Properties

Label 2312.2.b.o.577.4
Level $2312$
Weight $2$
Character 2312.577
Analytic conductor $18.461$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,2,Mod(577,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,-12,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4614129473\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 117x^{8} + 342x^{6} + 438x^{4} + 180x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.4
Root \(-1.60714i\) of defining polynomial
Character \(\chi\) \(=\) 2312.577
Dual form 2312.2.b.o.577.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.60714i q^{3} +2.19003i q^{5} -4.55776i q^{7} +0.417107 q^{9} +5.18440i q^{11} +5.72305 q^{13} +3.51968 q^{15} -0.750005 q^{19} -7.32495 q^{21} -0.436608i q^{23} +0.203761 q^{25} -5.49176i q^{27} +8.47747i q^{29} +3.22854i q^{31} +8.33205 q^{33} +9.98164 q^{35} +6.25019i q^{37} -9.19774i q^{39} -0.392067i q^{41} +5.78302 q^{43} +0.913477i q^{45} -3.77767 q^{47} -13.7732 q^{49} +9.73222 q^{53} -11.3540 q^{55} +1.20536i q^{57} +1.53405 q^{59} +3.33603i q^{61} -1.90107i q^{63} +12.5337i q^{65} -2.95893 q^{67} -0.701689 q^{69} -5.18265i q^{71} -5.90602i q^{73} -0.327472i q^{75} +23.6292 q^{77} -12.7694i q^{79} -7.57470 q^{81} +9.12073 q^{83} +13.6245 q^{87} +13.0080 q^{89} -26.0843i q^{91} +5.18871 q^{93} -1.64253i q^{95} +16.1089i q^{97} +2.16245i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{13} + 12 q^{15} - 12 q^{19} + 12 q^{21} - 12 q^{25} + 6 q^{33} + 42 q^{35} + 6 q^{47} - 18 q^{49} - 66 q^{53} - 102 q^{55} - 18 q^{67} - 6 q^{69} + 90 q^{77} - 36 q^{81} + 24 q^{83} - 30 q^{87}+ \cdots + 60 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2312\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1735\) \(1737\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.60714i − 0.927882i −0.885866 0.463941i \(-0.846435\pi\)
0.885866 0.463941i \(-0.153565\pi\)
\(4\) 0 0
\(5\) 2.19003i 0.979412i 0.871888 + 0.489706i \(0.162896\pi\)
−0.871888 + 0.489706i \(0.837104\pi\)
\(6\) 0 0
\(7\) − 4.55776i − 1.72267i −0.508036 0.861336i \(-0.669628\pi\)
0.508036 0.861336i \(-0.330372\pi\)
\(8\) 0 0
\(9\) 0.417107 0.139036
\(10\) 0 0
\(11\) 5.18440i 1.56316i 0.623808 + 0.781578i \(0.285585\pi\)
−0.623808 + 0.781578i \(0.714415\pi\)
\(12\) 0 0
\(13\) 5.72305 1.58729 0.793644 0.608382i \(-0.208181\pi\)
0.793644 + 0.608382i \(0.208181\pi\)
\(14\) 0 0
\(15\) 3.51968 0.908778
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −0.750005 −0.172063 −0.0860314 0.996292i \(-0.527419\pi\)
−0.0860314 + 0.996292i \(0.527419\pi\)
\(20\) 0 0
\(21\) −7.32495 −1.59844
\(22\) 0 0
\(23\) − 0.436608i − 0.0910390i −0.998963 0.0455195i \(-0.985506\pi\)
0.998963 0.0455195i \(-0.0144943\pi\)
\(24\) 0 0
\(25\) 0.203761 0.0407522
\(26\) 0 0
\(27\) − 5.49176i − 1.05689i
\(28\) 0 0
\(29\) 8.47747i 1.57423i 0.616808 + 0.787113i \(0.288425\pi\)
−0.616808 + 0.787113i \(0.711575\pi\)
\(30\) 0 0
\(31\) 3.22854i 0.579863i 0.957047 + 0.289931i \(0.0936325\pi\)
−0.957047 + 0.289931i \(0.906368\pi\)
\(32\) 0 0
\(33\) 8.33205 1.45042
\(34\) 0 0
\(35\) 9.98164 1.68720
\(36\) 0 0
\(37\) 6.25019i 1.02752i 0.857933 + 0.513762i \(0.171749\pi\)
−0.857933 + 0.513762i \(0.828251\pi\)
\(38\) 0 0
\(39\) − 9.19774i − 1.47282i
\(40\) 0 0
\(41\) − 0.392067i − 0.0612306i −0.999531 0.0306153i \(-0.990253\pi\)
0.999531 0.0306153i \(-0.00974668\pi\)
\(42\) 0 0
\(43\) 5.78302 0.881902 0.440951 0.897531i \(-0.354641\pi\)
0.440951 + 0.897531i \(0.354641\pi\)
\(44\) 0 0
\(45\) 0.913477i 0.136173i
\(46\) 0 0
\(47\) −3.77767 −0.551030 −0.275515 0.961297i \(-0.588848\pi\)
−0.275515 + 0.961297i \(0.588848\pi\)
\(48\) 0 0
\(49\) −13.7732 −1.96760
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.73222 1.33682 0.668412 0.743792i \(-0.266975\pi\)
0.668412 + 0.743792i \(0.266975\pi\)
\(54\) 0 0
\(55\) −11.3540 −1.53097
\(56\) 0 0
\(57\) 1.20536i 0.159654i
\(58\) 0 0
\(59\) 1.53405 0.199716 0.0998578 0.995002i \(-0.468161\pi\)
0.0998578 + 0.995002i \(0.468161\pi\)
\(60\) 0 0
\(61\) 3.33603i 0.427135i 0.976928 + 0.213568i \(0.0685083\pi\)
−0.976928 + 0.213568i \(0.931492\pi\)
\(62\) 0 0
\(63\) − 1.90107i − 0.239512i
\(64\) 0 0
\(65\) 12.5337i 1.55461i
\(66\) 0 0
\(67\) −2.95893 −0.361491 −0.180746 0.983530i \(-0.557851\pi\)
−0.180746 + 0.983530i \(0.557851\pi\)
