\(62\) 0 0
\(63\) −8.57338 −1.08014
\(64\) 0 0
\(65\) −8.20375 −1.01755
\(66\) 0 0
\(67\) 15.8315 1.93413 0.967064 0.254535i \(-0.0819224\pi\)
0.967064 + 0.254535i \(0.0819224\pi\)
\(68\) 0 0
\(69\) 0.396281 0.0477067
\(70\) 0 0
\(71\) 8.54703 1.01435 0.507173 0.861844i \(-0.330691\pi\)
0.507173 + 0.861844i \(0.330691\pi\)
\(72\) 0 0
\(73\) −2.30202 −0.269431 −0.134715 0.990884i \(-0.543012\pi\)
−0.134715 + 0.990884i \(0.543012\pi\)
\(74\) 0 0
\(75\) 0.0538489 0.00621794
\(76\) 0 0
\(77\) −4.73084 −0.539129
\(78\) 0 0
\(79\) 14.0262 1.57807 0.789033 0.614351i \(-0.210582\pi\)
0.789033 + 0.614351i \(0.210582\pi\)
\(80\) 0 0
\(81\) 8.94934 0.994371
\(82\) 0 0
\(83\) −1.00763 −0.110601 −0.0553006 0.998470i \(-0.517612\pi\)
−0.0553006 + 0.998470i \(0.517612\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.525209 0.0563083
\(88\) 0 0
\(89\) −16.2569 −1.72323 −0.861616 0.507561i \(-0.830547\pi\)
−0.861616 + 0.507561i \(0.830547\pi\)
\(90\) 0 0
\(91\) −11.3504 −1.18985
\(92\) 0 0
\(93\) 0.479567 0.0497288
\(94\) 0 0
\(95\) −11.5328 −1.18324
\(96\) 0 0
\(97\) −13.8424 −1.40549 −0.702744 0.711443i \(-0.748042\pi\)
−0.702744 + 0.711443i \(0.748042\pi\)
\(98\) 0 0
\(99\) 4.94762 0.497255
\(100\) 0 0
\(101\) 14.9508 1.48766 0.743832 0.668366i \(-0.233006\pi\)
0.743832 + 0.668366i \(0.233006\pi\)
\(102\) 0 0
\(103\) 16.1276 1.58910 0.794552 0.607196i \(-0.207706\pi\)
0.794552 + 0.607196i \(0.207706\pi\)
\(104\) 0 0
\(105\) −0.444674 −0.0433958
\(106\) 0 0
\(107\) 14.7416 1.42513 0.712563 0.701608i \(-0.247534\pi\)
0.712563 + 0.701608i \(0.247534\pi\)
\(108\) 0 0
\(109\) −11.4726 −1.09887 −0.549437 0.835535i \(-0.685158\pi\)
−0.549437 + 0.835535i \(0.685158\pi\)
\(110\) 0 0
\(111\) −0.428048 −0.0406285
\(112\) 0 0
\(113\) −3.33361 −0.313599 −0.156800 0.987630i \(-0.550118\pi\)
−0.156800 + 0.987630i \(0.550118\pi\)
\(114\) 0 0
\(115\) −10.9271 −1.01896
\(116\) 0 0
\(117\) 11.8705 1.09743
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.26987 −0.751806
\(122\) 0 0
\(123\) 0.741226 0.0668341
\(124\) 0 0
\(125\) −11.8319 −1.05828
\(126\) 0 0
\(127\) 19.8464 1.76109 0.880544 0.473965i \(-0.157178\pi\)
0.880544 + 0.473965i \(0.157178\pi\)
\(128\) 0 0
\(129\) 0.501187 0.0441270
\(130\) 0 0
\(131\) 14.8864 1.30063 0.650316 0.759664i \(-0.274636\pi\)
0.650316 + 0.759664i \(0.274636\pi\)
\(132\) 0 0
\(133\) −15.9563 −1.38359
\(134\) 0 0
\(135\) 0.930976 0.0801257
\(136\) 0 0
\(137\) −2.48499 −0.212307 −0.106154 0.994350i \(-0.533853\pi\)
−0.106154 + 0.994350i \(0.533853\pi\)
\(138\) 0 0
\(139\) 3.28018 0.278221 0.139111 0.990277i \(-0.455576\pi\)
0.139111 + 0.990277i \(0.455576\pi\)
\(140\) 0 0
\(141\) −0.332497 −0.0280013
\(142\) 0 0
\(143\) 6.55022 0.547757
\(144\) 0 0
\(145\) −14.4822 −1.20268
\(146\) 0 0
\(147\) −0.0898887 −0.00741390
\(148\) 0 0
\(149\) 8.18480 0.670525 0.335262 0.942125i \(-0.391175\pi\)
0.335262 + 0.942125i \(0.391175\pi\)
\(150\) 0 0
\(151\) −15.8084 −1.28647 −0.643234 0.765670i \(-0.722408\pi\)
−0.643234 + 0.765670i \(0.722408\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −13.2236 −1.06215
\(156\) 0 0
\(157\) 3.84395 0.306781 0.153390 0.988166i \(-0.450981\pi\)
0.153390 + 0.988166i \(0.450981\pi\)
\(158\) 0 0
\(159\) −0.620742 −0.0492281
\(160\) 0 0
\(161\) −15.1183 −1.19149
\(162\) 0 0
\(163\) −9.30898 −0.729136 −0.364568 0.931177i \(-0.618783\pi\)
−0.364568 + 0.931177i \(0.618783\pi\)
\(164\) 0 0
\(165\) 0.256618 0.0199777
\(166\) 0 0
\(167\) −4.36977 −0.338143 −0.169071 0.985604i \(-0.554077\pi\)
−0.169071 + 0.985604i \(0.554077\pi\)
\(168\) 0 0
\(169\) 2.71552 0.208887
\(170\) 0 0
\(171\) 16.6875 1.27612
\(172\) 0 0
\(173\) 1.58579 0.120565 0.0602826 0.998181i \(-0.480800\pi\)
