Properties

Label 2312.2.a.u.1.5
Level $2312$
Weight $2$
Character 2312.1
Self dual yes
Analytic conductor $18.461$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,2,Mod(1,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-6,0,-3,0,0,0,6,0,-6,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4614129473\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.3418281.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} - 4x^{3} + 18x^{2} + 12x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.60714\) of defining polynomial
Character \(\chi\) \(=\) 2312.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.60714 q^{3} -2.19003 q^{5} -4.55776 q^{7} -0.417107 q^{9} +5.18440 q^{11} +5.72305 q^{13} -3.51968 q^{15} +0.750005 q^{19} -7.32495 q^{21} -0.436608 q^{23} -0.203761 q^{25} -5.49176 q^{27} -8.47747 q^{29} -3.22854 q^{31} +8.33205 q^{33} +9.98164 q^{35} -6.25019 q^{37} +9.19774 q^{39} -0.392067 q^{41} -5.78302 q^{43} +0.913477 q^{45} -3.77767 q^{47} +13.7732 q^{49} -9.73222 q^{53} -11.3540 q^{55} +1.20536 q^{57} -1.53405 q^{59} +3.33603 q^{61} +1.90107 q^{63} -12.5337 q^{65} -2.95893 q^{67} -0.701689 q^{69} +5.18265 q^{71} +5.90602 q^{73} -0.327472 q^{75} -23.6292 q^{77} -12.7694 q^{79} -7.57470 q^{81} -9.12073 q^{83} -13.6245 q^{87} +13.0080 q^{89} -26.0843 q^{91} -5.18871 q^{93} -1.64253 q^{95} -16.1089 q^{97} -2.16245 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{5} - 3 q^{7} + 6 q^{11} - 6 q^{13} - 6 q^{15} + 6 q^{19} + 6 q^{21} - 9 q^{23} + 6 q^{25} - 12 q^{27} - 27 q^{29} - 9 q^{31} + 3 q^{33} + 21 q^{35} - 15 q^{37} + 12 q^{39} - 21 q^{41} - 24 q^{45}+ \cdots + 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.60714 0.927882 0.463941 0.885866i \(-0.346435\pi\)
0.463941 + 0.885866i \(0.346435\pi\)
\(4\) 0 0
\(5\) −2.19003 −0.979412 −0.489706 0.871888i \(-0.662896\pi\)
−0.489706 + 0.871888i \(0.662896\pi\)
\(6\) 0 0
\(7\) −4.55776 −1.72267 −0.861336 0.508036i \(-0.830372\pi\)
−0.861336 + 0.508036i \(0.830372\pi\)
\(8\) 0 0
\(9\) −0.417107 −0.139036
\(10\) 0 0
\(11\) 5.18440 1.56316 0.781578 0.623808i \(-0.214415\pi\)
0.781578 + 0.623808i \(0.214415\pi\)
\(12\) 0 0
\(13\) 5.72305 1.58729 0.793644 0.608382i \(-0.208181\pi\)
0.793644 + 0.608382i \(0.208181\pi\)
\(14\) 0 0
\(15\) −3.51968 −0.908778
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 0.750005 0.172063 0.0860314 0.996292i \(-0.472581\pi\)
0.0860314 + 0.996292i \(0.472581\pi\)
\(20\) 0 0
\(21\) −7.32495 −1.59844
\(22\) 0 0
\(23\) −0.436608 −0.0910390 −0.0455195 0.998963i \(-0.514494\pi\)
−0.0455195 + 0.998963i \(0.514494\pi\)
\(24\) 0 0
\(25\) −0.203761 −0.0407522
\(26\) 0 0
\(27\) −5.49176 −1.05689
\(28\) 0 0
\(29\) −8.47747 −1.57423 −0.787113 0.616808i \(-0.788425\pi\)
−0.787113 + 0.616808i \(0.788425\pi\)
\(30\) 0 0
\(31\) −3.22854 −0.579863 −0.289931 0.957047i \(-0.593632\pi\)
−0.289931 + 0.957047i \(0.593632\pi\)
\(32\) 0 0
\(33\) 8.33205 1.45042
\(34\) 0 0
\(35\) 9.98164 1.68720
\(36\) 0 0
\(37\) −6.25019 −1.02752 −0.513762 0.857933i \(-0.671749\pi\)
−0.513762 + 0.857933i \(0.671749\pi\)
\(38\) 0 0
\(39\) 9.19774 1.47282
\(40\) 0 0
\(41\) −0.392067 −0.0612306 −0.0306153 0.999531i \(-0.509747\pi\)
−0.0306153 + 0.999531i \(0.509747\pi\)
\(42\) 0 0
\(43\) −5.78302 −0.881902 −0.440951 0.897531i \(-0.645359\pi\)
−0.440951 + 0.897531i \(0.645359\pi\)
\(44\) 0 0
\(45\) 0.913477 0.136173
\(46\) 0 0
\(47\) −3.77767 −0.551030 −0.275515 0.961297i \(-0.588848\pi\)
−0.275515 + 0.961297i \(0.588848\pi\)
\(48\) 0 0
\(49\) 13.7732 1.96760
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.73222 −1.33682 −0.668412 0.743792i \(-0.733025\pi\)
−0.668412 + 0.743792i \(0.733025\pi\)
\(54\) 0 0
\(55\) −11.3540 −1.53097
\(56\) 0 0
\(57\) 1.20536 0.159654
\(58\) 0 0
\(59\) −1.53405 −0.199716 −0.0998578 0.995002i \(-0.531839\pi\)
−0.0998578 + 0.995002i \(0.531839\pi\)
\(60\) 0 0
\(61\) 3.33603 0.427135 0.213568 0.976928i \(-0.431492\pi\)
0.213568 + 0.976928i \(0.431492\pi\)
\(62\) 0 0
\(63\) 1.90107 0.239512
\(64\) 0 0
\(65\) −12.5337 −1.55461
\(66\) 0 0
\(67\) −2.95893 −0.361491 −0.180746 0.983530i \(-0.557851\pi\)
−0.180746 + 0.983530i \(0.557851\pi\)
\(68\) 0 0
\(69\) −0.701689 −0.0844734