\(68\) 0 0
\(69\) −0.701689 −0.0844734
\(70\) 0 0
\(71\) − 5.18265i − 0.615067i −0.951537 0.307534i \(-0.900496\pi\)
0.951537 0.307534i \(-0.0995037\pi\)
\(72\) 0 0
\(73\) − 5.90602i − 0.691248i −0.938373 0.345624i \(-0.887667\pi\)
0.938373 0.345624i \(-0.112333\pi\)
\(74\) 0 0
\(75\) − 0.327472i − 0.0378132i
\(76\) 0 0
\(77\) 23.6292 2.69280
\(78\) 0 0
\(79\) − 12.7694i − 1.43667i −0.695695 0.718337i \(-0.744904\pi\)
0.695695 0.718337i \(-0.255096\pi\)
\(80\) 0 0
\(81\) −7.57470 −0.841634
\(82\) 0 0
\(83\) 9.12073 1.00113 0.500565 0.865699i \(-0.333126\pi\)
0.500565 + 0.865699i \(0.333126\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 13.6245 1.46070
\(88\) 0 0
\(89\) 13.0080 1.37884 0.689421 0.724361i \(-0.257865\pi\)
0.689421 + 0.724361i \(0.257865\pi\)
\(90\) 0 0
\(91\) − 26.0843i − 2.73438i
\(92\) 0 0
\(93\) 5.18871 0.538044
\(94\) 0 0
\(95\) − 1.64253i − 0.168520i
\(96\) 0 0
\(97\) 16.1089i 1.63561i 0.575498 + 0.817803i \(0.304808\pi\)
−0.575498 + 0.817803i \(0.695192\pi\)
\(98\) 0 0
\(99\) 2.16245i 0.217334i
\(100\) 0 0
\(101\) −0.607663 −0.0604647 −0.0302324 0.999543i \(-0.509625\pi\)
−0.0302324 + 0.999543i \(0.509625\pi\)
\(102\) 0 0
\(103\) 11.1760 1.10121 0.550603 0.834767i \(-0.314398\pi\)
0.550603 + 0.834767i \(0.314398\pi\)
\(104\) 0 0
\(105\) − 16.0419i − 1.56553i
\(106\) 0 0
\(107\) 1.26866i 0.122646i 0.998118 + 0.0613232i \(0.0195320\pi\)
−0.998118 + 0.0613232i \(0.980468\pi\)
\(108\) 0 0
\(109\) − 20.2648i − 1.94102i −0.241062 0.970510i \(-0.577496\pi\)
0.241062 0.970510i \(-0.422504\pi\)
\(110\) 0 0
\(111\) 10.0449 0.953421
\(112\) 0 0
\(113\) − 18.2704i − 1.71873i −0.511359 0.859367i \(-0.670858\pi\)
0.511359 0.859367i \(-0.329142\pi\)
\(114\) 0 0
\(115\) 0.956184 0.0891646
\(116\) 0 0
\(117\) 2.38712 0.220690
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −15.8780 −1.44345
\(122\) 0 0
\(123\) −0.630106 −0.0568148
\(124\) 0 0
\(125\) 11.3964i 1.01933i
\(126\) 0 0
\(127\) −11.7089 −1.03899 −0.519497 0.854472i \(-0.673881\pi\)
−0.519497 + 0.854472i \(0.673881\pi\)
\(128\) 0 0
\(129\) − 9.29411i − 0.818300i
\(130\) 0 0
\(131\) 8.95059i 0.782017i 0.920387 + 0.391009i \(0.127874\pi\)
−0.920387 + 0.391009i \(0.872126\pi\)
\(132\) 0 0
\(133\) 3.41834i 0.296408i
\(134\) 0 0
\(135\) 12.0271 1.03513
\(136\) 0 0
\(137\) 4.24376 0.362569 0.181284 0.983431i \(-0.441975\pi\)
0.181284 + 0.983431i \(0.441975\pi\)
\(138\) 0 0
\(139\) − 14.4468i − 1.22536i −0.790330 0.612681i \(-0.790091\pi\)
0.790330 0.612681i \(-0.209909\pi\)
\(140\) 0 0
\(141\) 6.07124i 0.511290i
\(142\) 0 0
\(143\) 29.6706i 2.48118i
\(144\) 0 0
\(145\) −18.5659 −1.54182
\(146\) 0 0
\(147\) 22.1354i 1.82570i
\(148\) 0 0
\(149\) −5.83245 −0.477813 −0.238906 0.971043i \(-0.576789\pi\)
−0.238906 + 0.971043i \(0.576789\pi\)
\(150\) 0 0
\(151\) 7.91119 0.643804 0.321902 0.946773i \(-0.395678\pi\)
0.321902 + 0.946773i \(0.395678\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −7.07060 −0.567924
\(156\) 0 0
\(157\) −12.3692 −0.987172 −0.493586 0.869697i \(-0.664314\pi\)
−0.493586 + 0.869697i \(0.664314\pi\)
\(158\) 0 0
\(159\) − 15.6410i − 1.24041i
\(160\) 0 0
\(161\) −1.98995 −0.156830
\(162\) 0 0
\(163\) 16.3886i 1.28366i 0.766848 + 0.641829i \(0.221824\pi\)
−0.766848 + 0.641829i \(0.778176\pi\)
\(164\) 0 0
\(165\) 18.2474i 1.42056i
\(166\) 0 0
\(167\) 7.56874i 0.585687i 0.956160 + 0.292843i \(0.0946015\pi\)
−0.956160 + 0.292843i \(0.905399\pi\)
\(168\) 0 0
\(169\) 19.7533 1.51949
\(170\) 0 0
\(171\) −0.312832 −0.0239228
\(172\) 0 0
\(173\) − 10.1047i − 0.768245i −0.923282 0.384123i \(-0.874504\pi\)
0.923282 0.384123i \(-0.125496\pi\)
\(174\) 0 0
\(175\) − 0.928694i − 0.0702026i
\(176\) 0 0
\(177\) − 2.46542i − 0.185312i
\(178\) 0 0
\(179\) −2.03063 −0.151777 −0.0758883 0.997116i \(-0.524179\pi\)
−0.0758883 + 0.997116i \(0.524179\pi\)
\(180\) 0 0
\(181\) − 4.78498i − 0.355665i −0.984061 0.177832i \(-0.943092\pi\)
0.984061 0.177832i \(-0.0569085\pi\)
\(182\) 0 0
\(183\) 5.36146 0.396331
\(184\) 0 0
\(185\) −13.6881 −1.00637
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −25.0301 −1.82067
\(190\) 0 0
\(191\) 9.31083 0.673708 0.336854 0.941557i \(-0.390637\pi\)
0.336854 + 0.941557i \(0.390637\pi\)
\(192\) 0 0
\(193\) − 20.0225i − 1.44125i −0.693324 0.720626i \(-0.743854\pi\)