0.0602826 + 0.998181i \(0.480800\pi\)
\(174\) 0 0
\(175\) −2.05436 −0.155295
\(176\) 0 0
\(177\) 0.182304 0.0137028
\(178\) 0 0
\(179\) −22.0093 −1.64505 −0.822525 0.568729i \(-0.807435\pi\)
−0.822525 + 0.568729i \(0.807435\pi\)
\(180\) 0 0
\(181\) −14.1859 −1.05443 −0.527216 0.849731i \(-0.676764\pi\)
−0.527216 + 0.849731i \(0.676764\pi\)
\(182\) 0 0
\(183\) 0.136477 0.0100886
\(184\) 0 0
\(185\) 11.8030 0.867776
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 1.28806 0.0936928
\(190\) 0 0
\(191\) −9.40915 −0.680823 −0.340411 0.940277i \(-0.610566\pi\)
−0.340411 + 0.940277i \(0.610566\pi\)
\(192\) 0 0
\(193\) 7.63065 0.549266 0.274633 0.961549i \(-0.411444\pi\)
0.274633 + 0.961549i \(0.411444\pi\)
\(194\) 0 0
\(195\) 0.615687 0.0440902
\(196\) 0 0
\(197\) 9.04547 0.644463 0.322232 0.946661i \(-0.395567\pi\)
0.322232 + 0.946661i \(0.395567\pi\)
\(198\) 0 0
\(199\) −11.4553 −0.812047 −0.406023 0.913863i \(-0.633085\pi\)
−0.406023 + 0.913863i \(0.633085\pi\)
\(200\) 0 0
\(201\) −1.18815 −0.0838053
\(202\) 0 0
\(203\) −20.0370 −1.40632
\(204\) 0 0
\(205\) −20.4386 −1.42749
\(206\) 0 0
\(207\) 15.8111 1.09895
\(208\) 0 0
\(209\) 9.20825 0.636948
\(210\) 0 0
\(211\) −9.18283 −0.632172 −0.316086 0.948731i \(-0.602369\pi\)
−0.316086 + 0.948731i \(0.602369\pi\)
\(212\) 0 0
\(213\) −0.641449 −0.0439514
\(214\) 0 0
\(215\) −13.8198 −0.942499
\(216\) 0 0
\(217\) −18.2957 −1.24199
\(218\) 0 0
\(219\) 0.172765 0.0116744
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −7.34273 −0.491705 −0.245853 0.969307i \(-0.579068\pi\)
−0.245853 + 0.969307i \(0.579068\pi\)
\(224\) 0 0
\(225\) 2.14850 0.143233
\(226\) 0 0
\(227\) −11.7173 −0.777703 −0.388852 0.921300i \(-0.627128\pi\)
−0.388852 + 0.921300i \(0.627128\pi\)
\(228\) 0 0
\(229\) −8.45705 −0.558857 −0.279429 0.960166i \(-0.590145\pi\)
−0.279429 + 0.960166i \(0.590145\pi\)
\(230\) 0 0
\(231\) 0.355047 0.0233604
\(232\) 0 0
\(233\) −18.7135 −1.22596 −0.612980 0.790099i \(-0.710029\pi\)
−0.612980 + 0.790099i \(0.710029\pi\)
\(234\) 0 0
\(235\) 9.16829 0.598073
\(236\) 0 0
\(237\) −1.05265 −0.0683772
\(238\) 0 0
\(239\) 7.40650 0.479086 0.239543 0.970886i \(-0.423002\pi\)
0.239543 + 0.970886i \(0.423002\pi\)
\(240\) 0 0
\(241\) −22.6670 −1.46011 −0.730054 0.683390i \(-0.760505\pi\)
−0.730054 + 0.683390i \(0.760505\pi\)
\(242\) 0 0
\(243\) −2.02126 −0.129664
\(244\) 0 0
\(245\) 2.47860 0.158352
\(246\) 0 0
\(247\) 22.0928 1.40573
\(248\) 0 0
\(249\) 0.0756217 0.00479233
\(250\) 0 0
\(251\) −5.67032 −0.357907 −0.178954 0.983857i \(-0.557271\pi\)
−0.178954 + 0.983857i \(0.557271\pi\)
\(252\) 0 0
\(253\) 8.72465 0.548514
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 28.2181 1.76020 0.880100 0.474789i \(-0.157476\pi\)
0.880100 + 0.474789i \(0.157476\pi\)
\(258\) 0 0
\(259\) 16.3302 1.01471
\(260\) 0 0
\(261\) 20.9551 1.29709
\(262\) 0 0
\(263\) −4.06551 −0.250690 −0.125345 0.992113i \(-0.540004\pi\)
−0.125345 + 0.992113i \(0.540004\pi\)
\(264\) 0 0
\(265\) 17.1164 1.05145
\(266\) 0 0
\(267\) 1.22007 0.0746673
\(268\) 0 0
\(269\) −1.95914 −0.119451 −0.0597255 0.998215i \(-0.519023\pi\)
−0.0597255 + 0.998215i \(0.519023\pi\)
\(270\) 0 0
\(271\) 6.00392 0.364712 0.182356 0.983233i \(-0.441628\pi\)
0.182356 + 0.983233i \(0.441628\pi\)
\(272\) 0 0
\(273\) 0.851841 0.0515557
\(274\) 0 0
\(275\) 1.18555 0.0714916
\(276\) 0 0
\(277\) −5.74968 −0.345465 −0.172732 0.984969i \(-0.555260\pi\)
−0.172732 + 0.984969i \(0.555260\pi\)
\(278\) 0 0
\(279\) 19.1341 1.14553
\(280\) 0 0
\(281\) 20.4528 1.22011 0.610056 0.792359i \(-0.291147\pi\)
0.610056 + 0.792359i \(0.291147\pi\)
\(282\) 0 0
\(283\) 26.9965 1.60478 0.802389 0.596801i \(-0.203562\pi\)
