Properties

Label 2312.2.a.s.1.3
Level $2312$
Weight $2$
Character 2312.1
Self dual yes
Analytic conductor $18.461$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,2,Mod(1,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4614129473\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{16})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 136)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.765367\) of defining polynomial
Character \(\chi\) \(=\) 2312.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.765367 q^{3} -1.84776 q^{5} +0.317025 q^{7} -2.41421 q^{9} +0.765367 q^{11} -1.41421 q^{15} +2.24264 q^{19} +0.242641 q^{21} +6.62567 q^{23} -1.58579 q^{25} -4.14386 q^{27} -5.54328 q^{29} +2.29610 q^{31} +0.585786 q^{33} -0.585786 q^{35} -0.765367 q^{37} +2.48181 q^{41} -10.2426 q^{43} +4.46088 q^{45} -12.8284 q^{47} -6.89949 q^{49} -3.07107 q^{53} -1.41421 q^{55} +1.71644 q^{57} +7.89949 q^{59} -9.87285 q^{61} -0.765367 q^{63} -9.65685 q^{67} +5.07107 q^{69} -9.68714 q^{71} -7.97069 q^{73} -1.21371 q^{75} +0.242641 q^{77} +14.2793 q^{79} +4.07107 q^{81} -10.2426 q^{83} -4.24264 q^{87} +1.65685 q^{89} +1.75736 q^{93} -4.14386 q^{95} -15.9958 q^{97} -1.84776 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} - 8 q^{19} - 16 q^{21} - 12 q^{25} + 8 q^{33} - 8 q^{35} - 24 q^{43} - 40 q^{47} + 12 q^{49} + 16 q^{53} - 8 q^{59} - 16 q^{67} - 8 q^{69} - 16 q^{77} - 12 q^{81} - 24 q^{83} - 16 q^{89} + 24 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.765367 0.441885 0.220942 0.975287i \(-0.429087\pi\)
0.220942 + 0.975287i \(0.429087\pi\)
\(4\) 0 0
\(5\) −1.84776 −0.826343 −0.413171 0.910653i \(-0.635579\pi\)
−0.413171 + 0.910653i \(0.635579\pi\)
\(6\) 0 0
\(7\) 0.317025 0.119824 0.0599122 0.998204i \(-0.480918\pi\)
0.0599122 + 0.998204i \(0.480918\pi\)
\(8\) 0 0
\(9\) −2.41421 −0.804738
\(10\) 0 0
\(11\) 0.765367 0.230767 0.115383 0.993321i \(-0.463190\pi\)
0.115383 + 0.993321i \(0.463190\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −1.41421 −0.365148
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 2.24264 0.514497 0.257249 0.966345i \(-0.417184\pi\)
0.257249 + 0.966345i \(0.417184\pi\)
\(20\) 0 0
\(21\) 0.242641 0.0529485
\(22\) 0 0
\(23\) 6.62567 1.38155 0.690774 0.723071i \(-0.257270\pi\)
0.690774 + 0.723071i \(0.257270\pi\)
\(24\) 0 0
\(25\) −1.58579 −0.317157
\(26\) 0 0
\(27\) −4.14386 −0.797486
\(28\) 0 0
\(29\) −5.54328 −1.02936 −0.514680 0.857382i \(-0.672089\pi\)
−0.514680 + 0.857382i \(0.672089\pi\)
\(30\) 0 0
\(31\) 2.29610 0.412392 0.206196 0.978511i \(-0.433892\pi\)
0.206196 + 0.978511i \(0.433892\pi\)
\(32\) 0 0
\(33\) 0.585786 0.101972
\(34\) 0 0
\(35\) −0.585786 −0.0990160
\(36\) 0 0
\(37\) −0.765367 −0.125826 −0.0629128 0.998019i \(-0.520039\pi\)
−0.0629128 + 0.998019i \(0.520039\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.48181 0.387594 0.193797 0.981042i \(-0.437920\pi\)
0.193797 + 0.981042i \(0.437920\pi\)
\(42\) 0 0
\(43\) −10.2426 −1.56199 −0.780994 0.624538i \(-0.785287\pi\)
−0.780994 + 0.624538i \(0.785287\pi\)
\(44\) 0 0
\(45\) 4.46088 0.664989
\(46\) 0 0
\(47\) −12.8284 −1.87122 −0.935609 0.353037i \(-0.885149\pi\)
−0.935609 + 0.353037i \(0.885149\pi\)
\(48\) 0 0
\(49\) −6.89949 −0.985642
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.07107 −0.421844 −0.210922 0.977503i \(-0.567647\pi\)
−0.210922 + 0.977503i \(0.567647\pi\)
\(54\) 0 0
\(55\) −1.41421 −0.190693
\(56\) 0 0
\(57\) 1.71644 0.227348
\(58\) 0 0
\(59\) 7.89949 1.02843 0.514213 0.857662i \(-0.328084\pi\)
0.514213 + 0.857662i \(0.328084\pi\)
\(60\) 0 0
\(61\) −9.87285 −1.26409 −0.632044 0.774932i \(-0.717784\pi\)
−0.632044 + 0.774932i \(0.717784\pi\)
\(62\) 0 0
\(63\) −0.765367 −0.0964272
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −9.65685 −1.17977 −0.589886 0.807486i \(-0.700827\pi\)
−0.589886 + 0.807486i \(0.700827\pi\)
\(68\) 0 0
\(69\) 5.07107 0.610485
\(70\) 0 0
\(71\) −9.68714 −1.14965 −0.574826 0.818276i \(-0.694930\pi\)