0.693324 0.720626i \(-0.256146\pi\)
\(194\) 0 0
\(195\) 20.1433 1.44249
\(196\) 0 0
\(197\) − 1.02318i − 0.0728987i −0.999336 0.0364494i \(-0.988395\pi\)
0.999336 0.0364494i \(-0.0116048\pi\)
\(198\) 0 0
\(199\) − 9.12527i − 0.646873i −0.946250 0.323437i \(-0.895162\pi\)
0.946250 0.323437i \(-0.104838\pi\)
\(200\) 0 0
\(201\) 4.75542i 0.335421i
\(202\) 0 0
\(203\) 38.6383 2.71188
\(204\) 0 0
\(205\) 0.858640 0.0599700
\(206\) 0 0
\(207\) − 0.182112i − 0.0126576i
\(208\) 0 0
\(209\) − 3.88832i − 0.268961i
\(210\) 0 0
\(211\) 1.91333i 0.131719i 0.997829 + 0.0658594i \(0.0209789\pi\)
−0.997829 + 0.0658594i \(0.979021\pi\)
\(212\) 0 0
\(213\) −8.32923 −0.570710
\(214\) 0 0
\(215\) 12.6650i 0.863745i
\(216\) 0 0
\(217\) 14.7149 0.998913
\(218\) 0 0
\(219\) −9.49180 −0.641396
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 15.7292 1.05330 0.526652 0.850081i \(-0.323447\pi\)
0.526652 + 0.850081i \(0.323447\pi\)
\(224\) 0 0
\(225\) 0.0849900 0.00566600
\(226\) 0 0
\(227\) 13.1228i 0.870989i 0.900191 + 0.435494i \(0.143426\pi\)
−0.900191 + 0.435494i \(0.856574\pi\)
\(228\) 0 0
\(229\) −11.3364 −0.749133 −0.374566 0.927200i \(-0.622208\pi\)
−0.374566 + 0.927200i \(0.622208\pi\)
\(230\) 0 0
\(231\) − 37.9755i − 2.49860i
\(232\) 0 0
\(233\) − 7.59285i − 0.497424i −0.968577 0.248712i \(-0.919993\pi\)
0.968577 0.248712i \(-0.0800073\pi\)
\(234\) 0 0
\(235\) − 8.27322i − 0.539685i
\(236\) 0 0
\(237\) −20.5223 −1.33306
\(238\) 0 0
\(239\) 2.11104 0.136552 0.0682760 0.997666i \(-0.478250\pi\)
0.0682760 + 0.997666i \(0.478250\pi\)
\(240\) 0 0
\(241\) 18.9917i 1.22336i 0.791103 + 0.611682i \(0.209507\pi\)
−0.791103 + 0.611682i \(0.790493\pi\)
\(242\) 0 0
\(243\) − 4.30169i − 0.275954i
\(244\) 0 0
\(245\) − 30.1637i − 1.92709i
\(246\) 0 0
\(247\) −4.29231 −0.273113
\(248\) 0 0
\(249\) − 14.6583i − 0.928930i
\(250\) 0 0
\(251\) 13.3230 0.840942 0.420471 0.907306i \(-0.361865\pi\)
0.420471 + 0.907306i \(0.361865\pi\)
\(252\) 0 0
\(253\) 2.26355 0.142308
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.94183 0.121128 0.0605640 0.998164i \(-0.480710\pi\)
0.0605640 + 0.998164i \(0.480710\pi\)
\(258\) 0 0
\(259\) 28.4869 1.77009
\(260\) 0 0
\(261\) 3.53601i 0.218873i
\(262\) 0 0
\(263\) −31.0706 −1.91589 −0.957946 0.286947i \(-0.907360\pi\)
−0.957946 + 0.286947i \(0.907360\pi\)
\(264\) 0 0
\(265\) 21.3139i 1.30930i
\(266\) 0 0
\(267\) − 20.9056i − 1.27940i
\(268\) 0 0
\(269\) − 5.73515i − 0.349678i −0.984597 0.174839i \(-0.944059\pi\)
0.984597 0.174839i \(-0.0559405\pi\)
\(270\) 0 0
\(271\) −21.1400 −1.28416 −0.642082 0.766636i \(-0.721929\pi\)
−0.642082 + 0.766636i \(0.721929\pi\)
\(272\) 0 0
\(273\) −41.9211 −2.53718
\(274\) 0 0
\(275\) 1.05638i 0.0637020i
\(276\) 0 0
\(277\) 1.31181i 0.0788189i 0.999223 + 0.0394095i \(0.0125477\pi\)
−0.999223 + 0.0394095i \(0.987452\pi\)
\(278\) 0 0
\(279\) 1.34664i 0.0806215i
\(280\) 0 0
\(281\) 28.7710 1.71633 0.858167 0.513371i \(-0.171604\pi\)
0.858167 + 0.513371i \(0.171604\pi\)
\(282\) 0 0
\(283\) 1.47735i 0.0878193i 0.999036 + 0.0439097i \(0.0139814\pi\)
−0.999036 + 0.0439097i \(0.986019\pi\)
\(284\) 0 0
\(285\) −2.63978 −0.156367
\(286\) 0 0
\(287\) −1.78695 −0.105480
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 25.8892 1.51765
\(292\) 0 0
\(293\) −21.8020 −1.27369 −0.636843 0.770994i \(-0.719760\pi\)
−0.636843 + 0.770994i \(0.719760\pi\)
\(294\) 0 0
\(295\) 3.35961i 0.195604i
\(296\) 0 0
\(297\) 28.4715 1.65208
\(298\) 0 0
\(299\) − 2.49873i − 0.144505i
\(300\) 0 0
\(301\) − 26.3576i − 1.51923i
\(302\) 0 0
\(303\) 0.976599i 0.0561041i
\(304\) 0 0
\(305\) −7.30601 −0.418341
\(306\) 0 0
\(307\) 21.4219 1.22261 0.611306 0.791395i \(-0.290645\pi\)
0.611306 + 0.791395i \(0.290645\pi\)
\(308\) 0 0
\(309\) − 17.9614i − 1.02179i
\(310\) 0 0
\(311\) 16.3635i 0.927892i 0.885864 + 0.463946i \(0.153567\pi\)
−0.885864 + 0.463946i \(0.846433\pi\)
\(312\) 0 0
\(313\) 9.55955i 0.540338i 0.962813 + 0.270169i \(0.0870795\pi\)
−0.962813 + 0.270169i \(0.912920\pi\)
\(314\) 0 0
\(315\) 4.16341 0.234581
\(316\) 0 0
\(317\) − 8.82782i − 0.495820i −0.968783 0.247910i \(-0.920256\pi\)
0.968783 0.247910i \(-0.0797437\pi\)
\(318\) 0 0
\(319\) −43.9506 −2.46076
\(320\) 0 0
\(321\) 2.03892 0.113801
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 1.16613 0.0646855