0.802389 + 0.596801i \(0.203562\pi\)
\(284\) 0 0
\(285\) 0.865527 0.0512694
\(286\) 0 0
\(287\) −28.2781 −1.66920
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 1.03887 0.0608995
\(292\) 0 0
\(293\) −5.55130 −0.324310 −0.162155 0.986765i \(-0.551845\pi\)
−0.162155 + 0.986765i \(0.551845\pi\)
\(294\) 0 0
\(295\) −5.02686 −0.292675
\(296\) 0 0
\(297\) −0.743331 −0.0431324
\(298\) 0 0
\(299\) 20.9325 1.21056
\(300\) 0 0
\(301\) −19.1205 −1.10209
\(302\) 0 0
\(303\) −1.12205 −0.0644602
\(304\) 0 0
\(305\) −3.76322 −0.215481
\(306\) 0 0
\(307\) −16.1215 −0.920104 −0.460052 0.887892i \(-0.652169\pi\)
−0.460052 + 0.887892i \(0.652169\pi\)
\(308\) 0 0
\(309\) −1.21037 −0.0688555
\(310\) 0 0
\(311\) −18.2242 −1.03340 −0.516699 0.856167i \(-0.672839\pi\)
−0.516699 + 0.856167i \(0.672839\pi\)
\(312\) 0 0
\(313\) −9.98052 −0.564132 −0.282066 0.959395i \(-0.591020\pi\)
−0.282066 + 0.959395i \(0.591020\pi\)
\(314\) 0 0
\(315\) −17.7419 −0.999642
\(316\) 0 0
\(317\) 4.47278 0.251216 0.125608 0.992080i \(-0.459912\pi\)
0.125608 + 0.992080i \(0.459912\pi\)
\(318\) 0 0
\(319\) 11.5632 0.647413
\(320\) 0 0
\(321\) −1.10635 −0.0617504
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 2.84442 0.157780
\(326\) 0 0
\(327\) 0.861010 0.0476140
\(328\) 0 0
\(329\) 12.6849 0.699341
\(330\) 0 0
\(331\) 0.514782 0.0282950 0.0141475 0.999900i \(-0.495497\pi\)
0.0141475 + 0.999900i \(0.495497\pi\)
\(332\) 0 0
\(333\) −17.0785 −0.935898
\(334\) 0 0
\(335\) 32.7620 1.78998
\(336\) 0 0
\(337\) 3.35929 0.182992 0.0914960 0.995805i \(-0.470835\pi\)
0.0914960 + 0.995805i \(0.470835\pi\)
\(338\) 0 0
\(339\) 0.250185 0.0135882
\(340\) 0 0
\(341\) 10.5583 0.571764
\(342\) 0 0
\(343\) −16.6129 −0.897011
\(344\) 0 0
\(345\) 0.820071 0.0441512
\(346\) 0 0
\(347\) 23.5337 1.26336 0.631678 0.775231i \(-0.282366\pi\)
0.631678 + 0.775231i \(0.282366\pi\)
\(348\) 0 0
\(349\) 25.3356 1.35619 0.678093 0.734976i \(-0.262807\pi\)
0.678093 + 0.734976i \(0.262807\pi\)
\(350\) 0 0
\(351\) −1.78343 −0.0951922
\(352\) 0 0
\(353\) 17.0119 0.905454 0.452727 0.891649i \(-0.350451\pi\)
0.452727 + 0.891649i \(0.350451\pi\)
\(354\) 0 0
\(355\) 17.6874 0.938748
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.00460 −0.316911 −0.158455 0.987366i \(-0.550651\pi\)
−0.158455 + 0.987366i \(0.550651\pi\)
\(360\) 0 0
\(361\) 12.0578 0.634621
\(362\) 0 0
\(363\) 0.620649 0.0325756
\(364\) 0 0
\(365\) −4.76383 −0.249350
\(366\) 0 0
\(367\) −7.43083 −0.387886 −0.193943 0.981013i \(-0.562128\pi\)
−0.193943 + 0.981013i \(0.562128\pi\)
\(368\) 0 0
\(369\) 29.5739 1.53955
\(370\) 0 0
\(371\) 23.6816 1.22949
\(372\) 0 0
\(373\) −20.8566 −1.07991 −0.539957 0.841692i \(-0.681560\pi\)
−0.539957 + 0.841692i \(0.681560\pi\)
\(374\) 0 0
\(375\) 0.887978 0.0458550
\(376\) 0 0
\(377\) 27.7428 1.42882
\(378\) 0 0
\(379\) −2.34051 −0.120224 −0.0601119 0.998192i \(-0.519146\pi\)
−0.0601119 + 0.998192i \(0.519146\pi\)
\(380\) 0 0
\(381\) −1.48946 −0.0763075
\(382\) 0 0
\(383\) 31.7087 1.62024 0.810119 0.586265i \(-0.199402\pi\)
0.810119 + 0.586265i \(0.199402\pi\)
\(384\) 0 0
\(385\) −9.79008 −0.498949
\(386\) 0 0
\(387\) 19.9967 1.01649
\(388\) 0 0
\(389\) −10.8275 −0.548975 −0.274487 0.961591i \(-0.588508\pi\)
−0.274487 + 0.961591i \(0.588508\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −1.11722 −0.0563561
\(394\) 0 0
\(395\) 29.0260 1.46045
\(396\) 0 0
\(397\) −5.82927 −0.292562 −0.146281 0.989243i \(-0.546730\pi\)
−0.146281 + 0.989243i \(0.546730\pi\)
\(398\) 0 0
\(399\) 1.19751 0.0599505
\(400\) 0 0
\(401\) −25.5361 −1.27521 −0.637605 0.770363i \(-0.720075\pi\)
−0.637605 + 0.770363i \(0.720075\pi\)
\(402\) 0 0
\(403\) 25.3318 1.26187
\(404\) 0 0
\(405\) 18.5199 0.920262