\(70\) 0 0
\(71\) 5.18265 0.615067 0.307534 0.951537i \(-0.400496\pi\)
0.307534 + 0.951537i \(0.400496\pi\)
\(72\) 0 0
\(73\) 5.90602 0.691248 0.345624 0.938373i \(-0.387667\pi\)
0.345624 + 0.938373i \(0.387667\pi\)
\(74\) 0 0
\(75\) −0.327472 −0.0378132
\(76\) 0 0
\(77\) −23.6292 −2.69280
\(78\) 0 0
\(79\) −12.7694 −1.43667 −0.718337 0.695695i \(-0.755096\pi\)
−0.718337 + 0.695695i \(0.755096\pi\)
\(80\) 0 0
\(81\) −7.57470 −0.841634
\(82\) 0 0
\(83\) −9.12073 −1.00113 −0.500565 0.865699i \(-0.666874\pi\)
−0.500565 + 0.865699i \(0.666874\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −13.6245 −1.46070
\(88\) 0 0
\(89\) 13.0080 1.37884 0.689421 0.724361i \(-0.257865\pi\)
0.689421 + 0.724361i \(0.257865\pi\)
\(90\) 0 0
\(91\) −26.0843 −2.73438
\(92\) 0 0
\(93\) −5.18871 −0.538044
\(94\) 0 0
\(95\) −1.64253 −0.168520
\(96\) 0 0
\(97\) −16.1089 −1.63561 −0.817803 0.575498i \(-0.804808\pi\)
−0.817803 + 0.575498i \(0.804808\pi\)
\(98\) 0 0
\(99\) −2.16245 −0.217334
\(100\) 0 0
\(101\) −0.607663 −0.0604647 −0.0302324 0.999543i \(-0.509625\pi\)
−0.0302324 + 0.999543i \(0.509625\pi\)
\(102\) 0 0
\(103\) 11.1760 1.10121 0.550603 0.834767i \(-0.314398\pi\)
0.550603 + 0.834767i \(0.314398\pi\)
\(104\) 0 0
\(105\) 16.0419 1.56553
\(106\) 0 0
\(107\) −1.26866 −0.122646 −0.0613232 0.998118i \(-0.519532\pi\)
−0.0613232 + 0.998118i \(0.519532\pi\)
\(108\) 0 0
\(109\) −20.2648 −1.94102 −0.970510 0.241062i \(-0.922504\pi\)
−0.970510 + 0.241062i \(0.922504\pi\)
\(110\) 0 0
\(111\) −10.0449 −0.953421
\(112\) 0 0
\(113\) −18.2704 −1.71873 −0.859367 0.511359i \(-0.829142\pi\)
−0.859367 + 0.511359i \(0.829142\pi\)
\(114\) 0 0
\(115\) 0.956184 0.0891646
\(116\) 0 0
\(117\) −2.38712 −0.220690
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 15.8780 1.44345
\(122\) 0 0
\(123\) −0.630106 −0.0568148
\(124\) 0 0
\(125\) 11.3964 1.01933
\(126\) 0 0
\(127\) 11.7089 1.03899 0.519497 0.854472i \(-0.326119\pi\)
0.519497 + 0.854472i \(0.326119\pi\)
\(128\) 0 0
\(129\) −9.29411 −0.818300
\(130\) 0 0
\(131\) −8.95059 −0.782017 −0.391009 0.920387i \(-0.627874\pi\)
−0.391009 + 0.920387i \(0.627874\pi\)
\(132\) 0 0
\(133\) −3.41834 −0.296408
\(134\) 0 0
\(135\) 12.0271 1.03513
\(136\) 0 0
\(137\) 4.24376 0.362569 0.181284 0.983431i \(-0.441975\pi\)
0.181284 + 0.983431i \(0.441975\pi\)
\(138\) 0 0
\(139\) 14.4468 1.22536 0.612681 0.790330i \(-0.290091\pi\)
0.612681 + 0.790330i \(0.290091\pi\)
\(140\) 0 0
\(141\) −6.07124 −0.511290
\(142\) 0 0
\(143\) 29.6706 2.48118
\(144\) 0 0
\(145\) 18.5659 1.54182
\(146\) 0 0
\(147\) 22.1354 1.82570
\(148\) 0 0
\(149\) −5.83245 −0.477813 −0.238906 0.971043i \(-0.576789\pi\)
−0.238906 + 0.971043i \(0.576789\pi\)
\(150\) 0 0
\(151\) −7.91119 −0.643804 −0.321902 0.946773i \(-0.604322\pi\)
−0.321902 + 0.946773i \(0.604322\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.07060 0.567924
\(156\) 0 0
\(157\) −12.3692 −0.987172 −0.493586 0.869697i \(-0.664314\pi\)
−0.493586 + 0.869697i \(0.664314\pi\)
\(158\) 0 0
\(159\) −15.6410 −1.24041
\(160\) 0 0
\(161\) 1.98995 0.156830
\(162\) 0 0
\(163\) 16.3886 1.28366 0.641829 0.766848i \(-0.278176\pi\)
0.641829 + 0.766848i \(0.278176\pi\)
\(164\) 0 0
\(165\) −18.2474 −1.42056
\(166\) 0 0
\(167\) −7.56874 −0.585687 −0.292843 0.956160i \(-0.594601\pi\)
−0.292843 + 0.956160i \(0.594601\pi\)
\(168\) 0 0
\(169\) 19.7533 1.51949
\(170\) 0 0
\(171\) −0.312832 −0.0239228
\(172\) 0 0
\(173\) 10.1047 0.768245 0.384123 0.923282i \(-0.374504\pi\)
0.384123 + 0.923282i \(0.374504\pi\)
\(174\) 0 0
\(175\) 0.928694 0.0702026
\(176\) 0 0
\(177\) −2.46542 −0.185312
\(178\) 0 0
\(179\) 2.03063 0.151777 0.0758883 0.997116i \(-0.475821\pi\)
0.0758883 + 0.997116i \(0.475821\pi\)
\(180\) 0 0
\(181\) −4.78498 −0.355665 −0.177832 0.984061i \(-0.556908\pi\)
−0.177832 + 0.984061i \(0.556908\pi\)
\(182\) 0 0
\(183\) 5.36146 0.396331
\(184\) 0 0
\(185\) 13.6881 1.00637
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 25.0301 1.82067
\(190\) 0 0
\(191\) 9.31083 0.673708 0.336854 0.941557i \(-0.390637\pi\)
0.336854 + 0.941557i \(0.390637\pi\)
\(192\) 0 0
\(193\) −20.0225 −1.44125 −0.720626 0.693324i \(-0.756146\pi\)