−0.574826 + 0.818276i \(0.694930\pi\)
\(72\) 0 0
\(73\) −7.97069 −0.932899 −0.466450 0.884548i \(-0.654467\pi\)
−0.466450 + 0.884548i \(0.654467\pi\)
\(74\) 0 0
\(75\) −1.21371 −0.140147
\(76\) 0 0
\(77\) 0.242641 0.0276515
\(78\) 0 0
\(79\) 14.2793 1.60655 0.803276 0.595608i \(-0.203089\pi\)
0.803276 + 0.595608i \(0.203089\pi\)
\(80\) 0 0
\(81\) 4.07107 0.452341
\(82\) 0 0
\(83\) −10.2426 −1.12428 −0.562138 0.827043i \(-0.690021\pi\)
−0.562138 + 0.827043i \(0.690021\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −4.24264 −0.454859
\(88\) 0 0
\(89\) 1.65685 0.175626 0.0878131 0.996137i \(-0.472012\pi\)
0.0878131 + 0.996137i \(0.472012\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.75736 0.182230
\(94\) 0 0
\(95\) −4.14386 −0.425151
\(96\) 0 0
\(97\) −15.9958 −1.62413 −0.812063 0.583570i \(-0.801655\pi\)
−0.812063 + 0.583570i \(0.801655\pi\)
\(98\) 0 0
\(99\) −1.84776 −0.185707
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) −2.34315 −0.230877 −0.115439 0.993315i \(-0.536827\pi\)
−0.115439 + 0.993315i \(0.536827\pi\)
\(104\) 0 0
\(105\) −0.448342 −0.0437537
\(106\) 0 0
\(107\) 14.4650 1.39839 0.699194 0.714932i \(-0.253542\pi\)
0.699194 + 0.714932i \(0.253542\pi\)
\(108\) 0 0
\(109\) 11.6662 1.11742 0.558710 0.829363i \(-0.311296\pi\)
0.558710 + 0.829363i \(0.311296\pi\)
\(110\) 0 0
\(111\) −0.585786 −0.0556004
\(112\) 0 0
\(113\) 8.15640 0.767290 0.383645 0.923481i \(-0.374669\pi\)
0.383645 + 0.923481i \(0.374669\pi\)
\(114\) 0 0
\(115\) −12.2426 −1.14163
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.4142 −0.946747
\(122\) 0 0
\(123\) 1.89949 0.171272
\(124\) 0 0
\(125\) 12.1689 1.08842
\(126\) 0 0
\(127\) −1.75736 −0.155940 −0.0779702 0.996956i \(-0.524844\pi\)
−0.0779702 + 0.996956i \(0.524844\pi\)
\(128\) 0 0
\(129\) −7.83938 −0.690219
\(130\) 0 0
\(131\) −14.4650 −1.26382 −0.631909 0.775043i \(-0.717728\pi\)
−0.631909 + 0.775043i \(0.717728\pi\)
\(132\) 0 0
\(133\) 0.710974 0.0616493
\(134\) 0 0
\(135\) 7.65685 0.658997
\(136\) 0 0
\(137\) 14.0000 1.19610 0.598050 0.801459i \(-0.295942\pi\)
0.598050 + 0.801459i \(0.295942\pi\)
\(138\) 0 0
\(139\) −0.502734 −0.0426414 −0.0213207 0.999773i \(-0.506787\pi\)
−0.0213207 + 0.999773i \(0.506787\pi\)
\(140\) 0 0
\(141\) −9.81845 −0.826863
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 10.2426 0.850605
\(146\) 0 0
\(147\) −5.28064 −0.435540
\(148\) 0 0
\(149\) 6.34315 0.519651 0.259825 0.965656i \(-0.416335\pi\)
0.259825 + 0.965656i \(0.416335\pi\)
\(150\) 0 0
\(151\) −19.8995 −1.61940 −0.809699 0.586845i \(-0.800370\pi\)
−0.809699 + 0.586845i \(0.800370\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.24264 −0.340777
\(156\) 0 0
\(157\) 15.3137 1.22217 0.611083 0.791566i \(-0.290734\pi\)
0.611083 + 0.791566i \(0.290734\pi\)
\(158\) 0 0
\(159\) −2.35049 −0.186406
\(160\) 0 0
\(161\) 2.10051 0.165543
\(162\) 0 0
\(163\) −4.64659 −0.363949 −0.181975 0.983303i \(-0.558249\pi\)
−0.181975 + 0.983303i \(0.558249\pi\)
\(164\) 0 0
\(165\) −1.08239 −0.0842641
\(166\) 0 0
\(167\) −0.765367 −0.0592259 −0.0296129 0.999561i \(-0.509427\pi\)
−0.0296129 + 0.999561i \(0.509427\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −5.41421 −0.414035
\(172\) 0 0
\(173\) 18.8715 1.43478 0.717388 0.696674i \(-0.245337\pi\)
0.717388 + 0.696674i \(0.245337\pi\)
\(174\) 0 0
\(175\) −0.502734 −0.0380032
\(176\) 0 0
\(177\) 6.04601 0.454446
\(178\) 0 0
\(179\) −18.2426 −1.36352 −0.681759 0.731576i \(-0.738785\pi\)
−0.681759 + 0.731576i \(0.738785\pi\)
\(180\) 0 0
\(181\) 8.15640 0.606261 0.303130 0.952949i \(-0.401968\pi\)
0.303130 + 0.952949i \(0.401968\pi\)
\(182\) 0 0
\(183\) −7.55635 −0.558581
\(184\) 0 0
\(185\) 1.41421 0.103975
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1.31371 −0.0955582
\(190\) 0 0
\(191\) −8.82843 −0.638803 −0.319401 0.947620i \(-0.603482\pi\)
−0.319401 + 0.947620i \(0.603482\pi\)
\(192\) 0 0
\(193\) −0.765367 −0.0550923 −0.0275462 0.999621i \(-0.508769\pi\)