\(326\) 0 0
\(327\) −32.5684 −1.80104
\(328\) 0 0
\(329\) 17.2177i 0.949243i
\(330\) 0 0
\(331\) −28.8976 −1.58836 −0.794179 0.607684i \(-0.792099\pi\)
−0.794179 + 0.607684i \(0.792099\pi\)
\(332\) 0 0
\(333\) 2.60699i 0.142862i
\(334\) 0 0
\(335\) − 6.48016i − 0.354049i
\(336\) 0 0
\(337\) 2.58235i 0.140669i 0.997523 + 0.0703347i \(0.0224067\pi\)
−0.997523 + 0.0703347i \(0.977593\pi\)
\(338\) 0 0
\(339\) −29.3631 −1.59478
\(340\) 0 0
\(341\) −16.7380 −0.906415
\(342\) 0 0
\(343\) 30.8705i 1.66685i
\(344\) 0 0
\(345\) − 1.53672i − 0.0827342i
\(346\) 0 0
\(347\) − 10.2310i − 0.549229i −0.961554 0.274615i \(-0.911450\pi\)
0.961554 0.274615i \(-0.0885503\pi\)
\(348\) 0 0
\(349\) 0.672835 0.0360160 0.0180080 0.999838i \(-0.494268\pi\)
0.0180080 + 0.999838i \(0.494268\pi\)
\(350\) 0 0
\(351\) − 31.4296i − 1.67759i
\(352\) 0 0
\(353\) 8.63396 0.459540 0.229770 0.973245i \(-0.426203\pi\)
0.229770 + 0.973245i \(0.426203\pi\)
\(354\) 0 0
\(355\) 11.3502 0.602404
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.8285 −1.09929 −0.549643 0.835400i \(-0.685236\pi\)
−0.549643 + 0.835400i \(0.685236\pi\)
\(360\) 0 0
\(361\) −18.4375 −0.970394
\(362\) 0 0
\(363\) 25.5181i 1.33935i
\(364\) 0 0
\(365\) 12.9344 0.677016
\(366\) 0 0
\(367\) 0.287929i 0.0150298i 0.999972 + 0.00751489i \(0.00239209\pi\)
−0.999972 + 0.00751489i \(0.997608\pi\)
\(368\) 0 0
\(369\) − 0.163534i − 0.00851323i
\(370\) 0 0
\(371\) − 44.3571i − 2.30291i
\(372\) 0 0
\(373\) −10.2872 −0.532652 −0.266326 0.963883i \(-0.585810\pi\)
−0.266326 + 0.963883i \(0.585810\pi\)
\(374\) 0 0
\(375\) 18.3156 0.945813
\(376\) 0 0
\(377\) 48.5170i 2.49875i
\(378\) 0 0
\(379\) − 20.3610i − 1.04588i −0.852371 0.522938i \(-0.824836\pi\)
0.852371 0.522938i \(-0.175164\pi\)
\(380\) 0 0
\(381\) 18.8178i 0.964064i
\(382\) 0 0
\(383\) −30.6482 −1.56605 −0.783025 0.621990i \(-0.786324\pi\)
−0.783025 + 0.621990i \(0.786324\pi\)
\(384\) 0 0
\(385\) 51.7488i 2.63736i
\(386\) 0 0
\(387\) 2.41213 0.122616
\(388\) 0 0
\(389\) 1.61640 0.0819546 0.0409773 0.999160i \(-0.486953\pi\)
0.0409773 + 0.999160i \(0.486953\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 14.3848 0.725619
\(394\) 0 0
\(395\) 27.9655 1.40710
\(396\) 0 0
\(397\) 5.29986i 0.265993i 0.991117 + 0.132996i \(0.0424598\pi\)
−0.991117 + 0.132996i \(0.957540\pi\)
\(398\) 0 0
\(399\) 5.49375 0.275031
\(400\) 0 0
\(401\) 9.37263i 0.468047i 0.972231 + 0.234023i \(0.0751892\pi\)
−0.972231 + 0.234023i \(0.924811\pi\)
\(402\) 0 0
\(403\) 18.4771i 0.920409i
\(404\) 0 0
\(405\) − 16.5888i − 0.824306i
\(406\) 0 0
\(407\) −32.4035 −1.60618
\(408\) 0 0
\(409\) −8.23755 −0.407321 −0.203660 0.979042i \(-0.565284\pi\)
−0.203660 + 0.979042i \(0.565284\pi\)
\(410\) 0 0
\(411\) − 6.82031i − 0.336421i
\(412\) 0 0
\(413\) − 6.99181i − 0.344044i
\(414\) 0 0
\(415\) 19.9747i 0.980519i
\(416\) 0 0
\(417\) −23.2180 −1.13699
\(418\) 0 0
\(419\) 33.0196i 1.61311i 0.591156 + 0.806557i \(0.298672\pi\)
−0.591156 + 0.806557i \(0.701328\pi\)
\(420\) 0 0
\(421\) −28.0885 −1.36895 −0.684476 0.729036i \(-0.739969\pi\)
−0.684476 + 0.729036i \(0.739969\pi\)
\(422\) 0 0
\(423\) −1.57569 −0.0766127
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 15.2048 0.735813
\(428\) 0 0
\(429\) 47.6847 2.30224
\(430\) 0 0
\(431\) 32.3623i 1.55884i 0.626503 + 0.779419i \(0.284486\pi\)
−0.626503 + 0.779419i \(0.715514\pi\)
\(432\) 0 0
\(433\) 24.7892 1.19129 0.595645 0.803248i \(-0.296896\pi\)
0.595645 + 0.803248i \(0.296896\pi\)
\(434\) 0 0
\(435\) 29.8380i 1.43062i
\(436\) 0 0
\(437\) 0.327458i 0.0156644i
\(438\) 0 0
\(439\) 5.18883i 0.247649i 0.992304 + 0.123825i \(0.0395160\pi\)
−0.992304 + 0.123825i \(0.960484\pi\)
\(440\) 0 0
\(441\) −5.74488 −0.273566
\(442\) 0 0
\(443\) −7.08823 −0.336772 −0.168386 0.985721i \(-0.553855\pi\)
−0.168386 + 0.985721i \(0.553855\pi\)
\(444\) 0 0
\(445\) 28.4879i 1.35045i
\(446\) 0 0
\(447\) 9.37355i 0.443354i
\(448\) 0 0
\(449\) 24.2953i 1.14657i 0.819357 + 0.573283i \(0.194331\pi\)
−0.819357 + 0.573283i \(0.805669\pi\)
\(450\) 0 0
\(451\) 2.03263 0.0957130
\(452\) 0 0
\(453\) − 12.7144i − 0.597374i
\(454\) 0 0
\(455\) 57.1254 2.67808
\(456\) 0 0
\(457\) 20.5422 0.960923 0.480462 0.877016i \(-0.340469\pi\)