−0.720626 + 0.693324i \(0.756146\pi\)
\(194\) 0 0
\(195\) −20.1433 −1.44249
\(196\) 0 0
\(197\) −1.02318 −0.0728987 −0.0364494 0.999336i \(-0.511605\pi\)
−0.0364494 + 0.999336i \(0.511605\pi\)
\(198\) 0 0
\(199\) 9.12527 0.646873 0.323437 0.946250i \(-0.395162\pi\)
0.323437 + 0.946250i \(0.395162\pi\)
\(200\) 0 0
\(201\) −4.75542 −0.335421
\(202\) 0 0
\(203\) 38.6383 2.71188
\(204\) 0 0
\(205\) 0.858640 0.0599700
\(206\) 0 0
\(207\) 0.182112 0.0126576
\(208\) 0 0
\(209\) 3.88832 0.268961
\(210\) 0 0
\(211\) 1.91333 0.131719 0.0658594 0.997829i \(-0.479021\pi\)
0.0658594 + 0.997829i \(0.479021\pi\)
\(212\) 0 0
\(213\) 8.32923 0.570710
\(214\) 0 0
\(215\) 12.6650 0.863745
\(216\) 0 0
\(217\) 14.7149 0.998913
\(218\) 0 0
\(219\) 9.49180 0.641396
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −15.7292 −1.05330 −0.526652 0.850081i \(-0.676553\pi\)
−0.526652 + 0.850081i \(0.676553\pi\)
\(224\) 0 0
\(225\) 0.0849900 0.00566600
\(226\) 0 0
\(227\) 13.1228 0.870989 0.435494 0.900191i \(-0.356574\pi\)
0.435494 + 0.900191i \(0.356574\pi\)
\(228\) 0 0
\(229\) 11.3364 0.749133 0.374566 0.927200i \(-0.377792\pi\)
0.374566 + 0.927200i \(0.377792\pi\)
\(230\) 0 0
\(231\) −37.9755 −2.49860
\(232\) 0 0
\(233\) 7.59285 0.497424 0.248712 0.968577i \(-0.419993\pi\)
0.248712 + 0.968577i \(0.419993\pi\)
\(234\) 0 0
\(235\) 8.27322 0.539685
\(236\) 0 0
\(237\) −20.5223 −1.33306
\(238\) 0 0
\(239\) 2.11104 0.136552 0.0682760 0.997666i \(-0.478250\pi\)
0.0682760 + 0.997666i \(0.478250\pi\)
\(240\) 0 0
\(241\) −18.9917 −1.22336 −0.611682 0.791103i \(-0.709507\pi\)
−0.611682 + 0.791103i \(0.709507\pi\)
\(242\) 0 0
\(243\) 4.30169 0.275954
\(244\) 0 0
\(245\) −30.1637 −1.92709
\(246\) 0 0
\(247\) 4.29231 0.273113
\(248\) 0 0
\(249\) −14.6583 −0.928930
\(250\) 0 0
\(251\) 13.3230 0.840942 0.420471 0.907306i \(-0.361865\pi\)
0.420471 + 0.907306i \(0.361865\pi\)
\(252\) 0 0
\(253\) −2.26355 −0.142308
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.94183 −0.121128 −0.0605640 0.998164i \(-0.519290\pi\)
−0.0605640 + 0.998164i \(0.519290\pi\)
\(258\) 0 0
\(259\) 28.4869 1.77009
\(260\) 0 0
\(261\) 3.53601 0.218873
\(262\) 0 0
\(263\) 31.0706 1.91589 0.957946 0.286947i \(-0.0926405\pi\)
0.957946 + 0.286947i \(0.0926405\pi\)
\(264\) 0 0
\(265\) 21.3139 1.30930
\(266\) 0 0
\(267\) 20.9056 1.27940
\(268\) 0 0
\(269\) 5.73515 0.349678 0.174839 0.984597i \(-0.444059\pi\)
0.174839 + 0.984597i \(0.444059\pi\)
\(270\) 0 0
\(271\) −21.1400 −1.28416 −0.642082 0.766636i \(-0.721929\pi\)
−0.642082 + 0.766636i \(0.721929\pi\)
\(272\) 0 0
\(273\) −41.9211 −2.53718
\(274\) 0 0
\(275\) −1.05638 −0.0637020
\(276\) 0 0
\(277\) −1.31181 −0.0788189 −0.0394095 0.999223i \(-0.512548\pi\)
−0.0394095 + 0.999223i \(0.512548\pi\)
\(278\) 0 0
\(279\) 1.34664 0.0806215
\(280\) 0 0
\(281\) −28.7710 −1.71633 −0.858167 0.513371i \(-0.828396\pi\)
−0.858167 + 0.513371i \(0.828396\pi\)
\(282\) 0 0
\(283\) 1.47735 0.0878193 0.0439097 0.999036i \(-0.486019\pi\)
0.0439097 + 0.999036i \(0.486019\pi\)
\(284\) 0 0
\(285\) −2.63978 −0.156367
\(286\) 0 0
\(287\) 1.78695 0.105480
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −25.8892 −1.51765
\(292\) 0 0
\(293\) −21.8020 −1.27369 −0.636843 0.770994i \(-0.719760\pi\)
−0.636843 + 0.770994i \(0.719760\pi\)
\(294\) 0 0
\(295\) 3.35961 0.195604
\(296\) 0 0
\(297\) −28.4715 −1.65208
\(298\) 0 0
\(299\) −2.49873 −0.144505
\(300\) 0 0
\(301\) 26.3576 1.51923
\(302\) 0 0
\(303\) −0.976599 −0.0561041
\(304\) 0 0
\(305\) −7.30601 −0.418341
\(306\) 0 0
\(307\) 21.4219 1.22261 0.611306 0.791395i \(-0.290645\pi\)
0.611306 + 0.791395i \(0.290645\pi\)
\(308\) 0 0
\(309\) 17.9614 1.02179
\(310\) 0 0
\(311\) −16.3635 −0.927892 −0.463946 0.885864i \(-0.653567\pi\)
−0.463946 + 0.885864i \(0.653567\pi\)
\(312\) 0 0
\(313\) 9.55955 0.540338 0.270169 0.962813i \(-0.412920\pi\)
0.270169 + 0.962813i \(0.412920\pi\)
\(314\) 0 0
\(315\) −4.16341 −0.234581
\(316\) 0 0
\(317\) −8.82782 −0.495820 −0.247910 0.968783i \(-0.579744\pi\)
−0.247910 + 0.968783i \(0.579744\pi\)
\(318\) 0 0
\(319\) −43.9506 −2.46076
\(320\) 0 0
\(321\) −2.03892 −0.113801
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −1.16613 −0.0646855