−0.0275462 + 0.999621i \(0.508769\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.3003 0.876357 0.438179 0.898888i \(-0.355624\pi\)
0.438179 + 0.898888i \(0.355624\pi\)
\(198\) 0 0
\(199\) 22.4901 1.59428 0.797142 0.603792i \(-0.206344\pi\)
0.797142 + 0.603792i \(0.206344\pi\)
\(200\) 0 0
\(201\) −7.39104 −0.521324
\(202\) 0 0
\(203\) −1.75736 −0.123342
\(204\) 0 0
\(205\) −4.58579 −0.320285
\(206\) 0 0
\(207\) −15.9958 −1.11178
\(208\) 0 0
\(209\) 1.71644 0.118729
\(210\) 0 0
\(211\) −26.1857 −1.80269 −0.901347 0.433097i \(-0.857421\pi\)
−0.901347 + 0.433097i \(0.857421\pi\)
\(212\) 0 0
\(213\) −7.41421 −0.508014
\(214\) 0 0
\(215\) 18.9259 1.29074
\(216\) 0 0
\(217\) 0.727922 0.0494146
\(218\) 0 0
\(219\) −6.10051 −0.412234
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 17.5563 1.17566 0.587830 0.808984i \(-0.299982\pi\)
0.587830 + 0.808984i \(0.299982\pi\)
\(224\) 0 0
\(225\) 3.82843 0.255228
\(226\) 0 0
\(227\) 3.56420 0.236564 0.118282 0.992980i \(-0.462261\pi\)
0.118282 + 0.992980i \(0.462261\pi\)
\(228\) 0 0
\(229\) −9.89949 −0.654177 −0.327089 0.944994i \(-0.606068\pi\)
−0.327089 + 0.944994i \(0.606068\pi\)
\(230\) 0 0
\(231\) 0.185709 0.0122188
\(232\) 0 0
\(233\) 0.579658 0.0379746 0.0189873 0.999820i \(-0.493956\pi\)
0.0189873 + 0.999820i \(0.493956\pi\)
\(234\) 0 0
\(235\) 23.7038 1.54627
\(236\) 0 0
\(237\) 10.9289 0.709910
\(238\) 0 0
\(239\) 11.3137 0.731823 0.365911 0.930650i \(-0.380757\pi\)
0.365911 + 0.930650i \(0.380757\pi\)
\(240\) 0 0
\(241\) 14.0167 0.902895 0.451448 0.892298i \(-0.350908\pi\)
0.451448 + 0.892298i \(0.350908\pi\)
\(242\) 0 0
\(243\) 15.5474 0.997369
\(244\) 0 0
\(245\) 12.7486 0.814478
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −7.83938 −0.496800
\(250\) 0 0
\(251\) −0.828427 −0.0522899 −0.0261449 0.999658i \(-0.508323\pi\)
−0.0261449 + 0.999658i \(0.508323\pi\)
\(252\) 0 0
\(253\) 5.07107 0.318815
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.24264 0.514162 0.257081 0.966390i \(-0.417239\pi\)
0.257081 + 0.966390i \(0.417239\pi\)
\(258\) 0 0
\(259\) −0.242641 −0.0150770
\(260\) 0 0
\(261\) 13.3827 0.828366
\(262\) 0 0
\(263\) 3.89949 0.240453 0.120227 0.992746i \(-0.461638\pi\)
0.120227 + 0.992746i \(0.461638\pi\)
\(264\) 0 0
\(265\) 5.67459 0.348588
\(266\) 0 0
\(267\) 1.26810 0.0776065
\(268\) 0 0
\(269\) −14.0167 −0.854614 −0.427307 0.904107i \(-0.640538\pi\)
−0.427307 + 0.904107i \(0.640538\pi\)
\(270\) 0 0
\(271\) 11.3137 0.687259 0.343629 0.939105i \(-0.388344\pi\)
0.343629 + 0.939105i \(0.388344\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.21371 −0.0731894
\(276\) 0 0
\(277\) −9.23880 −0.555105 −0.277553 0.960710i \(-0.589523\pi\)
−0.277553 + 0.960710i \(0.589523\pi\)
\(278\) 0 0
\(279\) −5.54328 −0.331867
\(280\) 0 0
\(281\) 3.27208 0.195196 0.0975979 0.995226i \(-0.468884\pi\)
0.0975979 + 0.995226i \(0.468884\pi\)
\(282\) 0 0
\(283\) −26.2626 −1.56115 −0.780574 0.625063i \(-0.785073\pi\)
−0.780574 + 0.625063i \(0.785073\pi\)
\(284\) 0 0
\(285\) −3.17157 −0.187868
\(286\) 0 0
\(287\) 0.786797 0.0464431
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −12.2426 −0.717676
\(292\) 0 0
\(293\) −7.31371 −0.427271 −0.213636 0.976913i \(-0.568531\pi\)
−0.213636 + 0.976913i \(0.568531\pi\)
\(294\) 0 0
\(295\) −14.5964 −0.849833
\(296\) 0 0
\(297\) −3.17157 −0.184033
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −3.24718 −0.187164
\(302\) 0 0
\(303\) −7.65367 −0.439692
\(304\) 0 0
\(305\) 18.2426 1.04457
\(306\) 0 0
\(307\) −26.6274 −1.51971 −0.759853 0.650094i \(-0.774729\pi\)
−0.759853 + 0.650094i \(0.774729\pi\)
\(308\) 0 0
\(309\) −1.79337 −0.102021
\(310\) 0 0
\(311\) 4.01254 0.227530 0.113765 0.993508i \(-0.463709\pi\)
0.113765 + 0.993508i \(0.463709\pi\)
\(312\) 0 0
\(313\) 4.27518 0.241647 0.120824 0.992674i \(-0.461446\pi\)
0.120824 + 0.992674i \(0.461446\pi\)
\(314\) 0 0
\(315\) 1.41421 0.0796819
\(316\) 0 0
\(317\) −15.8101 −0.887982 −0.443991 0.896031i \(-0.646438\pi\)
−0.443991 + 0.896031i \(0.646438\pi\)