0.480462 + 0.877016i \(0.340469\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −24.8856 −1.15904 −0.579519 0.814959i \(-0.696760\pi\)
−0.579519 + 0.814959i \(0.696760\pi\)
\(462\) 0 0
\(463\) 15.2279 0.707703 0.353851 0.935302i \(-0.384872\pi\)
0.353851 + 0.935302i \(0.384872\pi\)
\(464\) 0 0
\(465\) 11.3634i 0.526967i
\(466\) 0 0
\(467\) 33.2698 1.53954 0.769772 0.638319i \(-0.220370\pi\)
0.769772 + 0.638319i \(0.220370\pi\)
\(468\) 0 0
\(469\) 13.4861i 0.622731i
\(470\) 0 0
\(471\) 19.8791i 0.915979i
\(472\) 0 0
\(473\) 29.9815i 1.37855i
\(474\) 0 0
\(475\) −0.152822 −0.00701194
\(476\) 0 0
\(477\) 4.05937 0.185866
\(478\) 0 0
\(479\) − 10.6962i − 0.488723i −0.969684 0.244362i \(-0.921422\pi\)
0.969684 0.244362i \(-0.0785784\pi\)
\(480\) 0 0
\(481\) 35.7701i 1.63098i
\(482\) 0 0
\(483\) 3.19813i 0.145520i
\(484\) 0 0
\(485\) −35.2789 −1.60193
\(486\) 0 0
\(487\) 19.1335i 0.867020i 0.901149 + 0.433510i \(0.142725\pi\)
−0.901149 + 0.433510i \(0.857275\pi\)
\(488\) 0 0
\(489\) 26.3388 1.19108
\(490\) 0 0
\(491\) −6.56476 −0.296263 −0.148132 0.988968i \(-0.547326\pi\)
−0.148132 + 0.988968i \(0.547326\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −4.73583 −0.212860
\(496\) 0 0
\(497\) −23.6213 −1.05956
\(498\) 0 0
\(499\) − 25.9028i − 1.15957i −0.814770 0.579784i \(-0.803137\pi\)
0.814770 0.579784i \(-0.196863\pi\)
\(500\) 0 0
\(501\) 12.1640 0.543448
\(502\) 0 0
\(503\) − 2.02620i − 0.0903437i −0.998979 0.0451719i \(-0.985616\pi\)
0.998979 0.0451719i \(-0.0143835\pi\)
\(504\) 0 0
\(505\) − 1.33080i − 0.0592199i
\(506\) 0 0
\(507\) − 31.7463i − 1.40990i
\(508\) 0 0
\(509\) −1.82543 −0.0809106 −0.0404553 0.999181i \(-0.512881\pi\)
−0.0404553 + 0.999181i \(0.512881\pi\)
\(510\) 0 0
\(511\) −26.9182 −1.19079
\(512\) 0 0
\(513\) 4.11885i 0.181852i
\(514\) 0 0
\(515\) 24.4758i 1.07853i
\(516\) 0 0
\(517\) − 19.5849i − 0.861345i
\(518\) 0 0
\(519\) −16.2396 −0.712841
\(520\) 0 0
\(521\) − 4.72853i − 0.207161i −0.994621 0.103580i \(-0.966970\pi\)
0.994621 0.103580i \(-0.0330299\pi\)
\(522\) 0 0
\(523\) −27.9297 −1.22128 −0.610640 0.791908i \(-0.709088\pi\)
−0.610640 + 0.791908i \(0.709088\pi\)
\(524\) 0 0
\(525\) −1.49254 −0.0651397
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 22.8094 0.991712
\(530\) 0 0
\(531\) 0.639860 0.0277676
\(532\) 0 0
\(533\) − 2.24382i − 0.0971907i
\(534\) 0 0
\(535\) −2.77841 −0.120121
\(536\) 0 0
\(537\) 3.26351i 0.140831i
\(538\) 0 0
\(539\) − 71.4056i − 3.07566i
\(540\) 0 0
\(541\) 13.9762i 0.600883i 0.953800 + 0.300442i \(0.0971341\pi\)
−0.953800 + 0.300442i \(0.902866\pi\)
\(542\) 0 0
\(543\) −7.69012 −0.330015
\(544\) 0 0
\(545\) 44.3806 1.90106
\(546\) 0 0
\(547\) 8.41081i 0.359620i 0.983701 + 0.179810i \(0.0575483\pi\)
−0.983701 + 0.179810i \(0.942452\pi\)
\(548\) 0 0
\(549\) 1.39148i 0.0593869i
\(550\) 0 0
\(551\) − 6.35814i − 0.270866i
\(552\) 0 0
\(553\) −58.2000 −2.47492
\(554\) 0 0
\(555\) 21.9987i 0.933792i
\(556\) 0 0
\(557\) 13.3327 0.564927 0.282463 0.959278i \(-0.408848\pi\)
0.282463 + 0.959278i \(0.408848\pi\)
\(558\) 0 0
\(559\) 33.0965 1.39983
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −28.8884 −1.21750 −0.608750 0.793362i \(-0.708329\pi\)
−0.608750 + 0.793362i \(0.708329\pi\)
\(564\) 0 0
\(565\) 40.0128 1.68335
\(566\) 0 0
\(567\) 34.5237i 1.44986i
\(568\) 0 0
\(569\) −17.0273 −0.713822 −0.356911 0.934138i \(-0.616170\pi\)
−0.356911 + 0.934138i \(0.616170\pi\)
\(570\) 0 0
\(571\) 22.9391i 0.959972i 0.877276 + 0.479986i \(0.159358\pi\)
−0.877276 + 0.479986i \(0.840642\pi\)
\(572\) 0 0
\(573\) − 14.9638i − 0.625121i
\(574\) 0 0
\(575\) − 0.0889636i − 0.00371004i
\(576\) 0 0
\(577\) −41.3828 −1.72279 −0.861393 0.507938i \(-0.830408\pi\)
−0.861393 + 0.507938i \(0.830408\pi\)
\(578\) 0 0
\(579\) −32.1790 −1.33731
\(580\) 0 0
\(581\) − 41.5701i − 1.72462i
\(582\) 0 0
\(583\) 50.4557i 2.08966i
\(584\) 0 0
\(585\) 5.22787i 0.216146i
\(586\) 0 0
\(587\) 32.2870 1.33263 0.666313 0.745672i \(-0.267872\pi\)
0.666313 + 0.745672i \(0.267872\pi\)
\(588\) 0 0
\(589\) − 2.42142i − 0.0997728i
\(590\) 0 0
\(591\) −1.64440 −0.0676414
\(592\) 0 0
\(593\) −25.8513 −1.06158 −0.530792 0.847502i \(-0.678105\pi\)
−0.530792 + 0.847502i \(0.678105\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −14.6656 −0.600222
\(598\) 0 0