\(326\) 0 0
\(327\) −32.5684 −1.80104
\(328\) 0 0
\(329\) 17.2177 0.949243
\(330\) 0 0
\(331\) 28.8976 1.58836 0.794179 0.607684i \(-0.207901\pi\)
0.794179 + 0.607684i \(0.207901\pi\)
\(332\) 0 0
\(333\) 2.60699 0.142862
\(334\) 0 0
\(335\) 6.48016 0.354049
\(336\) 0 0
\(337\) −2.58235 −0.140669 −0.0703347 0.997523i \(-0.522407\pi\)
−0.0703347 + 0.997523i \(0.522407\pi\)
\(338\) 0 0
\(339\) −29.3631 −1.59478
\(340\) 0 0
\(341\) −16.7380 −0.906415
\(342\) 0 0
\(343\) −30.8705 −1.66685
\(344\) 0 0
\(345\) 1.53672 0.0827342
\(346\) 0 0
\(347\) −10.2310 −0.549229 −0.274615 0.961554i \(-0.588550\pi\)
−0.274615 + 0.961554i \(0.588550\pi\)
\(348\) 0 0
\(349\) −0.672835 −0.0360160 −0.0180080 0.999838i \(-0.505732\pi\)
−0.0180080 + 0.999838i \(0.505732\pi\)
\(350\) 0 0
\(351\) −31.4296 −1.67759
\(352\) 0 0
\(353\) 8.63396 0.459540 0.229770 0.973245i \(-0.426203\pi\)
0.229770 + 0.973245i \(0.426203\pi\)
\(354\) 0 0
\(355\) −11.3502 −0.602404
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.8285 1.09929 0.549643 0.835400i \(-0.314764\pi\)
0.549643 + 0.835400i \(0.314764\pi\)
\(360\) 0 0
\(361\) −18.4375 −0.970394
\(362\) 0 0
\(363\) 25.5181 1.33935
\(364\) 0 0
\(365\) −12.9344 −0.677016
\(366\) 0 0
\(367\) 0.287929 0.0150298 0.00751489 0.999972i \(-0.497608\pi\)
0.00751489 + 0.999972i \(0.497608\pi\)
\(368\) 0 0
\(369\) 0.163534 0.00851323
\(370\) 0 0
\(371\) 44.3571 2.30291
\(372\) 0 0
\(373\) −10.2872 −0.532652 −0.266326 0.963883i \(-0.585810\pi\)
−0.266326 + 0.963883i \(0.585810\pi\)
\(374\) 0 0
\(375\) 18.3156 0.945813
\(376\) 0 0
\(377\) −48.5170 −2.49875
\(378\) 0 0
\(379\) 20.3610 1.04588 0.522938 0.852371i \(-0.324836\pi\)
0.522938 + 0.852371i \(0.324836\pi\)
\(380\) 0 0
\(381\) 18.8178 0.964064
\(382\) 0 0
\(383\) 30.6482 1.56605 0.783025 0.621990i \(-0.213676\pi\)
0.783025 + 0.621990i \(0.213676\pi\)
\(384\) 0 0
\(385\) 51.7488 2.63736
\(386\) 0 0
\(387\) 2.41213 0.122616
\(388\) 0 0
\(389\) −1.61640 −0.0819546 −0.0409773 0.999160i \(-0.513047\pi\)
−0.0409773 + 0.999160i \(0.513047\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −14.3848 −0.725619
\(394\) 0 0
\(395\) 27.9655 1.40710
\(396\) 0 0
\(397\) 5.29986 0.265993 0.132996 0.991117i \(-0.457540\pi\)
0.132996 + 0.991117i \(0.457540\pi\)
\(398\) 0 0
\(399\) −5.49375 −0.275031
\(400\) 0 0
\(401\) 9.37263 0.468047 0.234023 0.972231i \(-0.424811\pi\)
0.234023 + 0.972231i \(0.424811\pi\)
\(402\) 0 0
\(403\) −18.4771 −0.920409
\(404\) 0 0
\(405\) 16.5888 0.824306
\(406\) 0 0
\(407\) −32.4035 −1.60618
\(408\) 0 0
\(409\) −8.23755 −0.407321 −0.203660 0.979042i \(-0.565284\pi\)
−0.203660 + 0.979042i \(0.565284\pi\)
\(410\) 0 0
\(411\) 6.82031 0.336421
\(412\) 0 0
\(413\) 6.99181 0.344044
\(414\) 0 0
\(415\) 19.9747 0.980519
\(416\) 0 0
\(417\) 23.2180 1.13699
\(418\) 0 0
\(419\) 33.0196 1.61311 0.806557 0.591156i \(-0.201328\pi\)
0.806557 + 0.591156i \(0.201328\pi\)
\(420\) 0 0
\(421\) −28.0885 −1.36895 −0.684476 0.729036i \(-0.739969\pi\)
−0.684476 + 0.729036i \(0.739969\pi\)
\(422\) 0 0
\(423\) 1.57569 0.0766127
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −15.2048 −0.735813
\(428\) 0 0
\(429\) 47.6847 2.30224
\(430\) 0 0
\(431\) 32.3623 1.55884 0.779419 0.626503i \(-0.215514\pi\)
0.779419 + 0.626503i \(0.215514\pi\)
\(432\) 0 0
\(433\) −24.7892 −1.19129 −0.595645 0.803248i \(-0.703104\pi\)
−0.595645 + 0.803248i \(0.703104\pi\)
\(434\) 0 0
\(435\) 29.8380 1.43062
\(436\) 0 0
\(437\) −0.327458 −0.0156644
\(438\) 0 0
\(439\) −5.18883 −0.247649 −0.123825 0.992304i \(-0.539516\pi\)
−0.123825 + 0.992304i \(0.539516\pi\)
\(440\) 0 0
\(441\) −5.74488 −0.273566
\(442\) 0 0
\(443\) −7.08823 −0.336772 −0.168386 0.985721i \(-0.553855\pi\)
−0.168386 + 0.985721i \(0.553855\pi\)
\(444\) 0 0
\(445\) −28.4879 −1.35045
\(446\) 0 0
\(447\) −9.37355 −0.443354
\(448\) 0 0
\(449\) 24.2953 1.14657 0.573283 0.819357i \(-0.305669\pi\)
0.573283 + 0.819357i \(0.305669\pi\)
\(450\) 0 0
\(451\) −2.03263 −0.0957130
\(452\) 0 0
\(453\) −12.7144 −0.597374
\(454\) 0 0
\(455\) 57.1254 2.67808
\(456\) 0 0
\(457\) −20.5422 −0.960923 −0.480462 0.877016i \(-0.659531\pi\)