\(318\) 0 0
\(319\) −4.24264 −0.237542
\(320\) 0 0
\(321\) 11.0711 0.617927
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 8.92893 0.493771
\(328\) 0 0
\(329\) −4.06694 −0.224217
\(330\) 0 0
\(331\) −13.7574 −0.756173 −0.378086 0.925770i \(-0.623418\pi\)
−0.378086 + 0.925770i \(0.623418\pi\)
\(332\) 0 0
\(333\) 1.84776 0.101257
\(334\) 0 0
\(335\) 17.8435 0.974897
\(336\) 0 0
\(337\) 15.5474 0.846923 0.423461 0.905914i \(-0.360815\pi\)
0.423461 + 0.905914i \(0.360815\pi\)
\(338\) 0 0
\(339\) 6.24264 0.339054
\(340\) 0 0
\(341\) 1.75736 0.0951663
\(342\) 0 0
\(343\) −4.40649 −0.237928
\(344\) 0 0
\(345\) −9.37011 −0.504470
\(346\) 0 0
\(347\) −5.80591 −0.311678 −0.155839 0.987783i \(-0.549808\pi\)
−0.155839 + 0.987783i \(0.549808\pi\)
\(348\) 0 0
\(349\) 21.8995 1.17225 0.586127 0.810220i \(-0.300652\pi\)
0.586127 + 0.810220i \(0.300652\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.9706 1.32905 0.664524 0.747266i \(-0.268634\pi\)
0.664524 + 0.747266i \(0.268634\pi\)
\(354\) 0 0
\(355\) 17.8995 0.950007
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 22.2426 1.17392 0.586961 0.809615i \(-0.300324\pi\)
0.586961 + 0.809615i \(0.300324\pi\)
\(360\) 0 0
\(361\) −13.9706 −0.735293
\(362\) 0 0
\(363\) −7.97069 −0.418353
\(364\) 0 0
\(365\) 14.7279 0.770895
\(366\) 0 0
\(367\) −2.11039 −0.110162 −0.0550808 0.998482i \(-0.517542\pi\)
−0.0550808 + 0.998482i \(0.517542\pi\)
\(368\) 0 0
\(369\) −5.99162 −0.311911
\(370\) 0 0
\(371\) −0.973606 −0.0505471
\(372\) 0 0
\(373\) −35.9411 −1.86096 −0.930480 0.366342i \(-0.880610\pi\)
−0.930480 + 0.366342i \(0.880610\pi\)
\(374\) 0 0
\(375\) 9.31371 0.480958
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −15.0991 −0.775589 −0.387794 0.921746i \(-0.626763\pi\)
−0.387794 + 0.921746i \(0.626763\pi\)
\(380\) 0 0
\(381\) −1.34502 −0.0689077
\(382\) 0 0
\(383\) 10.7279 0.548171 0.274086 0.961705i \(-0.411625\pi\)
0.274086 + 0.961705i \(0.411625\pi\)
\(384\) 0 0
\(385\) −0.448342 −0.0228496
\(386\) 0 0
\(387\) 24.7279 1.25699
\(388\) 0 0
\(389\) 28.7279 1.45656 0.728282 0.685278i \(-0.240319\pi\)
0.728282 + 0.685278i \(0.240319\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −11.0711 −0.558461
\(394\) 0 0
\(395\) −26.3848 −1.32756
\(396\) 0 0
\(397\) −29.0614 −1.45855 −0.729275 0.684221i \(-0.760143\pi\)
−0.729275 + 0.684221i \(0.760143\pi\)
\(398\) 0 0
\(399\) 0.544156 0.0272419
\(400\) 0 0
\(401\) 27.0823 1.35243 0.676214 0.736706i \(-0.263620\pi\)
0.676214 + 0.736706i \(0.263620\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −7.52235 −0.373789
\(406\) 0 0
\(407\) −0.585786 −0.0290364
\(408\) 0 0
\(409\) 18.0000 0.890043 0.445021 0.895520i \(-0.353196\pi\)
0.445021 + 0.895520i \(0.353196\pi\)
\(410\) 0 0
\(411\) 10.7151 0.528539
\(412\) 0 0
\(413\) 2.50434 0.123231
\(414\) 0 0
\(415\) 18.9259 0.929037
\(416\) 0 0
\(417\) −0.384776 −0.0188426
\(418\) 0 0
\(419\) −6.62567 −0.323685 −0.161843 0.986817i \(-0.551744\pi\)
−0.161843 + 0.986817i \(0.551744\pi\)
\(420\) 0 0
\(421\) 11.3137 0.551396 0.275698 0.961244i \(-0.411091\pi\)
0.275698 + 0.961244i \(0.411091\pi\)
\(422\) 0 0
\(423\) 30.9706 1.50584
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −3.12994 −0.151469
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.29610 0.110599 0.0552996 0.998470i \(-0.482389\pi\)
0.0552996 + 0.998470i \(0.482389\pi\)
\(432\) 0 0
\(433\) 5.41421 0.260190 0.130095 0.991502i \(-0.458472\pi\)
0.130095 + 0.991502i \(0.458472\pi\)
\(434\) 0 0
\(435\) 7.83938 0.375869
\(436\) 0 0
\(437\) 14.8590 0.710802
\(438\) 0 0
\(439\) −9.42450 −0.449807 −0.224904 0.974381i \(-0.572207\pi\)
−0.224904 + 0.974381i \(0.572207\pi\)
\(440\) 0 0
\(441\) 16.6569 0.793184
\(442\) 0 0
\(443\) −40.2843 −1.91396 −0.956982 0.290148i \(-0.906295\pi\)
−0.956982 + 0.290148i \(0.906295\pi\)
\(444\) 0 0
\(445\) −3.06147 −0.145127
\(446\) 0 0
\(447\) 4.85483 0.229626
\(448\) 0 0
\(449\) −17.8979 −0.844656 −0.422328 0.906443i \(-0.638787\pi\)