\(599\) −13.4549 −0.549751 −0.274876 0.961480i \(-0.588637\pi\)
−0.274876 + 0.961480i \(0.588637\pi\)
\(600\) 0 0
\(601\) 39.0351i 1.59228i 0.605115 + 0.796138i \(0.293127\pi\)
−0.605115 + 0.796138i \(0.706873\pi\)
\(602\) 0 0
\(603\) −1.23419 −0.0502601
\(604\) 0 0
\(605\) − 34.7733i − 1.41374i
\(606\) 0 0
\(607\) 17.5713i 0.713198i 0.934258 + 0.356599i \(0.116064\pi\)
−0.934258 + 0.356599i \(0.883936\pi\)
\(608\) 0 0
\(609\) − 62.0971i − 2.51630i
\(610\) 0 0
\(611\) −21.6198 −0.874643
\(612\) 0 0
\(613\) −35.9993 −1.45400 −0.726999 0.686638i \(-0.759086\pi\)
−0.726999 + 0.686638i \(0.759086\pi\)
\(614\) 0 0
\(615\) − 1.37995i − 0.0556451i
\(616\) 0 0
\(617\) − 40.6511i − 1.63655i −0.574827 0.818275i \(-0.694931\pi\)
0.574827 0.818275i \(-0.305069\pi\)
\(618\) 0 0
\(619\) − 28.0856i − 1.12885i −0.825483 0.564427i \(-0.809097\pi\)
0.825483 0.564427i \(-0.190903\pi\)
\(620\) 0 0
\(621\) −2.39774 −0.0962182
\(622\) 0 0
\(623\) − 59.2872i − 2.37529i
\(624\) 0 0
\(625\) −23.9397 −0.957587
\(626\) 0 0
\(627\) −6.24907 −0.249564
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −9.48010 −0.377397 −0.188698 0.982035i \(-0.560427\pi\)
−0.188698 + 0.982035i \(0.560427\pi\)
\(632\) 0 0
\(633\) 3.07498 0.122220
\(634\) 0 0
\(635\) − 25.6428i − 1.01760i
\(636\) 0 0
\(637\) −78.8246 −3.12314
\(638\) 0 0
\(639\) − 2.16172i − 0.0855162i
\(640\) 0 0
\(641\) − 15.8059i − 0.624295i −0.950034 0.312147i \(-0.898952\pi\)
0.950034 0.312147i \(-0.101048\pi\)
\(642\) 0 0
\(643\) 28.9071i 1.13998i 0.821650 + 0.569992i \(0.193054\pi\)
−0.821650 + 0.569992i \(0.806946\pi\)
\(644\) 0 0
\(645\) 20.3544 0.801453
\(646\) 0 0
\(647\) −44.3941 −1.74531 −0.872655 0.488337i \(-0.837604\pi\)
−0.872655 + 0.488337i \(0.837604\pi\)
\(648\) 0 0
\(649\) 7.95310i 0.312187i
\(650\) 0 0
\(651\) − 23.6489i − 0.926873i
\(652\) 0 0
\(653\) 46.3129i 1.81237i 0.422887 + 0.906183i \(0.361017\pi\)
−0.422887 + 0.906183i \(0.638983\pi\)
\(654\) 0 0
\(655\) −19.6021 −0.765917
\(656\) 0 0
\(657\) − 2.46344i − 0.0961080i
\(658\) 0 0
\(659\) −17.8181 −0.694093 −0.347047 0.937848i \(-0.612815\pi\)
−0.347047 + 0.937848i \(0.612815\pi\)
\(660\) 0 0
\(661\) 9.94533 0.386829 0.193414 0.981117i \(-0.438044\pi\)
0.193414 + 0.981117i \(0.438044\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.48628 −0.290305
\(666\) 0 0
\(667\) 3.70133 0.143316
\(668\) 0 0
\(669\) − 25.2790i − 0.977342i
\(670\) 0 0
\(671\) −17.2953 −0.667678
\(672\) 0 0
\(673\) − 35.2526i − 1.35889i −0.733727 0.679444i \(-0.762221\pi\)
0.733727 0.679444i \(-0.237779\pi\)
\(674\) 0 0
\(675\) − 1.11901i − 0.0430706i
\(676\) 0 0
\(677\) − 46.4301i − 1.78445i −0.451588 0.892226i \(-0.649142\pi\)
0.451588 0.892226i \(-0.350858\pi\)
\(678\) 0 0
\(679\) 73.4203 2.81761
\(680\) 0 0
\(681\) 21.0901 0.808174
\(682\) 0 0
\(683\) 35.6740i 1.36503i 0.730873 + 0.682514i \(0.239113\pi\)
−0.730873 + 0.682514i \(0.760887\pi\)
\(684\) 0 0
\(685\) 9.29397i 0.355104i
\(686\) 0 0
\(687\) 18.2192i 0.695106i
\(688\) 0 0
\(689\) 55.6980 2.12192
\(690\) 0 0
\(691\) − 10.0109i − 0.380832i −0.981703 0.190416i \(-0.939016\pi\)
0.981703 0.190416i \(-0.0609837\pi\)
\(692\) 0 0
\(693\) 9.85591 0.374395
\(694\) 0 0
\(695\) 31.6390 1.20013
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −12.2028 −0.461551
\(700\) 0 0
\(701\) 1.31324 0.0496002 0.0248001 0.999692i \(-0.492105\pi\)
0.0248001 + 0.999692i \(0.492105\pi\)
\(702\) 0 0
\(703\) − 4.68767i − 0.176799i
\(704\) 0 0
\(705\) −13.2962 −0.500764
\(706\) 0 0
\(707\) 2.76958i 0.104161i
\(708\) 0 0
\(709\) − 27.7345i − 1.04159i −0.853682 0.520795i \(-0.825635\pi\)
0.853682 0.520795i \(-0.174365\pi\)
\(710\) 0 0
\(711\) − 5.32622i − 0.199749i
\(712\) 0 0
\(713\) 1.40960 0.0527901
\(714\) 0 0
\(715\) −64.9795 −2.43010
\(716\) 0 0
\(717\) − 3.39274i − 0.126704i
\(718\) 0 0
\(719\) − 21.8968i − 0.816613i −0.912845 0.408307i \(-0.866119\pi\)
0.912845 0.408307i \(-0.133881\pi\)
\(720\) 0 0
\(721\) − 50.9376i − 1.89701i
\(722\) 0 0
\(723\) 30.5223 1.13514
\(724\) 0 0
\(725\) 1.72738i 0.0641532i
\(726\) 0 0
\(727\) −20.1780 −0.748362 −0.374181 0.927356i \(-0.622076\pi\)
−0.374181 + 0.927356i \(0.622076\pi\)
\(728\) 0 0
\(729\) −29.6375 −1.09769
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 4.38032 0.161791 0.0808954 0.996723i \(-0.474222\pi\)