−0.480462 + 0.877016i \(0.659531\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 24.8856 1.15904 0.579519 0.814959i \(-0.303240\pi\)
0.579519 + 0.814959i \(0.303240\pi\)
\(462\) 0 0
\(463\) 15.2279 0.707703 0.353851 0.935302i \(-0.384872\pi\)
0.353851 + 0.935302i \(0.384872\pi\)
\(464\) 0 0
\(465\) 11.3634 0.526967
\(466\) 0 0
\(467\) −33.2698 −1.53954 −0.769772 0.638319i \(-0.779630\pi\)
−0.769772 + 0.638319i \(0.779630\pi\)
\(468\) 0 0
\(469\) 13.4861 0.622731
\(470\) 0 0
\(471\) −19.8791 −0.915979
\(472\) 0 0
\(473\) −29.9815 −1.37855
\(474\) 0 0
\(475\) −0.152822 −0.00701194
\(476\) 0 0
\(477\) 4.05937 0.185866
\(478\) 0 0
\(479\) 10.6962 0.488723 0.244362 0.969684i \(-0.421422\pi\)
0.244362 + 0.969684i \(0.421422\pi\)
\(480\) 0 0
\(481\) −35.7701 −1.63098
\(482\) 0 0
\(483\) 3.19813 0.145520
\(484\) 0 0
\(485\) 35.2789 1.60193
\(486\) 0 0
\(487\) 19.1335 0.867020 0.433510 0.901149i \(-0.357275\pi\)
0.433510 + 0.901149i \(0.357275\pi\)
\(488\) 0 0
\(489\) 26.3388 1.19108
\(490\) 0 0
\(491\) 6.56476 0.296263 0.148132 0.988968i \(-0.452674\pi\)
0.148132 + 0.988968i \(0.452674\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 4.73583 0.212860
\(496\) 0 0
\(497\) −23.6213 −1.05956
\(498\) 0 0
\(499\) −25.9028 −1.15957 −0.579784 0.814770i \(-0.696863\pi\)
−0.579784 + 0.814770i \(0.696863\pi\)
\(500\) 0 0
\(501\) −12.1640 −0.543448
\(502\) 0 0
\(503\) −2.02620 −0.0903437 −0.0451719 0.998979i \(-0.514384\pi\)
−0.0451719 + 0.998979i \(0.514384\pi\)
\(504\) 0 0
\(505\) 1.33080 0.0592199
\(506\) 0 0
\(507\) 31.7463 1.40990
\(508\) 0 0
\(509\) −1.82543 −0.0809106 −0.0404553 0.999181i \(-0.512881\pi\)
−0.0404553 + 0.999181i \(0.512881\pi\)
\(510\) 0 0
\(511\) −26.9182 −1.19079
\(512\) 0 0
\(513\) −4.11885 −0.181852
\(514\) 0 0
\(515\) −24.4758 −1.07853
\(516\) 0 0
\(517\) −19.5849 −0.861345
\(518\) 0 0
\(519\) 16.2396 0.712841
\(520\) 0 0
\(521\) −4.72853 −0.207161 −0.103580 0.994621i \(-0.533030\pi\)
−0.103580 + 0.994621i \(0.533030\pi\)
\(522\) 0 0
\(523\) −27.9297 −1.22128 −0.610640 0.791908i \(-0.709088\pi\)
−0.610640 + 0.791908i \(0.709088\pi\)
\(524\) 0 0
\(525\) 1.49254 0.0651397
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −22.8094 −0.991712
\(530\) 0 0
\(531\) 0.639860 0.0277676
\(532\) 0 0
\(533\) −2.24382 −0.0971907
\(534\) 0 0
\(535\) 2.77841 0.120121
\(536\) 0 0
\(537\) 3.26351 0.140831
\(538\) 0 0
\(539\) 71.4056 3.07566
\(540\) 0 0
\(541\) −13.9762 −0.600883 −0.300442 0.953800i \(-0.597134\pi\)
−0.300442 + 0.953800i \(0.597134\pi\)
\(542\) 0 0
\(543\) −7.69012 −0.330015
\(544\) 0 0
\(545\) 44.3806 1.90106
\(546\) 0 0
\(547\) −8.41081 −0.359620 −0.179810 0.983701i \(-0.557548\pi\)
−0.179810 + 0.983701i \(0.557548\pi\)
\(548\) 0 0
\(549\) −1.39148 −0.0593869
\(550\) 0 0
\(551\) −6.35814 −0.270866
\(552\) 0 0
\(553\) 58.2000 2.47492
\(554\) 0 0
\(555\) 21.9987 0.933792
\(556\) 0 0
\(557\) 13.3327 0.564927 0.282463 0.959278i \(-0.408848\pi\)
0.282463 + 0.959278i \(0.408848\pi\)
\(558\) 0 0
\(559\) −33.0965 −1.39983
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 28.8884 1.21750 0.608750 0.793362i \(-0.291671\pi\)
0.608750 + 0.793362i \(0.291671\pi\)
\(564\) 0 0
\(565\) 40.0128 1.68335
\(566\) 0 0
\(567\) 34.5237 1.44986
\(568\) 0 0
\(569\) 17.0273 0.713822 0.356911 0.934138i \(-0.383830\pi\)
0.356911 + 0.934138i \(0.383830\pi\)
\(570\) 0 0
\(571\) 22.9391 0.959972 0.479986 0.877276i \(-0.340642\pi\)
0.479986 + 0.877276i \(0.340642\pi\)
\(572\) 0 0
\(573\) 14.9638 0.625121
\(574\) 0 0
\(575\) 0.0889636 0.00371004
\(576\) 0 0
\(577\) −41.3828 −1.72279 −0.861393 0.507938i \(-0.830408\pi\)
−0.861393 + 0.507938i \(0.830408\pi\)
\(578\) 0 0
\(579\) −32.1790 −1.33731
\(580\) 0 0
\(581\) 41.5701 1.72462
\(582\) 0 0
\(583\) −50.4557 −2.08966
\(584\) 0 0
\(585\) 5.22787 0.216146
\(586\) 0 0
\(587\) −32.2870 −1.33263 −0.666313 0.745672i \(-0.732128\pi\)
−0.666313 + 0.745672i \(0.732128\pi\)
\(588\) 0 0
\(589\) −2.42142 −0.0997728
\(590\) 0 0
\(591\) −1.64440 −0.0676414
\(592\) 0 0
\(593\) 25.8513 1.06158 0.530792 0.847502i \(-0.321895\pi\)
0.530792 + 0.847502i \(0.321895\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 14.6656 0.600222
\(598\) 0 0
\(599\) −13.4549 −0.549751 −0.274876 0.961480i \(-0.588637\pi\)