−0.422328 + 0.906443i \(0.638787\pi\)
\(450\) 0 0
\(451\) 1.89949 0.0894437
\(452\) 0 0
\(453\) −15.2304 −0.715587
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.92893 −0.230566 −0.115283 0.993333i \(-0.536777\pi\)
−0.115283 + 0.993333i \(0.536777\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.55635 0.165636 0.0828178 0.996565i \(-0.473608\pi\)
0.0828178 + 0.996565i \(0.473608\pi\)
\(462\) 0 0
\(463\) 24.1421 1.12198 0.560990 0.827823i \(-0.310421\pi\)
0.560990 + 0.827823i \(0.310421\pi\)
\(464\) 0 0
\(465\) −3.24718 −0.150584
\(466\) 0 0
\(467\) 13.5563 0.627313 0.313657 0.949537i \(-0.398446\pi\)
0.313657 + 0.949537i \(0.398446\pi\)
\(468\) 0 0
\(469\) −3.06147 −0.141365
\(470\) 0 0
\(471\) 11.7206 0.540057
\(472\) 0 0
\(473\) −7.83938 −0.360455
\(474\) 0 0
\(475\) −3.55635 −0.163176
\(476\) 0 0
\(477\) 7.41421 0.339474
\(478\) 0 0
\(479\) −37.9832 −1.73550 −0.867748 0.497005i \(-0.834433\pi\)
−0.867748 + 0.497005i \(0.834433\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 1.60766 0.0731509
\(484\) 0 0
\(485\) 29.5563 1.34208
\(486\) 0 0
\(487\) −17.6034 −0.797688 −0.398844 0.917019i \(-0.630588\pi\)
−0.398844 + 0.917019i \(0.630588\pi\)
\(488\) 0 0
\(489\) −3.55635 −0.160824
\(490\) 0 0
\(491\) 20.3848 0.919952 0.459976 0.887931i \(-0.347858\pi\)
0.459976 + 0.887931i \(0.347858\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 3.41421 0.153457
\(496\) 0 0
\(497\) −3.07107 −0.137756
\(498\) 0 0
\(499\) −16.8155 −0.752767 −0.376383 0.926464i \(-0.622832\pi\)
−0.376383 + 0.926464i \(0.622832\pi\)
\(500\) 0 0
\(501\) −0.585786 −0.0261710
\(502\) 0 0
\(503\) −0.317025 −0.0141355 −0.00706773 0.999975i \(-0.502250\pi\)
−0.00706773 + 0.999975i \(0.502250\pi\)
\(504\) 0 0
\(505\) 18.4776 0.822242
\(506\) 0 0
\(507\) −9.94977 −0.441885
\(508\) 0 0
\(509\) 38.2843 1.69692 0.848460 0.529259i \(-0.177530\pi\)
0.848460 + 0.529259i \(0.177530\pi\)
\(510\) 0 0
\(511\) −2.52691 −0.111784
\(512\) 0 0
\(513\) −9.29319 −0.410304
\(514\) 0 0
\(515\) 4.32957 0.190784
\(516\) 0 0
\(517\) −9.81845 −0.431815
\(518\) 0 0
\(519\) 14.4437 0.634006
\(520\) 0 0
\(521\) −39.2513 −1.71963 −0.859815 0.510606i \(-0.829421\pi\)
−0.859815 + 0.510606i \(0.829421\pi\)
\(522\) 0 0
\(523\) −4.14214 −0.181123 −0.0905615 0.995891i \(-0.528866\pi\)
−0.0905615 + 0.995891i \(0.528866\pi\)
\(524\) 0 0
\(525\) −0.384776 −0.0167930
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 20.8995 0.908674
\(530\) 0 0
\(531\) −19.0711 −0.827614
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −26.7279 −1.15555
\(536\) 0 0
\(537\) −13.9623 −0.602518
\(538\) 0 0
\(539\) −5.28064 −0.227453
\(540\) 0 0
\(541\) 25.9999 1.11782 0.558912 0.829227i \(-0.311219\pi\)
0.558912 + 0.829227i \(0.311219\pi\)
\(542\) 0 0
\(543\) 6.24264 0.267897
\(544\) 0 0
\(545\) −21.5563 −0.923373
\(546\) 0 0
\(547\) 45.1116 1.92883 0.964416 0.264389i \(-0.0851704\pi\)
0.964416 + 0.264389i \(0.0851704\pi\)
\(548\) 0 0
\(549\) 23.8352 1.01726
\(550\) 0 0
\(551\) −12.4316 −0.529603
\(552\) 0 0
\(553\) 4.52691 0.192504
\(554\) 0 0
\(555\) 1.08239 0.0459450
\(556\) 0 0
\(557\) 16.0000 0.677942 0.338971 0.940797i \(-0.389921\pi\)
0.338971 + 0.940797i \(0.389921\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −26.0416 −1.09752 −0.548762 0.835979i \(-0.684901\pi\)
−0.548762 + 0.835979i \(0.684901\pi\)
\(564\) 0 0
\(565\) −15.0711 −0.634045
\(566\) 0 0
\(567\) 1.29063 0.0542014
\(568\) 0 0
\(569\) −30.1838 −1.26537 −0.632685 0.774410i \(-0.718047\pi\)
−0.632685 + 0.774410i \(0.718047\pi\)
\(570\) 0 0
\(571\) 32.3086 1.35207 0.676036 0.736868i \(-0.263696\pi\)
0.676036 + 0.736868i \(0.263696\pi\)
\(572\) 0 0
\(573\) −6.75699 −0.282277
\(574\) 0 0
\(575\) −10.5069 −0.438168
\(576\) 0 0
\(577\) −14.0000 −0.582828 −0.291414 0.956597i \(-0.594126\pi\)
−0.291414 + 0.956597i \(0.594126\pi\)
\(578\) 0 0
\(579\) −0.585786 −0.0243445
\(580\) 0 0
\(581\) −3.24718 −0.134716
\(582\) 0 0
\(583\) −2.35049 −0.0973475