\(406\) 0 0
\(407\) −9.42404 −0.467132
\(408\) 0 0
\(409\) −19.4417 −0.961329 −0.480664 0.876905i \(-0.659604\pi\)
−0.480664 + 0.876905i \(0.659604\pi\)
\(410\) 0 0
\(411\) 0.186497 0.00919922
\(412\) 0 0
\(413\) −6.95497 −0.342232
\(414\) 0 0
\(415\) −2.08520 −0.102358
\(416\) 0 0
\(417\) −0.246176 −0.0120553
\(418\) 0 0
\(419\) 37.6604 1.83983 0.919916 0.392116i \(-0.128257\pi\)
0.919916 + 0.392116i \(0.128257\pi\)
\(420\) 0 0
\(421\) −13.2597 −0.646238 −0.323119 0.946358i \(-0.604731\pi\)
−0.323119 + 0.946358i \(0.604731\pi\)
\(422\) 0 0
\(423\) −13.2662 −0.645023
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −5.20664 −0.251967
\(428\) 0 0
\(429\) −0.491590 −0.0237342
\(430\) 0 0
\(431\) 31.8730 1.53527 0.767635 0.640887i \(-0.221433\pi\)
0.767635 + 0.640887i \(0.221433\pi\)
\(432\) 0 0
\(433\) 37.8807 1.82043 0.910215 0.414137i \(-0.135917\pi\)
0.910215 + 0.414137i \(0.135917\pi\)
\(434\) 0 0
\(435\) 1.08688 0.0521118
\(436\) 0 0
\(437\) 29.4267 1.40767
\(438\) 0 0
\(439\) 4.95029 0.236264 0.118132 0.992998i \(-0.462309\pi\)
0.118132 + 0.992998i \(0.462309\pi\)
\(440\) 0 0
\(441\) −3.58644 −0.170783
\(442\) 0 0
\(443\) −25.7002 −1.22106 −0.610528 0.791995i \(-0.709043\pi\)
−0.610528 + 0.791995i \(0.709043\pi\)
\(444\) 0 0
\(445\) −33.6424 −1.59480
\(446\) 0 0
\(447\) −0.614264 −0.0290537
\(448\) 0 0
\(449\) −13.9403 −0.657882 −0.328941 0.944350i \(-0.606692\pi\)
−0.328941 + 0.944350i \(0.606692\pi\)
\(450\) 0 0
\(451\) 16.3190 0.768434
\(452\) 0 0
\(453\) 1.18641 0.0557424
\(454\) 0 0
\(455\) −23.4887 −1.10117
\(456\) 0 0
\(457\) 7.21894 0.337688 0.168844 0.985643i \(-0.445997\pi\)
0.168844 + 0.985643i \(0.445997\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −0.0248950 −0.00115948 −0.000579739 1.00000i \(-0.500185\pi\)
−0.000579739 1.00000i \(0.500185\pi\)
\(462\) 0 0
\(463\) −41.3218 −1.92039 −0.960194 0.279334i \(-0.909886\pi\)
−0.960194 + 0.279334i \(0.909886\pi\)
\(464\) 0 0
\(465\) 0.992424 0.0460226
\(466\) 0 0
\(467\) −2.01187 −0.0930985 −0.0465492 0.998916i \(-0.514822\pi\)
−0.0465492 + 0.998916i \(0.514822\pi\)
\(468\) 0 0
\(469\) 45.3283 2.09307
\(470\) 0 0
\(471\) −0.288486 −0.0132927
\(472\) 0 0
\(473\) 11.0343 0.507357
\(474\) 0 0
\(475\) 3.99867 0.183471
\(476\) 0 0
\(477\) −24.7668 −1.13399
\(478\) 0 0
\(479\) −40.6285 −1.85637 −0.928183 0.372124i \(-0.878629\pi\)
−0.928183 + 0.372124i \(0.878629\pi\)
\(480\) 0 0
\(481\) −22.6105 −1.03095
\(482\) 0 0
\(483\) 1.13462 0.0516270
\(484\) 0 0
\(485\) −28.6458 −1.30074
\(486\) 0 0
\(487\) −30.6041 −1.38680 −0.693401 0.720552i \(-0.743889\pi\)
−0.693401 + 0.720552i \(0.743889\pi\)
\(488\) 0 0
\(489\) 0.698633 0.0315933
\(490\) 0 0
\(491\) 15.3815 0.694157 0.347078 0.937836i \(-0.387174\pi\)
0.347078 + 0.937836i \(0.387174\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 10.2387 0.460195
\(496\) 0 0
\(497\) 24.4716 1.09770
\(498\) 0 0
\(499\) −12.2998 −0.550617 −0.275308 0.961356i \(-0.588780\pi\)
−0.275308 + 0.961356i \(0.588780\pi\)
\(500\) 0 0
\(501\) 0.327949 0.0146517
\(502\) 0 0
\(503\) −23.2615 −1.03718 −0.518589 0.855024i \(-0.673543\pi\)
−0.518589 + 0.855024i \(0.673543\pi\)
\(504\) 0 0
\(505\) 30.9395 1.37679
\(506\) 0 0
\(507\) −0.203799 −0.00905101
\(508\) 0 0
\(509\) −17.9307 −0.794762 −0.397381 0.917654i \(-0.630081\pi\)
−0.397381 + 0.917654i \(0.630081\pi\)
\(510\) 0 0
\(511\) −6.59106 −0.291571
\(512\) 0 0
\(513\) −2.50712 −0.110692
\(514\) 0 0
\(515\) 33.3748 1.47067
\(516\) 0 0
\(517\) −7.32035 −0.321949
\(518\) 0 0
\(519\) −0.119012 −0.00522407
\(520\) 0 0
\(521\) −12.5178 −0.548413 −0.274206 0.961671i \(-0.588415\pi\)
−0.274206 + 0.961671i \(0.588415\pi\)
\(522\) 0 0