−0.274876 + 0.961480i \(0.588637\pi\)
\(600\) 0 0
\(601\) 39.0351 1.59228 0.796138 0.605115i \(-0.206873\pi\)
0.796138 + 0.605115i \(0.206873\pi\)
\(602\) 0 0
\(603\) 1.23419 0.0502601
\(604\) 0 0
\(605\) −34.7733 −1.41374
\(606\) 0 0
\(607\) −17.5713 −0.713198 −0.356599 0.934258i \(-0.616064\pi\)
−0.356599 + 0.934258i \(0.616064\pi\)
\(608\) 0 0
\(609\) 62.0971 2.51630
\(610\) 0 0
\(611\) −21.6198 −0.874643
\(612\) 0 0
\(613\) −35.9993 −1.45400 −0.726999 0.686638i \(-0.759086\pi\)
−0.726999 + 0.686638i \(0.759086\pi\)
\(614\) 0 0
\(615\) 1.37995 0.0556451
\(616\) 0 0
\(617\) 40.6511 1.63655 0.818275 0.574827i \(-0.194931\pi\)
0.818275 + 0.574827i \(0.194931\pi\)
\(618\) 0 0
\(619\) −28.0856 −1.12885 −0.564427 0.825483i \(-0.690903\pi\)
−0.564427 + 0.825483i \(0.690903\pi\)
\(620\) 0 0
\(621\) 2.39774 0.0962182
\(622\) 0 0
\(623\) −59.2872 −2.37529
\(624\) 0 0
\(625\) −23.9397 −0.957587
\(626\) 0 0
\(627\) 6.24907 0.249564
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 9.48010 0.377397 0.188698 0.982035i \(-0.439573\pi\)
0.188698 + 0.982035i \(0.439573\pi\)
\(632\) 0 0
\(633\) 3.07498 0.122220
\(634\) 0 0
\(635\) −25.6428 −1.01760
\(636\) 0 0
\(637\) 78.8246 3.12314
\(638\) 0 0
\(639\) −2.16172 −0.0855162
\(640\) 0 0
\(641\) 15.8059 0.624295 0.312147 0.950034i \(-0.398952\pi\)
0.312147 + 0.950034i \(0.398952\pi\)
\(642\) 0 0
\(643\) −28.9071 −1.13998 −0.569992 0.821650i \(-0.693054\pi\)
−0.569992 + 0.821650i \(0.693054\pi\)
\(644\) 0 0
\(645\) 20.3544 0.801453
\(646\) 0 0
\(647\) −44.3941 −1.74531 −0.872655 0.488337i \(-0.837604\pi\)
−0.872655 + 0.488337i \(0.837604\pi\)
\(648\) 0 0
\(649\) −7.95310 −0.312187
\(650\) 0 0
\(651\) 23.6489 0.926873
\(652\) 0 0
\(653\) 46.3129 1.81237 0.906183 0.422887i \(-0.138983\pi\)
0.906183 + 0.422887i \(0.138983\pi\)
\(654\) 0 0
\(655\) 19.6021 0.765917
\(656\) 0 0
\(657\) −2.46344 −0.0961080
\(658\) 0 0
\(659\) −17.8181 −0.694093 −0.347047 0.937848i \(-0.612815\pi\)
−0.347047 + 0.937848i \(0.612815\pi\)
\(660\) 0 0
\(661\) −9.94533 −0.386829 −0.193414 0.981117i \(-0.561956\pi\)
−0.193414 + 0.981117i \(0.561956\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.48628 0.290305
\(666\) 0 0
\(667\) 3.70133 0.143316
\(668\) 0 0
\(669\) −25.2790 −0.977342
\(670\) 0 0
\(671\) 17.2953 0.667678
\(672\) 0 0
\(673\) −35.2526 −1.35889 −0.679444 0.733727i \(-0.737779\pi\)
−0.679444 + 0.733727i \(0.737779\pi\)
\(674\) 0 0
\(675\) 1.11901 0.0430706
\(676\) 0 0
\(677\) 46.4301 1.78445 0.892226 0.451588i \(-0.149142\pi\)
0.892226 + 0.451588i \(0.149142\pi\)
\(678\) 0 0
\(679\) 73.4203 2.81761
\(680\) 0 0
\(681\) 21.0901 0.808174
\(682\) 0 0
\(683\) −35.6740 −1.36503 −0.682514 0.730873i \(-0.739113\pi\)
−0.682514 + 0.730873i \(0.739113\pi\)
\(684\) 0 0
\(685\) −9.29397 −0.355104
\(686\) 0 0
\(687\) 18.2192 0.695106
\(688\) 0 0
\(689\) −55.6980 −2.12192
\(690\) 0 0
\(691\) −10.0109 −0.380832 −0.190416 0.981703i \(-0.560984\pi\)
−0.190416 + 0.981703i \(0.560984\pi\)
\(692\) 0 0
\(693\) 9.85591 0.374395
\(694\) 0 0
\(695\) −31.6390 −1.20013
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 12.2028 0.461551
\(700\) 0 0
\(701\) 1.31324 0.0496002 0.0248001 0.999692i \(-0.492105\pi\)
0.0248001 + 0.999692i \(0.492105\pi\)
\(702\) 0 0
\(703\) −4.68767 −0.176799
\(704\) 0 0
\(705\) 13.2962 0.500764
\(706\) 0 0
\(707\) 2.76958 0.104161
\(708\) 0 0
\(709\) 27.7345 1.04159 0.520795 0.853682i \(-0.325635\pi\)
0.520795 + 0.853682i \(0.325635\pi\)
\(710\) 0 0
\(711\) 5.32622 0.199749
\(712\) 0 0
\(713\) 1.40960 0.0527901
\(714\) 0 0
\(715\) −64.9795 −2.43010
\(716\) 0 0
\(717\) 3.39274 0.126704
\(718\) 0 0
\(719\) 21.8968 0.816613 0.408307 0.912845i \(-0.366119\pi\)
0.408307 + 0.912845i \(0.366119\pi\)
\(720\) 0 0
\(721\) −50.9376 −1.89701
\(722\) 0 0
\(723\) −30.5223 −1.13514
\(724\) 0 0
\(725\) 1.72738 0.0641532
\(726\) 0 0
\(727\) −20.1780 −0.748362 −0.374181 0.927356i \(-0.622076\pi\)
−0.374181 + 0.927356i \(0.622076\pi\)
\(728\) 0 0
\(729\) 29.6375 1.09769
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −4.38032 −0.161791 −0.0808954 0.996723i \(-0.525778\pi\)
−0.0808954 + 0.996723i \(0.525778\pi\)
\(734\) 0 0