0.0808954 + 0.996723i \(0.474222\pi\)
\(734\) 0 0
\(735\) −48.4772 −1.78811
\(736\) 0 0
\(737\) − 15.3403i − 0.565067i
\(738\) 0 0
\(739\) 36.8554 1.35575 0.677875 0.735177i \(-0.262901\pi\)
0.677875 + 0.735177i \(0.262901\pi\)
\(740\) 0 0
\(741\) 6.89834i 0.253417i
\(742\) 0 0
\(743\) − 37.9459i − 1.39210i −0.717993 0.696051i \(-0.754939\pi\)
0.717993 0.696051i \(-0.245061\pi\)
\(744\) 0 0
\(745\) − 12.7732i − 0.467976i
\(746\) 0 0
\(747\) 3.80432 0.139193
\(748\) 0 0
\(749\) 5.78226 0.211279
\(750\) 0 0
\(751\) 9.08102i 0.331371i 0.986179 + 0.165686i \(0.0529837\pi\)
−0.986179 + 0.165686i \(0.947016\pi\)
\(752\) 0 0
\(753\) − 21.4119i − 0.780295i
\(754\) 0 0
\(755\) 17.3258i 0.630549i
\(756\) 0 0
\(757\) 13.9433 0.506779 0.253389 0.967364i \(-0.418455\pi\)
0.253389 + 0.967364i \(0.418455\pi\)
\(758\) 0 0
\(759\) − 3.63783i − 0.132045i
\(760\) 0 0
\(761\) −19.0549 −0.690740 −0.345370 0.938467i \(-0.612247\pi\)
−0.345370 + 0.938467i \(0.612247\pi\)
\(762\) 0 0
\(763\) −92.3623 −3.34374
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.77942 0.317006
\(768\) 0 0
\(769\) 41.8070 1.50760 0.753799 0.657105i \(-0.228219\pi\)
0.753799 + 0.657105i \(0.228219\pi\)
\(770\) 0 0
\(771\) − 3.12079i − 0.112392i
\(772\) 0 0
\(773\) 22.6810 0.815779 0.407890 0.913031i \(-0.366265\pi\)
0.407890 + 0.913031i \(0.366265\pi\)
\(774\) 0 0
\(775\) 0.657850i 0.0236307i
\(776\) 0 0
\(777\) − 45.7823i − 1.64243i
\(778\) 0 0
\(779\) 0.294052i 0.0105355i
\(780\) 0 0
\(781\) 26.8689 0.961446
\(782\) 0 0
\(783\) 46.5563 1.66379
\(784\) 0 0
\(785\) − 27.0890i − 0.966848i
\(786\) 0 0
\(787\) − 14.7018i − 0.524064i −0.965059 0.262032i \(-0.915607\pi\)
0.965059 0.262032i \(-0.0843925\pi\)
\(788\) 0 0
\(789\) 49.9347i 1.77772i
\(790\) 0 0
\(791\) −83.2721 −2.96081
\(792\) 0 0
\(793\) 19.0923i 0.677987i
\(794\) 0 0
\(795\) 34.2543 1.21488
\(796\) 0 0
\(797\) 8.21691 0.291058 0.145529 0.989354i \(-0.453512\pi\)
0.145529 + 0.989354i \(0.453512\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 5.42571 0.191708
\(802\) 0 0
\(803\) 30.6192 1.08053
\(804\) 0 0
\(805\) − 4.35806i − 0.153601i
\(806\) 0 0
\(807\) −9.21718 −0.324460
\(808\) 0 0
\(809\) 35.5939i 1.25142i 0.780057 + 0.625708i \(0.215190\pi\)
−0.780057 + 0.625708i \(0.784810\pi\)
\(810\) 0 0
\(811\) 5.67292i 0.199203i 0.995027 + 0.0996015i \(0.0317568\pi\)
−0.995027 + 0.0996015i \(0.968243\pi\)
\(812\) 0 0
\(813\) 33.9749i 1.19155i
\(814\) 0 0
\(815\) −35.8916 −1.25723
\(816\) 0 0
\(817\) −4.33729 −0.151742
\(818\) 0 0
\(819\) − 10.8799i − 0.380176i
\(820\) 0 0
\(821\) 3.95355i 0.137980i 0.997617 + 0.0689899i \(0.0219776\pi\)
−0.997617 + 0.0689899i \(0.978022\pi\)
\(822\) 0 0
\(823\) 4.31091i 0.150269i 0.997173 + 0.0751344i \(0.0239386\pi\)
−0.997173 + 0.0751344i \(0.976061\pi\)
\(824\) 0 0
\(825\) 1.69775 0.0591079
\(826\) 0 0
\(827\) − 41.8738i − 1.45609i −0.685527 0.728047i \(-0.740428\pi\)
0.685527 0.728047i \(-0.259572\pi\)
\(828\) 0 0
\(829\) −22.4808 −0.780792 −0.390396 0.920647i \(-0.627662\pi\)
−0.390396 + 0.920647i \(0.627662\pi\)
\(830\) 0 0
\(831\) 2.10826 0.0731346
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −16.5758 −0.573629
\(836\) 0 0
\(837\) 17.7304 0.612851
\(838\) 0 0
\(839\) − 12.0055i − 0.414475i −0.978291 0.207237i \(-0.933553\pi\)
0.978291 0.207237i \(-0.0664473\pi\)
\(840\) 0 0
\(841\) −42.8675 −1.47819
\(842\) 0 0
\(843\) − 46.2390i − 1.59255i
\(844\) 0 0
\(845\) 43.2604i 1.48820i
\(846\) 0 0
\(847\) 72.3681i 2.48660i
\(848\) 0 0
\(849\) 2.37430 0.0814859
\(850\) 0 0
\(851\) 2.72888 0.0935448
\(852\) 0 0
\(853\) 11.2288i 0.384465i 0.981349 + 0.192233i \(0.0615728\pi\)
−0.981349 + 0.192233i \(0.938427\pi\)
\(854\) 0 0
\(855\) − 0.685112i − 0.0234303i
\(856\) 0 0
\(857\) − 6.73481i − 0.230057i −0.993362 0.115028i \(-0.963304\pi\)
0.993362 0.115028i \(-0.0366959\pi\)
\(858\) 0 0
\(859\) 7.84826 0.267779 0.133890 0.990996i \(-0.457253\pi\)
0.133890 + 0.990996i \(0.457253\pi\)
\(860\) 0 0
\(861\) 2.87187i 0.0978732i
\(862\) 0 0
\(863\) 21.0758 0.717430 0.358715 0.933447i \(-0.383215\pi\)
0.358715 + 0.933447i \(0.383215\pi\)
\(864\) 0 0
\(865\) 22.1296 0.752428
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 66.2019 2.24574
\(870\) 0 0
\(871\) −16.9341 −0.573791
\(872\) 0 0
\(873\) 6.71911i 0.227407i
\(874\) 0 0