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −8.87006 −0.366106 −0.183053 0.983103i \(-0.558598\pi\)
−0.183053 + 0.983103i \(0.558598\pi\)
\(588\) 0 0
\(589\) 5.14933 0.212174
\(590\) 0 0
\(591\) 9.41421 0.387249
\(592\) 0 0
\(593\) 21.6985 0.891050 0.445525 0.895270i \(-0.353017\pi\)
0.445525 + 0.895270i \(0.353017\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 17.2132 0.704490
\(598\) 0 0
\(599\) 44.8284 1.83164 0.915820 0.401589i \(-0.131542\pi\)
0.915820 + 0.401589i \(0.131542\pi\)
\(600\) 0 0
\(601\) −30.3295 −1.23717 −0.618583 0.785719i \(-0.712293\pi\)
−0.618583 + 0.785719i \(0.712293\pi\)
\(602\) 0 0
\(603\) 23.3137 0.949408
\(604\) 0 0
\(605\) 19.2430 0.782337
\(606\) 0 0
\(607\) 39.0656 1.58562 0.792811 0.609467i \(-0.208617\pi\)
0.792811 + 0.609467i \(0.208617\pi\)
\(608\) 0 0
\(609\) −1.34502 −0.0545031
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −29.3137 −1.18397 −0.591985 0.805949i \(-0.701655\pi\)
−0.591985 + 0.805949i \(0.701655\pi\)
\(614\) 0 0
\(615\) −3.50981 −0.141529
\(616\) 0 0
\(617\) 24.6549 0.992570 0.496285 0.868160i \(-0.334697\pi\)
0.496285 + 0.868160i \(0.334697\pi\)
\(618\) 0 0
\(619\) 2.11039 0.0848238 0.0424119 0.999100i \(-0.486496\pi\)
0.0424119 + 0.999100i \(0.486496\pi\)
\(620\) 0 0
\(621\) −27.4558 −1.10177
\(622\) 0 0
\(623\) 0.525265 0.0210443
\(624\) 0 0
\(625\) −14.5563 −0.582254
\(626\) 0 0
\(627\) 1.31371 0.0524645
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 24.5858 0.978745 0.489372 0.872075i \(-0.337226\pi\)
0.489372 + 0.872075i \(0.337226\pi\)
\(632\) 0 0
\(633\) −20.0416 −0.796583
\(634\) 0 0
\(635\) 3.24718 0.128860
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 23.3868 0.925168
\(640\) 0 0
\(641\) 11.7750 0.465084 0.232542 0.972586i \(-0.425296\pi\)
0.232542 + 0.972586i \(0.425296\pi\)
\(642\) 0 0
\(643\) 39.2513 1.54792 0.773960 0.633235i \(-0.218273\pi\)
0.773960 + 0.633235i \(0.218273\pi\)
\(644\) 0 0
\(645\) 14.4853 0.570357
\(646\) 0 0
\(647\) 45.2548 1.77915 0.889576 0.456788i \(-0.151000\pi\)
0.889576 + 0.456788i \(0.151000\pi\)
\(648\) 0 0
\(649\) 6.04601 0.237327
\(650\) 0 0
\(651\) 0.557127 0.0218355
\(652\) 0 0
\(653\) −25.2890 −0.989634 −0.494817 0.868997i \(-0.664765\pi\)
−0.494817 + 0.868997i \(0.664765\pi\)
\(654\) 0 0
\(655\) 26.7279 1.04435
\(656\) 0 0
\(657\) 19.2430 0.750739
\(658\) 0 0
\(659\) 22.7696 0.886976 0.443488 0.896280i \(-0.353741\pi\)
0.443488 + 0.896280i \(0.353741\pi\)
\(660\) 0 0
\(661\) −26.5858 −1.03407 −0.517034 0.855965i \(-0.672964\pi\)
−0.517034 + 0.855965i \(0.672964\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.31371 −0.0509434
\(666\) 0 0
\(667\) −36.7279 −1.42211
\(668\) 0 0
\(669\) 13.4370 0.519506
\(670\) 0 0
\(671\) −7.55635 −0.291710
\(672\) 0 0
\(673\) 15.3617 0.592151 0.296076 0.955165i \(-0.404322\pi\)
0.296076 + 0.955165i \(0.404322\pi\)
\(674\) 0 0
\(675\) 6.57128 0.252929
\(676\) 0 0
\(677\) −10.2124 −0.392494 −0.196247 0.980554i \(-0.562876\pi\)
−0.196247 + 0.980554i \(0.562876\pi\)
\(678\) 0 0
\(679\) −5.07107 −0.194610
\(680\) 0 0
\(681\) 2.72792 0.104534
\(682\) 0 0
\(683\) 33.9162 1.29777 0.648885 0.760887i \(-0.275236\pi\)
0.648885 + 0.760887i \(0.275236\pi\)
\(684\) 0 0
\(685\) −25.8686 −0.988389
\(686\) 0 0
\(687\) −7.57675 −0.289071
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −32.3855 −1.23200 −0.616001 0.787745i \(-0.711248\pi\)
−0.616001 + 0.787745i \(0.711248\pi\)
\(692\) 0 0
\(693\) −0.585786 −0.0222522
\(694\) 0 0
\(695\) 0.928932 0.0352364
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0.443651 0.0167804
\(700\) 0 0
\(701\) 28.6863 1.08347 0.541733 0.840551i \(-0.317768\pi\)
0.541733 + 0.840551i \(0.317768\pi\)
\(702\) 0 0
\(703\) −1.71644 −0.0647369
\(704\) 0 0
\(705\) 18.1421 0.683272
\(706\) 0 0
\(707\) −3.17025 −0.119230
\(708\) 0 0
\(709\) 37.0096 1.38992 0.694962 0.719047i \(-0.255421\pi\)
0.694962 + 0.719047i \(0.255421\pi\)
\(710\) 0 0
\(711\) −34.4734 −1.29285
\(712\) 0 0
\(713\) 15.2132 0.569739