\(735\) −48.4772 −1.78811
\(736\) 0 0
\(737\) −15.3403 −0.565067
\(738\) 0 0
\(739\) −36.8554 −1.35575 −0.677875 0.735177i \(-0.737099\pi\)
−0.677875 + 0.735177i \(0.737099\pi\)
\(740\) 0 0
\(741\) 6.89834 0.253417
\(742\) 0 0
\(743\) 37.9459 1.39210 0.696051 0.717993i \(-0.254939\pi\)
0.696051 + 0.717993i \(0.254939\pi\)
\(744\) 0 0
\(745\) 12.7732 0.467976
\(746\) 0 0
\(747\) 3.80432 0.139193
\(748\) 0 0
\(749\) 5.78226 0.211279
\(750\) 0 0
\(751\) −9.08102 −0.331371 −0.165686 0.986179i \(-0.552984\pi\)
−0.165686 + 0.986179i \(0.552984\pi\)
\(752\) 0 0
\(753\) 21.4119 0.780295
\(754\) 0 0
\(755\) 17.3258 0.630549
\(756\) 0 0
\(757\) −13.9433 −0.506779 −0.253389 0.967364i \(-0.581545\pi\)
−0.253389 + 0.967364i \(0.581545\pi\)
\(758\) 0 0
\(759\) −3.63783 −0.132045
\(760\) 0 0
\(761\) −19.0549 −0.690740 −0.345370 0.938467i \(-0.612247\pi\)
−0.345370 + 0.938467i \(0.612247\pi\)
\(762\) 0 0
\(763\) 92.3623 3.34374
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.77942 −0.317006
\(768\) 0 0
\(769\) 41.8070 1.50760 0.753799 0.657105i \(-0.228219\pi\)
0.753799 + 0.657105i \(0.228219\pi\)
\(770\) 0 0
\(771\) −3.12079 −0.112392
\(772\) 0 0
\(773\) −22.6810 −0.815779 −0.407890 0.913031i \(-0.633735\pi\)
−0.407890 + 0.913031i \(0.633735\pi\)
\(774\) 0 0
\(775\) 0.657850 0.0236307
\(776\) 0 0
\(777\) 45.7823 1.64243
\(778\) 0 0
\(779\) −0.294052 −0.0105355
\(780\) 0 0
\(781\) 26.8689 0.961446
\(782\) 0 0
\(783\) 46.5563 1.66379
\(784\) 0 0
\(785\) 27.0890 0.966848
\(786\) 0 0
\(787\) 14.7018 0.524064 0.262032 0.965059i \(-0.415607\pi\)
0.262032 + 0.965059i \(0.415607\pi\)
\(788\) 0 0
\(789\) 49.9347 1.77772
\(790\) 0 0
\(791\) 83.2721 2.96081
\(792\) 0 0
\(793\) 19.0923 0.677987
\(794\) 0 0
\(795\) 34.2543 1.21488
\(796\) 0 0
\(797\) −8.21691 −0.291058 −0.145529 0.989354i \(-0.546488\pi\)
−0.145529 + 0.989354i \(0.546488\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −5.42571 −0.191708
\(802\) 0 0
\(803\) 30.6192 1.08053
\(804\) 0 0
\(805\) −4.35806 −0.153601
\(806\) 0 0
\(807\) 9.21718 0.324460
\(808\) 0 0
\(809\) 35.5939 1.25142 0.625708 0.780057i \(-0.284810\pi\)
0.625708 + 0.780057i \(0.284810\pi\)
\(810\) 0 0
\(811\) −5.67292 −0.199203 −0.0996015 0.995027i \(-0.531757\pi\)
−0.0996015 + 0.995027i \(0.531757\pi\)
\(812\) 0 0
\(813\) −33.9749 −1.19155
\(814\) 0 0
\(815\) −35.8916 −1.25723
\(816\) 0 0
\(817\) −4.33729 −0.151742
\(818\) 0 0
\(819\) 10.8799 0.380176
\(820\) 0 0
\(821\) −3.95355 −0.137980 −0.0689899 0.997617i \(-0.521978\pi\)
−0.0689899 + 0.997617i \(0.521978\pi\)
\(822\) 0 0
\(823\) 4.31091 0.150269 0.0751344 0.997173i \(-0.476061\pi\)
0.0751344 + 0.997173i \(0.476061\pi\)
\(824\) 0 0
\(825\) −1.69775 −0.0591079
\(826\) 0 0
\(827\) −41.8738 −1.45609 −0.728047 0.685527i \(-0.759572\pi\)
−0.728047 + 0.685527i \(0.759572\pi\)
\(828\) 0 0
\(829\) −22.4808 −0.780792 −0.390396 0.920647i \(-0.627662\pi\)
−0.390396 + 0.920647i \(0.627662\pi\)
\(830\) 0 0
\(831\) −2.10826 −0.0731346
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 16.5758 0.573629
\(836\) 0 0
\(837\) 17.7304 0.612851
\(838\) 0 0
\(839\) −12.0055 −0.414475 −0.207237 0.978291i \(-0.566447\pi\)
−0.207237 + 0.978291i \(0.566447\pi\)
\(840\) 0 0
\(841\) 42.8675 1.47819
\(842\) 0 0
\(843\) −46.2390 −1.59255
\(844\) 0 0
\(845\) −43.2604 −1.48820
\(846\) 0 0
\(847\) −72.3681 −2.48660
\(848\) 0 0
\(849\) 2.37430 0.0814859
\(850\) 0 0
\(851\) 2.72888 0.0935448
\(852\) 0 0
\(853\) −11.2288 −0.384465 −0.192233 0.981349i \(-0.561573\pi\)
−0.192233 + 0.981349i \(0.561573\pi\)
\(854\) 0 0
\(855\) 0.685112 0.0234303
\(856\) 0 0
\(857\) −6.73481 −0.230057 −0.115028 0.993362i \(-0.536696\pi\)
−0.115028 + 0.993362i \(0.536696\pi\)
\(858\) 0 0
\(859\) −7.84826 −0.267779 −0.133890 0.990996i \(-0.542747\pi\)
−0.133890 + 0.990996i \(0.542747\pi\)
\(860\) 0 0
\(861\) 2.87187 0.0978732
\(862\) 0 0
\(863\) 21.0758 0.717430 0.358715 0.933447i \(-0.383215\pi\)
0.358715 + 0.933447i \(0.383215\pi\)
\(864\) 0 0
\(865\) −22.1296 −0.752428
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −66.2019 −2.24574
\(870\) 0 0
\(871\) −16.9341 −0.573791
\(872\) 0 0
\(873\) 6.71911 0.227407
\(874\) 0 0