\(523\) −10.5810 −0.462677 −0.231338 0.972873i \(-0.574310\pi\)
−0.231338 + 0.972873i \(0.574310\pi\)
\(524\) 0 0
\(525\) 0.154179 0.00672890
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 4.88129 0.212230
\(530\) 0 0
\(531\) 7.27367 0.315651
\(532\) 0 0
\(533\) 39.1532 1.69591
\(534\) 0 0
\(535\) 30.5066 1.31891
\(536\) 0 0
\(537\) 1.65178 0.0712797
\(538\) 0 0
\(539\) −1.97902 −0.0852423
\(540\) 0 0
\(541\) 31.4314 1.35134 0.675671 0.737203i \(-0.263854\pi\)
0.675671 + 0.737203i \(0.263854\pi\)
\(542\) 0 0
\(543\) 1.06465 0.0456883
\(544\) 0 0
\(545\) −23.7415 −1.01698
\(546\) 0 0
\(547\) −4.84354 −0.207095 −0.103547 0.994625i \(-0.533019\pi\)
−0.103547 + 0.994625i \(0.533019\pi\)
\(548\) 0 0
\(549\) 5.44523 0.232397
\(550\) 0 0
\(551\) 39.0005 1.66148
\(552\) 0 0
\(553\) 40.1592 1.70774
\(554\) 0 0
\(555\) −0.885810 −0.0376005
\(556\) 0 0
\(557\) 13.3327 0.564927 0.282463 0.959278i \(-0.408848\pi\)
0.282463 + 0.959278i \(0.408848\pi\)
\(558\) 0 0
\(559\) 26.4738 1.11972
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 30.2597 1.27529 0.637647 0.770329i \(-0.279908\pi\)
0.637647 + 0.770329i \(0.279908\pi\)
\(564\) 0 0
\(565\) −6.89862 −0.290227
\(566\) 0 0
\(567\) 25.6235 1.07608
\(568\) 0 0
\(569\) −30.4438 −1.27627 −0.638136 0.769924i \(-0.720294\pi\)
−0.638136 + 0.769924i \(0.720294\pi\)
\(570\) 0 0
\(571\) 37.5161 1.57000 0.785000 0.619496i \(-0.212663\pi\)
0.785000 + 0.619496i \(0.212663\pi\)
\(572\) 0 0
\(573\) 0.706151 0.0294999
\(574\) 0 0
\(575\) 3.78867 0.157998
\(576\) 0 0
\(577\) −24.2745 −1.01056 −0.505280 0.862955i \(-0.668611\pi\)
−0.505280 + 0.862955i \(0.668611\pi\)
\(578\) 0 0
\(579\) −0.572676 −0.0237996
\(580\) 0 0
\(581\) −2.88500 −0.119690
\(582\) 0 0
\(583\) −13.6664 −0.566007
\(584\) 0 0
\(585\) 24.5650 1.01564
\(586\) 0 0
\(587\) 18.4536 0.761661 0.380831 0.924645i \(-0.375638\pi\)
0.380831 + 0.924645i \(0.375638\pi\)
\(588\) 0 0
\(589\) 35.6113 1.46734
\(590\) 0 0
\(591\) −0.678857 −0.0279245
\(592\) 0 0
\(593\) −12.0405 −0.494444 −0.247222 0.968959i \(-0.579518\pi\)
−0.247222 + 0.968959i \(0.579518\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.859715 0.0351858
\(598\) 0 0
\(599\) 21.0725 0.860999 0.430499 0.902591i \(-0.358337\pi\)
0.430499 + 0.902591i \(0.358337\pi\)
\(600\) 0 0
\(601\) −19.5781 −0.798609 −0.399305 0.916818i \(-0.630748\pi\)
−0.399305 + 0.916818i \(0.630748\pi\)
\(602\) 0 0
\(603\) −47.4054 −1.93050
\(604\) 0 0
\(605\) −17.1138 −0.695775
\(606\) 0 0
\(607\) −7.14287 −0.289920 −0.144960 0.989438i \(-0.546305\pi\)
−0.144960 + 0.989438i \(0.546305\pi\)
\(608\) 0 0
\(609\) 1.50376 0.0609355
\(610\) 0 0
\(611\) −17.5632 −0.710533
\(612\) 0 0
\(613\) 9.73218 0.393079 0.196539 0.980496i \(-0.437030\pi\)
0.196539 + 0.980496i \(0.437030\pi\)
\(614\) 0 0
\(615\) 1.53390 0.0618530
\(616\) 0 0
\(617\) −15.7203 −0.632875 −0.316437 0.948613i \(-0.602487\pi\)
−0.316437 + 0.948613i \(0.602487\pi\)
\(618\) 0 0
\(619\) −46.8385 −1.88260 −0.941299 0.337573i \(-0.890394\pi\)
−0.941299 + 0.337573i \(0.890394\pi\)
\(620\) 0 0
\(621\) −2.37546 −0.0953238
\(622\) 0 0
\(623\) −46.5463 −1.86484
\(624\) 0 0
\(625\) −20.8976 −0.835904
\(626\) 0 0
\(627\) −0.691073 −0.0275988
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −0.994345 −0.0395843 −0.0197921 0.999804i \(-0.506300\pi\)
−0.0197921 + 0.999804i \(0.506300\pi\)
\(632\) 0 0
\(633\) 0.689166 0.0273919
\(634\) 0 0
\(635\) 41.0706 1.62984
\(636\) 0 0
\(637\) −4.74813 −0.188128
\(638\) 0 0
\(639\) −25.5929 −1.01244
\(640\) 0 0
\(641\) −12.9583 −0.511821 −0.255911 0.966700i \(-0.582375\pi\)
−0.255911 + 0.966700i \(0.582375\pi\)
\(642\) 0 0
\(643\) 5.44186 0.214606 0.107303 0.994226i \(-0.465778\pi\)
0.107303 + 0.994226i \(0.465778\pi\)