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 8.65914 0.323381
\(718\) 0 0
\(719\) −19.4287 −0.724567 −0.362284 0.932068i \(-0.618003\pi\)
−0.362284 + 0.932068i \(0.618003\pi\)
\(720\) 0 0
\(721\) −0.742837 −0.0276647
\(722\) 0 0
\(723\) 10.7279 0.398976
\(724\) 0 0
\(725\) 8.79045 0.326469
\(726\) 0 0
\(727\) 17.7990 0.660128 0.330064 0.943959i \(-0.392930\pi\)
0.330064 + 0.943959i \(0.392930\pi\)
\(728\) 0 0
\(729\) −0.313708 −0.0116188
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −24.7279 −0.913347 −0.456673 0.889634i \(-0.650959\pi\)
−0.456673 + 0.889634i \(0.650959\pi\)
\(734\) 0 0
\(735\) 9.75736 0.359906
\(736\) 0 0
\(737\) −7.39104 −0.272252
\(738\) 0 0
\(739\) −9.07107 −0.333685 −0.166842 0.985984i \(-0.553357\pi\)
−0.166842 + 0.985984i \(0.553357\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −32.3086 −1.18529 −0.592644 0.805465i \(-0.701916\pi\)
−0.592644 + 0.805465i \(0.701916\pi\)
\(744\) 0 0
\(745\) −11.7206 −0.429410
\(746\) 0 0
\(747\) 24.7279 0.904747
\(748\) 0 0
\(749\) 4.58579 0.167561
\(750\) 0 0
\(751\) 24.2066 0.883311 0.441655 0.897185i \(-0.354391\pi\)
0.441655 + 0.897185i \(0.354391\pi\)
\(752\) 0 0
\(753\) −0.634051 −0.0231061
\(754\) 0 0
\(755\) 36.7695 1.33818
\(756\) 0 0
\(757\) −14.1005 −0.512492 −0.256246 0.966612i \(-0.582486\pi\)
−0.256246 + 0.966612i \(0.582486\pi\)
\(758\) 0 0
\(759\) 3.88123 0.140880
\(760\) 0 0
\(761\) 3.02944 0.109817 0.0549085 0.998491i \(-0.482513\pi\)
0.0549085 + 0.998491i \(0.482513\pi\)
\(762\) 0 0
\(763\) 3.69848 0.133894
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 43.5980 1.57218 0.786092 0.618110i \(-0.212101\pi\)
0.786092 + 0.618110i \(0.212101\pi\)
\(770\) 0 0
\(771\) 6.30864 0.227200
\(772\) 0 0
\(773\) −32.9289 −1.18437 −0.592186 0.805802i \(-0.701735\pi\)
−0.592186 + 0.805802i \(0.701735\pi\)
\(774\) 0 0
\(775\) −3.64113 −0.130793
\(776\) 0 0
\(777\) −0.185709 −0.00666228
\(778\) 0 0
\(779\) 5.56581 0.199416
\(780\) 0 0
\(781\) −7.41421 −0.265301
\(782\) 0 0
\(783\) 22.9706 0.820901
\(784\) 0 0
\(785\) −28.2960 −1.00993
\(786\) 0 0
\(787\) −11.2948 −0.402616 −0.201308 0.979528i \(-0.564519\pi\)
−0.201308 + 0.979528i \(0.564519\pi\)
\(788\) 0 0
\(789\) 2.98454 0.106253
\(790\) 0 0
\(791\) 2.58579 0.0919400
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 4.34315 0.154036
\(796\) 0 0
\(797\) 13.4142 0.475156 0.237578 0.971368i \(-0.423646\pi\)
0.237578 + 0.971368i \(0.423646\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −4.00000 −0.141333
\(802\) 0 0
\(803\) −6.10051 −0.215282
\(804\) 0 0
\(805\) −3.88123 −0.136795
\(806\) 0 0
\(807\) −10.7279 −0.377641
\(808\) 0 0
\(809\) −15.9958 −0.562382 −0.281191 0.959652i \(-0.590729\pi\)
−0.281191 + 0.959652i \(0.590729\pi\)
\(810\) 0 0
\(811\) −42.7611 −1.50154 −0.750772 0.660561i \(-0.770319\pi\)
−0.750772 + 0.660561i \(0.770319\pi\)
\(812\) 0 0
\(813\) 8.65914 0.303689
\(814\) 0 0
\(815\) 8.58579 0.300747
\(816\) 0 0
\(817\) −22.9706 −0.803638
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 48.0961 1.67857 0.839283 0.543694i \(-0.182975\pi\)
0.839283 + 0.543694i \(0.182975\pi\)
\(822\) 0 0
\(823\) 9.50143 0.331199 0.165599 0.986193i \(-0.447044\pi\)
0.165599 + 0.986193i \(0.447044\pi\)
\(824\) 0 0
\(825\) −0.928932 −0.0323413
\(826\) 0 0
\(827\) 8.15640 0.283626 0.141813 0.989893i \(-0.454707\pi\)
0.141813 + 0.989893i \(0.454707\pi\)
\(828\) 0 0
\(829\) −53.9411 −1.87345 −0.936726 0.350062i \(-0.886160\pi\)
−0.936726 + 0.350062i \(0.886160\pi\)
\(830\) 0 0
\(831\) −7.07107 −0.245293
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1.41421 0.0489409
\(836\) 0 0
\(837\) −9.51472 −0.328877
\(838\) 0 0
\(839\) 34.9217 1.20563 0.602816 0.797880i \(-0.294045\pi\)
0.602816 + 0.797880i \(0.294045\pi\)
\(840\) 0 0
\(841\) 1.72792 0.0595835
\(842\) 0 0
\(843\) 2.50434 0.0862541
\(844\) 0 0
\(845\) 24.0209 0.826343
\(846\) 0 0
\(847\) −3.30157 −0.113443
\(848\) 0 0
\(849\) −20.1005 −0.689848
\(850\) 0 0
\(851\) −5.07107 −0.173834
\(852\) 0 0