\(875\) −51.9421 −1.75596
\(876\) 0 0
\(877\) 18.2845 0.617424 0.308712 0.951156i \(-0.400102\pi\)
0.308712 + 0.951156i \(0.400102\pi\)
\(878\) 0 0
\(879\) −35.0388 −1.18183
\(880\) 0 0
\(881\) −21.8193 −0.735110 −0.367555 0.930002i \(-0.619805\pi\)
−0.367555 + 0.930002i \(0.619805\pi\)
\(882\) 0 0
\(883\) 21.8187 0.734257 0.367128 0.930170i \(-0.380341\pi\)
0.367128 + 0.930170i \(0.380341\pi\)
\(884\) 0 0
\(885\) 5.39935 0.181497
\(886\) 0 0
\(887\) 44.8589 1.50621 0.753107 0.657898i \(-0.228554\pi\)
0.753107 + 0.657898i \(0.228554\pi\)
\(888\) 0 0
\(889\) −53.3662 −1.78985
\(890\) 0 0
\(891\) −39.2703 −1.31560
\(892\) 0 0
\(893\) −2.83327 −0.0948117
\(894\) 0 0
\(895\) −4.44715 −0.148652
\(896\) 0 0
\(897\) −4.01580 −0.134084
\(898\) 0 0
\(899\) 27.3698 0.912835
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 42.3603 1.40966
\(904\) 0 0
\(905\) 10.4793 0.348342
\(906\) 0 0
\(907\) −2.95342 −0.0980666 −0.0490333 0.998797i \(-0.515614\pi\)
−0.0490333 + 0.998797i \(0.515614\pi\)
\(908\) 0 0
\(909\) 0.253460 0.00840675
\(910\) 0 0
\(911\) 11.5101 0.381346 0.190673 0.981654i \(-0.438933\pi\)
0.190673 + 0.981654i \(0.438933\pi\)
\(912\) 0 0
\(913\) −47.2855 −1.56492
\(914\) 0 0
\(915\) −11.7418 −0.388171
\(916\) 0 0
\(917\) 40.7947 1.34716
\(918\) 0 0
\(919\) 12.1680 0.401384 0.200692 0.979654i \(-0.435681\pi\)
0.200692 + 0.979654i \(0.435681\pi\)
\(920\) 0 0
\(921\) 34.4279 1.13444
\(922\) 0 0
\(923\) 29.6606 0.976290
\(924\) 0 0
\(925\) 1.27354 0.0418739
\(926\) 0 0
\(927\) −4.66159 −0.153107
\(928\) 0 0
\(929\) 33.3053 1.09271 0.546355 0.837553i \(-0.316015\pi\)
0.546355 + 0.837553i \(0.316015\pi\)
\(930\) 0 0
\(931\) 10.3299 0.338550
\(932\) 0 0
\(933\) −26.2985 −0.860974
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −30.5252 −0.997213 −0.498607 0.866828i \(-0.666155\pi\)
−0.498607 + 0.866828i \(0.666155\pi\)
\(938\) 0 0
\(939\) 15.3635 0.501369
\(940\) 0 0
\(941\) −37.8296 −1.23321 −0.616604 0.787273i \(-0.711492\pi\)
−0.616604 + 0.787273i \(0.711492\pi\)
\(942\) 0 0
\(943\) 0.171180 0.00557437
\(944\) 0 0
\(945\) −54.8168 −1.78319
\(946\) 0 0
\(947\) −32.0402 −1.04117 −0.520583 0.853811i \(-0.674285\pi\)
−0.520583 + 0.853811i \(0.674285\pi\)
\(948\) 0 0
\(949\) 33.8005 1.09721
\(950\) 0 0
\(951\) −14.1875 −0.460062
\(952\) 0 0
\(953\) 53.1556 1.72188 0.860940 0.508707i \(-0.169876\pi\)
0.860940 + 0.508707i \(0.169876\pi\)
\(954\) 0 0
\(955\) −20.3910 −0.659838
\(956\) 0 0
\(957\) −70.6347 −2.28330
\(958\) 0 0
\(959\) −19.3420 −0.624587
\(960\) 0 0
\(961\) −20.5765 −0.663759
\(962\) 0 0
\(963\) 0.529168 0.0170522
\(964\) 0 0
\(965\) 43.8500 1.41158
\(966\) 0 0
\(967\) −18.2854 −0.588018 −0.294009 0.955803i \(-0.594989\pi\)
−0.294009 + 0.955803i \(0.594989\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.4541 0.399672 0.199836 0.979829i \(-0.435959\pi\)
0.199836 + 0.979829i \(0.435959\pi\)
\(972\) 0 0
\(973\) −65.8451 −2.11090
\(974\) 0 0
\(975\) −1.87414 −0.0600205
\(976\) 0 0
\(977\) −29.1828 −0.933639 −0.466819 0.884353i \(-0.654600\pi\)
−0.466819 + 0.884353i \(0.654600\pi\)
\(978\) 0 0
\(979\) 67.4385 2.15534
\(980\) 0 0
\(981\) 8.45260 0.269871
\(982\) 0 0
\(983\) −25.0005 −0.797392 −0.398696 0.917083i \(-0.630537\pi\)
−0.398696 + 0.917083i \(0.630537\pi\)
\(984\) 0 0
\(985\) 2.24080 0.0713979
\(986\) 0 0
\(987\) 27.6712 0.880785
\(988\) 0 0
\(989\) 2.52491 0.0802874
\(990\) 0 0
\(991\) 20.7858 0.660282 0.330141 0.943932i \(-0.392904\pi\)
0.330141 + 0.943932i \(0.392904\pi\)
\(992\) 0 0
\(993\) 46.4425 1.47381
\(994\) 0 0
\(995\) −19.9846 −0.633555
\(996\) 0 0
\(997\) 5.83306 0.184735 0.0923675 0.995725i \(-0.470557\pi\)
0.0923675 + 0.995725i \(0.470557\pi\)
\(998\) 0 0
\(999\) 34.3245 1.08598
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.a.u.1.5 6
4.3 odd 2 4624.2.a.br.1.2 6
17.4 even 4 2312.2.b.o.577.4 12
17.13 even 4 2312.2.b.o.577.9 12
17.16 even 2 2312.2.a.v.1.2 yes 6
68.67 odd 2 4624.2.a.bs.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2312.2.a.u.1.5 6 1.1 even 1 trivial
2312.2.a.v.1.2 yes 6 17.16 even 2
2312.2.b.o.577.4 12 17.4 even 4
2312.2.b.o.577.9 12 17.13 even 4
4624.2.a.br.1.2 6 4.3 odd 2
4624.2.a.bs.1.5 6 68.67 odd 2