\(644\) 0 0
\(645\) 1.03716 0.0408383
\(646\) 0 0
\(647\) −13.4339 −0.528143 −0.264072 0.964503i \(-0.585065\pi\)
−0.264072 + 0.964503i \(0.585065\pi\)
\(648\) 0 0
\(649\) 4.01366 0.157550
\(650\) 0 0
\(651\) 1.37308 0.0538153
\(652\) 0 0
\(653\) 29.8838 1.16944 0.584722 0.811234i \(-0.301203\pi\)
0.584722 + 0.811234i \(0.301203\pi\)
\(654\) 0 0
\(655\) 30.8062 1.20370
\(656\) 0 0
\(657\) 6.89309 0.268925
\(658\) 0 0
\(659\) 26.0153 1.01341 0.506707 0.862119i \(-0.330863\pi\)
0.506707 + 0.862119i \(0.330863\pi\)
\(660\) 0 0
\(661\) −29.6768 −1.15430 −0.577148 0.816640i \(-0.695834\pi\)
−0.577148 + 0.816640i \(0.695834\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −33.0202 −1.28047
\(666\) 0 0
\(667\) 36.9523 1.43080
\(668\) 0 0
\(669\) 0.551067 0.0213055
\(670\) 0 0
\(671\) 3.00471 0.115996
\(672\) 0 0
\(673\) 27.1439 1.04632 0.523159 0.852235i \(-0.324753\pi\)
0.523159 + 0.852235i \(0.324753\pi\)
\(674\) 0 0
\(675\) −0.322790 −0.0124242
\(676\) 0 0
\(677\) −22.8605 −0.878602 −0.439301 0.898340i \(-0.644774\pi\)
−0.439301 + 0.898340i \(0.644774\pi\)
\(678\) 0 0
\(679\) −39.6332 −1.52098
\(680\) 0 0
\(681\) 0.879375 0.0336977
\(682\) 0 0
\(683\) 9.49776 0.363422 0.181711 0.983352i \(-0.441837\pi\)
0.181711 + 0.983352i \(0.441837\pi\)
\(684\) 0 0
\(685\) −5.14248 −0.196484
\(686\) 0 0
\(687\) 0.634696 0.0242152
\(688\) 0 0
\(689\) −32.7890 −1.24916
\(690\) 0 0
\(691\) 34.6226 1.31711 0.658554 0.752534i \(-0.271169\pi\)
0.658554 + 0.752534i \(0.271169\pi\)
\(692\) 0 0
\(693\) 14.1659 0.538117
\(694\) 0 0
\(695\) 6.78806 0.257486
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 1.40443 0.0531206
\(700\) 0 0
\(701\) −5.15517 −0.194708 −0.0973541 0.995250i \(-0.531038\pi\)
−0.0973541 + 0.995250i \(0.531038\pi\)
\(702\) 0 0
\(703\) −31.7856 −1.19882
\(704\) 0 0
\(705\) −0.688075 −0.0259144
\(706\) 0 0
\(707\) 42.8068 1.60991
\(708\) 0 0
\(709\) 2.45568 0.0922250 0.0461125 0.998936i \(-0.485317\pi\)
0.0461125 + 0.998936i \(0.485317\pi\)
\(710\) 0 0
\(711\) −41.9995 −1.57510
\(712\) 0 0
\(713\) 33.7410 1.26361
\(714\) 0 0
\(715\) 13.5551 0.506934
\(716\) 0 0
\(717\) −0.555853 −0.0207587
\(718\) 0 0
\(719\) −35.6674 −1.33017 −0.665086 0.746767i \(-0.731605\pi\)
−0.665086 + 0.746767i \(0.731605\pi\)
\(720\) 0 0
\(721\) 46.1761 1.71969
\(722\) 0 0
\(723\) 1.70114 0.0632661
\(724\) 0 0
\(725\) 5.02129 0.186486
\(726\) 0 0
\(727\) −14.4438 −0.535692 −0.267846 0.963462i \(-0.586312\pi\)
−0.267846 + 0.963462i \(0.586312\pi\)
\(728\) 0 0
\(729\) −26.6963 −0.988753
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −22.8514 −0.844036 −0.422018 0.906587i \(-0.638678\pi\)
−0.422018 + 0.906587i \(0.638678\pi\)
\(734\) 0 0
\(735\) −0.186017 −0.00686135
\(736\) 0 0
\(737\) −26.1586 −0.963563
\(738\) 0 0
\(739\) −13.1134 −0.482383 −0.241192 0.970478i \(-0.577538\pi\)
−0.241192 + 0.970478i \(0.577538\pi\)
\(740\) 0 0
\(741\) −1.65805 −0.0609099
\(742\) 0 0
\(743\) −5.86298 −0.215092 −0.107546 0.994200i \(-0.534299\pi\)
−0.107546 + 0.994200i \(0.534299\pi\)
\(744\) 0 0
\(745\) 16.9378 0.620551
\(746\) 0 0
\(747\) 3.01720 0.110394
\(748\) 0 0
\(749\) 42.2077 1.54224
\(750\) 0 0
\(751\) −10.5603 −0.385351 −0.192676 0.981262i \(-0.561717\pi\)
−0.192676 + 0.981262i \(0.561717\pi\)
\(752\) 0 0
\(753\) 0.425554 0.0155081
\(754\) 0 0
\(755\) −32.7141 −1.19059
\(756\) 0 0
\(757\) 52.3557 1.90290 0.951451 0.307801i \(-0.0995930\pi\)
0.951451 + 0.307801i \(0.0995930\pi\)
\(758\) 0 0
\(759\) −0.654780 −0.0237670
\(760\) 0 0
\(761\) −1.60283 −0.0581027 −0.0290513 0.999578i \(-0.509249\pi\)
−0.0290513 + 0.999578i \(0.509249\pi\)
\(762\) 0 0
\(763\) −32.8479 −1.18917
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.62971 0.347709