\(875\) 51.9421 1.75596
\(876\) 0 0
\(877\) 18.2845i 0.617424i 0.951156 + 0.308712i \(0.0998979\pi\)
−0.951156 + 0.308712i \(0.900102\pi\)
\(878\) 0 0
\(879\) 35.0388i 1.18183i
\(880\) 0 0
\(881\) 21.8193i 0.735110i 0.930002 + 0.367555i \(0.119805\pi\)
−0.930002 + 0.367555i \(0.880195\pi\)
\(882\) 0 0
\(883\) 21.8187 0.734257 0.367128 0.930170i \(-0.380341\pi\)
0.367128 + 0.930170i \(0.380341\pi\)
\(884\) 0 0
\(885\) 5.39935 0.181497
\(886\) 0 0
\(887\) − 44.8589i − 1.50621i −0.657898 0.753107i \(-0.728554\pi\)
0.657898 0.753107i \(-0.271446\pi\)
\(888\) 0 0
\(889\) 53.3662i 1.78985i
\(890\) 0 0
\(891\) − 39.2703i − 1.31560i
\(892\) 0 0
\(893\) 2.83327 0.0948117
\(894\) 0 0
\(895\) − 4.44715i − 0.148652i
\(896\) 0 0
\(897\) −4.01580 −0.134084
\(898\) 0 0
\(899\) −27.3698 −0.912835
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −42.3603 −1.40966
\(904\) 0 0
\(905\) 10.4793 0.348342
\(906\) 0 0
\(907\) − 2.95342i − 0.0980666i −0.998797 0.0490333i \(-0.984386\pi\)
0.998797 0.0490333i \(-0.0156140\pi\)
\(908\) 0 0
\(909\) −0.253460 −0.00840675
\(910\) 0 0
\(911\) 11.5101i 0.381346i 0.981654 + 0.190673i \(0.0610671\pi\)
−0.981654 + 0.190673i \(0.938933\pi\)
\(912\) 0 0
\(913\) 47.2855i 1.56492i
\(914\) 0 0
\(915\) 11.7418i 0.388171i
\(916\) 0 0
\(917\) 40.7947 1.34716
\(918\) 0 0
\(919\) 12.1680 0.401384 0.200692 0.979654i \(-0.435681\pi\)
0.200692 + 0.979654i \(0.435681\pi\)
\(920\) 0 0
\(921\) − 34.4279i − 1.13444i
\(922\) 0 0
\(923\) − 29.6606i − 0.976290i
\(924\) 0 0
\(925\) 1.27354i 0.0418739i
\(926\) 0 0
\(927\) 4.66159 0.153107
\(928\) 0 0
\(929\) 33.3053i 1.09271i 0.837553 + 0.546355i \(0.183985\pi\)
−0.837553 + 0.546355i \(0.816015\pi\)
\(930\) 0 0
\(931\) 10.3299 0.338550
\(932\) 0 0
\(933\) 26.2985 0.860974
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 30.5252 0.997213 0.498607 0.866828i \(-0.333845\pi\)
0.498607 + 0.866828i \(0.333845\pi\)
\(938\) 0 0
\(939\) 15.3635 0.501369
\(940\) 0 0
\(941\) − 37.8296i − 1.23321i −0.787273 0.616604i \(-0.788508\pi\)
0.787273 0.616604i \(-0.211492\pi\)
\(942\) 0 0
\(943\) −0.171180 −0.00557437
\(944\) 0 0
\(945\) − 54.8168i − 1.78319i
\(946\) 0 0
\(947\) 32.0402i 1.04117i 0.853811 + 0.520583i \(0.174285\pi\)
−0.853811 + 0.520583i \(0.825715\pi\)
\(948\) 0 0
\(949\) − 33.8005i − 1.09721i
\(950\) 0 0
\(951\) −14.1875 −0.460062
\(952\) 0 0
\(953\) 53.1556 1.72188 0.860940 0.508707i \(-0.169876\pi\)
0.860940 + 0.508707i \(0.169876\pi\)
\(954\) 0 0
\(955\) 20.3910i 0.659838i
\(956\) 0 0
\(957\) 70.6347i 2.28330i
\(958\) 0 0
\(959\) − 19.3420i − 0.624587i
\(960\) 0 0
\(961\) 20.5765 0.663759
\(962\) 0 0
\(963\) 0.529168i 0.0170522i
\(964\) 0 0
\(965\) 43.8500 1.41158
\(966\) 0 0
\(967\) 18.2854 0.588018 0.294009 0.955803i \(-0.405011\pi\)
0.294009 + 0.955803i \(0.405011\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12.4541 −0.399672 −0.199836 0.979829i \(-0.564041\pi\)
−0.199836 + 0.979829i \(0.564041\pi\)
\(972\) 0 0
\(973\) −65.8451 −2.11090
\(974\) 0 0
\(975\) − 1.87414i − 0.0600205i
\(976\) 0 0
\(977\) 29.1828 0.933639 0.466819 0.884353i \(-0.345400\pi\)
0.466819 + 0.884353i \(0.345400\pi\)
\(978\) 0 0
\(979\) 67.4385i 2.15534i
\(980\) 0 0
\(981\) − 8.45260i − 0.269871i
\(982\) 0 0
\(983\) 25.0005i 0.797392i 0.917083 + 0.398696i \(0.130537\pi\)
−0.917083 + 0.398696i \(0.869463\pi\)
\(984\) 0 0
\(985\) 2.24080 0.0713979
\(986\) 0 0
\(987\) 27.6712 0.880785
\(988\) 0 0
\(989\) − 2.52491i − 0.0802874i
\(990\) 0 0
\(991\) − 20.7858i − 0.660282i −0.943932 0.330141i \(-0.892904\pi\)
0.943932 0.330141i \(-0.107096\pi\)
\(992\) 0 0
\(993\) 46.4425i 1.47381i
\(994\) 0 0
\(995\) 19.9846 0.633555
\(996\) 0 0
\(997\) 5.83306i 0.184735i 0.995725 + 0.0923675i \(0.0294434\pi\)
−0.995725 + 0.0923675i \(0.970557\pi\)
\(998\) 0 0
\(999\) 34.3245 1.08598
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.b.o.577.4 12
17.4 even 4 2312.2.a.v.1.2 yes 6
17.13 even 4 2312.2.a.u.1.5 6
17.16 even 2 inner 2312.2.b.o.577.9 12
68.47 odd 4 4624.2.a.br.1.2 6
68.55 odd 4 4624.2.a.bs.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2312.2.a.u.1.5 6 17.13 even 4
2312.2.a.v.1.2 yes 6 17.4 even 4
2312.2.b.o.577.4 12 1.1 even 1 trivial
2312.2.b.o.577.9 12 17.16 even 2 inner
4624.2.a.br.1.2 6 68.47 odd 4
4624.2.a.bs.1.5 6 68.55 odd 4