\(768\) 0 0
\(769\) 19.0060 0.685373 0.342686 0.939450i \(-0.388663\pi\)
0.342686 + 0.939450i \(0.388663\pi\)
\(770\) 0 0
\(771\) −2.11775 −0.0762691
\(772\) 0 0
\(773\) 42.9719 1.54559 0.772795 0.634655i \(-0.218858\pi\)
0.772795 + 0.634655i \(0.218858\pi\)
\(774\) 0 0
\(775\) 4.58492 0.164695
\(776\) 0 0
\(777\) −1.22557 −0.0439672
\(778\) 0 0
\(779\) 55.0413 1.97206
\(780\) 0 0
\(781\) −14.1223 −0.505337
\(782\) 0 0
\(783\) −3.14830 −0.112511
\(784\) 0 0
\(785\) 7.95474 0.283917
\(786\) 0 0
\(787\) −15.6985 −0.559592 −0.279796 0.960059i \(-0.590267\pi\)
−0.279796 + 0.960059i \(0.590267\pi\)
\(788\) 0 0
\(789\) 0.305114 0.0108623
\(790\) 0 0
\(791\) −9.54468 −0.339370
\(792\) 0 0
\(793\) 7.20901 0.255999
\(794\) 0 0
\(795\) −1.28457 −0.0455592
\(796\) 0 0
\(797\) 10.2757 0.363984 0.181992 0.983300i \(-0.441745\pi\)
0.181992 + 0.983300i \(0.441745\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 48.6792 1.72000
\(802\) 0 0
\(803\) 3.80365 0.134228
\(804\) 0 0
\(805\) −31.2861 −1.10269
\(806\) 0 0
\(807\) 0.147032 0.00517578
\(808\) 0 0
\(809\) −7.07102 −0.248604 −0.124302 0.992244i \(-0.539669\pi\)
−0.124302 + 0.992244i \(0.539669\pi\)
\(810\) 0 0
\(811\) −25.2175 −0.885506 −0.442753 0.896644i \(-0.645998\pi\)
−0.442753 + 0.896644i \(0.645998\pi\)
\(812\) 0 0
\(813\) −0.450591 −0.0158029
\(814\) 0 0
\(815\) −19.2642 −0.674794
\(816\) 0 0
\(817\) 37.2167 1.30205
\(818\) 0 0
\(819\) 33.9873 1.18761
\(820\) 0 0
\(821\) 17.1538 0.598672 0.299336 0.954148i \(-0.403235\pi\)
0.299336 + 0.954148i \(0.403235\pi\)
\(822\) 0 0
\(823\) −19.1448 −0.667345 −0.333673 0.942689i \(-0.608288\pi\)
−0.333673 + 0.942689i \(0.608288\pi\)
\(824\) 0 0
\(825\) −0.0889752 −0.00309772
\(826\) 0 0
\(827\) 12.2442 0.425772 0.212886 0.977077i \(-0.431714\pi\)
0.212886 + 0.977077i \(0.431714\pi\)
\(828\) 0 0
\(829\) −22.8247 −0.792734 −0.396367 0.918092i \(-0.629729\pi\)
−0.396367 + 0.918092i \(0.629729\pi\)
\(830\) 0 0
\(831\) 0.431510 0.0149689
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −9.04287 −0.312942
\(836\) 0 0
\(837\) −2.87470 −0.0993642
\(838\) 0 0
\(839\) 42.9945 1.48434 0.742168 0.670214i \(-0.233798\pi\)
0.742168 + 0.670214i \(0.233798\pi\)
\(840\) 0 0
\(841\) 19.9745 0.688777
\(842\) 0 0
\(843\) −1.53497 −0.0528672
\(844\) 0 0
\(845\) 5.61955 0.193319
\(846\) 0 0
\(847\) −23.6780 −0.813586
\(848\) 0 0
\(849\) −2.02607 −0.0695347
\(850\) 0 0
\(851\) −30.1163 −1.03237
\(852\) 0 0
\(853\) −6.75339 −0.231232 −0.115616 0.993294i \(-0.536884\pi\)
−0.115616 + 0.993294i \(0.536884\pi\)
\(854\) 0 0
\(855\) 34.5333 1.18102
\(856\) 0 0
\(857\) 22.3142 0.762237 0.381119 0.924526i \(-0.375539\pi\)
0.381119 + 0.924526i \(0.375539\pi\)
\(858\) 0 0
\(859\) −49.3533 −1.68391 −0.841956 0.539546i \(-0.818596\pi\)
−0.841956 + 0.539546i \(0.818596\pi\)
\(860\) 0 0
\(861\) 2.12225 0.0723262
\(862\) 0 0
\(863\) 9.00113 0.306402 0.153201 0.988195i \(-0.451042\pi\)
0.153201 + 0.988195i \(0.451042\pi\)
\(864\) 0 0
\(865\) 3.28166 0.111580
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −23.1756 −0.786177
\(870\) 0 0
\(871\) −62.7606 −2.12656
\(872\) 0 0
\(873\) 41.4494 1.40285
\(874\) 0 0
\(875\) −33.8768 −1.14524
\(876\) 0 0
\(877\) −55.1621 −1.86269 −0.931346 0.364134i \(-0.881365\pi\)
−0.931346 + 0.364134i \(0.881365\pi\)
\(878\) 0 0
\(879\) 0.416622 0.0140523
\(880\) 0 0
\(881\) −8.00493 −0.269693 −0.134846 0.990867i \(-0.543054\pi\)
−0.134846 + 0.990867i \(0.543054\pi\)
\(882\) 0 0
\(883\) 49.4099 1.66277 0.831387 0.555693i \(-0.187547\pi\)
0.831387 + 0.555693i \(0.187547\pi\)
\(884\) 0 0
\(885\) 0.377263 0.0126815
\(886\) 0 0
\(887\) 3.38687 0.113720 0.0568600 0.998382i \(-0.481891\pi\)
0.0568600 + 0.998382i \(0.481891\pi\)
\(888\) 0 0
\(889\) 56.8237 1.90581
\(890\) 0 0
\(891\) −14.7871 −0.495386
\(892\) 0 0
\(893\) −24.6903 −0.826228
\(894\) 0 0
\(895\) −45.5464 −1.52245
\(896\) 0 0
\(897\) −1.57097 −0.0524532
\(898\) 0 0
\(899\) 44.7185 1.49145
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 1.43498 0.0477532
\(904\) 0 0
\(905\) −29.3566 −0.975846
\(906\) 0 0
\(907\) −35.6952 −1.18524 −0.592619 0.805483i \(-0.701906\pi\)
−0.592619 + 0.805483i \(0.701906\pi\)
\(908\) 0 0
\(909\) −44.7683 −1.48487
\(910\) 0 0
\(911\) −30.1013 −0.997301 −0.498650 0.866803i \(-0.666171\pi\)
−0.498650 + 0.866803i \(0.666171\pi\)
\(912\) 0 0
\(913\) 1.66491 0.0551005
\(914\) 0 0
\(915\) 0.282427 0.00933675
\(916\) 0 0
\(917\) 42.6223 1.40751
\(918\) 0 0
\(919\) −35.6600 −1.17632 −0.588158 0.808746i \(-0.700147\pi\)
−0.588158 + 0.808746i \(0.700147\pi\)
\(920\) 0 0
\(921\) 1.20991 0.0398679
\(922\) 0 0
\(923\) −33.8828 −1.11527
\(924\) 0 0
\(925\) −4.09237 −0.134556
\(926\) 0 0
\(927\) −48.2921 −1.58612
\(928\) 0 0
\(929\) 27.7694 0.911086 0.455543 0.890214i \(-0.349445\pi\)
0.455543 + 0.890214i \(0.349445\pi\)
\(930\) 0 0
\(931\) −6.67488 −0.218760
\(932\) 0 0
\(933\) 1.36771 0.0447769
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −34.9960 −1.14327 −0.571635 0.820508i \(-0.693691\pi\)
−0.571635 + 0.820508i \(0.693691\pi\)
\(938\) 0 0
\(939\) 0.749032 0.0244437
\(940\) 0 0
\(941\) −20.3155 −0.662267 −0.331134 0.943584i \(-0.607431\pi\)
−0.331134 + 0.943584i \(0.607431\pi\)
\(942\) 0 0
\(943\) 52.1506 1.69826
\(944\) 0 0
\(945\) 2.66554 0.0867100
\(946\) 0 0
\(947\) −18.7350 −0.608807 −0.304403 0.952543i \(-0.598457\pi\)
−0.304403 + 0.952543i \(0.598457\pi\)
\(948\) 0 0
\(949\) 9.12584 0.296237
\(950\) 0 0
\(951\) −0.335679 −0.0108852
\(952\) 0 0
\(953\) 23.4719 0.760330 0.380165 0.924919i \(-0.375867\pi\)
0.380165 + 0.924919i \(0.375867\pi\)
\(954\) 0 0
\(955\) −19.4715 −0.630082
\(956\) 0 0
\(957\) −0.867809 −0.0280523
\(958\) 0 0
\(959\) −7.11494 −0.229753
\(960\) 0 0
\(961\) 9.83232 0.317172
\(962\) 0 0
\(963\) −44.1418 −1.42245
\(964\) 0 0
\(965\) 15.7910 0.508330
\(966\) 0 0
\(967\) 7.08838 0.227947 0.113974 0.993484i \(-0.463642\pi\)
0.113974 + 0.993484i \(0.463642\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 46.1859 1.48218 0.741088 0.671408i \(-0.234310\pi\)
0.741088 + 0.671408i \(0.234310\pi\)
\(972\) 0 0
\(973\) 9.39171 0.301084
\(974\) 0 0
\(975\) −0.213472 −0.00683659
\(976\) 0 0
\(977\) 21.3334 0.682516 0.341258 0.939970i \(-0.389147\pi\)
0.341258 + 0.939970i \(0.389147\pi\)
\(978\) 0 0
\(979\) 26.8615 0.858497
\(980\) 0 0
\(981\) 34.3531 1.09681
\(982\) 0 0
\(983\) −46.3727 −1.47906 −0.739530 0.673124i \(-0.764952\pi\)
−0.739530 + 0.673124i \(0.764952\pi\)
\(984\) 0 0
\(985\) 18.7189 0.596432
\(986\) 0 0
\(987\) −0.951994 −0.0303023
\(988\) 0 0
\(989\) 35.2621 1.12127
\(990\) 0 0
\(991\) 21.5269 0.683824 0.341912 0.939732i \(-0.388926\pi\)
0.341912 + 0.939732i \(0.388926\pi\)
\(992\) 0 0
\(993\) −0.0386341 −0.00122602
\(994\) 0 0
\(995\) −23.7058 −0.751526
\(996\) 0 0
\(997\) 5.98544 0.189561 0.0947804 0.995498i \(-0.469785\pi\)
0.0947804 + 0.995498i \(0.469785\pi\)
\(998\) 0 0
\(999\) 2.56588 0.0811808
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.a.u.1.3 6
4.3 odd 2 4624.2.a.br.1.4 6
17.4 even 4 2312.2.b.o.577.7 12
17.13 even 4 2312.2.b.o.577.6 12
17.16 even 2 2312.2.a.v.1.4 yes 6
68.67 odd 2 4624.2.a.bs.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2312.2.a.u.1.3 6 1.1 even 1 trivial
2312.2.a.v.1.4 yes 6 17.16 even 2
2312.2.b.o.577.6 12 17.13 even 4
2312.2.b.o.577.7 12 17.4 even 4
4624.2.a.br.1.4 6 4.3 odd 2
4624.2.a.bs.1.3 6 68.67 odd 2