\(853\) 15.8101 0.541327 0.270663 0.962674i \(-0.412757\pi\)
0.270663 + 0.962674i \(0.412757\pi\)
\(854\) 0 0
\(855\) 10.0042 0.342135
\(856\) 0 0
\(857\) −7.97069 −0.272274 −0.136137 0.990690i \(-0.543469\pi\)
−0.136137 + 0.990690i \(0.543469\pi\)
\(858\) 0 0
\(859\) 42.0416 1.43444 0.717221 0.696846i \(-0.245414\pi\)
0.717221 + 0.696846i \(0.245414\pi\)
\(860\) 0 0
\(861\) 0.602188 0.0205225
\(862\) 0 0
\(863\) 15.8579 0.539808 0.269904 0.962887i \(-0.413008\pi\)
0.269904 + 0.962887i \(0.413008\pi\)
\(864\) 0 0
\(865\) −34.8701 −1.18562
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10.9289 0.370739
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 38.6172 1.30700
\(874\) 0 0
\(875\) 3.85786 0.130420
\(876\) 0 0
\(877\) −7.33664 −0.247741 −0.123870 0.992298i \(-0.539531\pi\)
−0.123870 + 0.992298i \(0.539531\pi\)
\(878\) 0 0
\(879\) −5.59767 −0.188805
\(880\) 0 0
\(881\) 24.2066 0.815540 0.407770 0.913085i \(-0.366306\pi\)
0.407770 + 0.913085i \(0.366306\pi\)
\(882\) 0 0
\(883\) −41.2548 −1.38834 −0.694168 0.719813i \(-0.744227\pi\)
−0.694168 + 0.719813i \(0.744227\pi\)
\(884\) 0 0
\(885\) −11.1716 −0.375528
\(886\) 0 0
\(887\) −15.2848 −0.513214 −0.256607 0.966516i \(-0.582605\pi\)
−0.256607 + 0.966516i \(0.582605\pi\)
\(888\) 0 0
\(889\) −0.557127 −0.0186855
\(890\) 0 0
\(891\) 3.11586 0.104385
\(892\) 0 0
\(893\) −28.7696 −0.962736
\(894\) 0 0
\(895\) 33.7080 1.12673
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12.7279 −0.424500
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −2.48528 −0.0827050
\(904\) 0 0
\(905\) −15.0711 −0.500979
\(906\) 0 0
\(907\) −23.4637 −0.779101 −0.389550 0.921005i \(-0.627370\pi\)
−0.389550 + 0.921005i \(0.627370\pi\)
\(908\) 0 0
\(909\) 24.1421 0.800744
\(910\) 0 0
\(911\) −29.1383 −0.965396 −0.482698 0.875787i \(-0.660343\pi\)
−0.482698 + 0.875787i \(0.660343\pi\)
\(912\) 0 0
\(913\) −7.83938 −0.259446
\(914\) 0 0
\(915\) 13.9623 0.461580
\(916\) 0 0
\(917\) −4.58579 −0.151436
\(918\) 0 0
\(919\) 44.2843 1.46080 0.730402 0.683018i \(-0.239333\pi\)
0.730402 + 0.683018i \(0.239333\pi\)
\(920\) 0 0
\(921\) −20.3797 −0.671535
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.21371 0.0399065
\(926\) 0 0
\(927\) 5.65685 0.185795
\(928\) 0 0
\(929\) 27.7933 0.911869 0.455934 0.890013i \(-0.349305\pi\)
0.455934 + 0.890013i \(0.349305\pi\)
\(930\) 0 0
\(931\) −15.4731 −0.507110
\(932\) 0 0
\(933\) 3.07107 0.100542
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −0.443651 −0.0144934 −0.00724672 0.999974i \(-0.502307\pi\)
−0.00724672 + 0.999974i \(0.502307\pi\)
\(938\) 0 0
\(939\) 3.27208 0.106780
\(940\) 0 0
\(941\) −38.9886 −1.27099 −0.635497 0.772103i \(-0.719205\pi\)
−0.635497 + 0.772103i \(0.719205\pi\)
\(942\) 0 0
\(943\) 16.4437 0.535479
\(944\) 0 0
\(945\) 2.42742 0.0789639
\(946\) 0 0
\(947\) −51.4202 −1.67093 −0.835466 0.549541i \(-0.814802\pi\)
−0.835466 + 0.549541i \(0.814802\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −12.1005 −0.392386
\(952\) 0 0
\(953\) −50.0000 −1.61966 −0.809829 0.586665i \(-0.800440\pi\)
−0.809829 + 0.586665i \(0.800440\pi\)
\(954\) 0 0
\(955\) 16.3128 0.527870
\(956\) 0 0
\(957\) −3.24718 −0.104966
\(958\) 0 0
\(959\) 4.43835 0.143322
\(960\) 0 0
\(961\) −25.7279 −0.829933
\(962\) 0 0
\(963\) −34.9217 −1.12534
\(964\) 0 0
\(965\) 1.41421 0.0455251
\(966\) 0 0
\(967\) −34.5269 −1.11031 −0.555155 0.831747i \(-0.687341\pi\)
−0.555155 + 0.831747i \(0.687341\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −54.7279 −1.75630 −0.878151 0.478383i \(-0.841223\pi\)
−0.878151 + 0.478383i \(0.841223\pi\)
\(972\) 0 0
\(973\) −0.159380 −0.00510947
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 34.3848 1.10007 0.550033 0.835143i \(-0.314615\pi\)
0.550033 + 0.835143i \(0.314615\pi\)
\(978\) 0 0
\(979\) 1.26810 0.0405287
\(980\) 0 0
\(981\) −28.1647 −0.899231
\(982\) 0 0
\(983\) −38.9886 −1.24354 −0.621772 0.783198i \(-0.713587\pi\)
−0.621772 + 0.783198i \(0.713587\pi\)
\(984\) 0 0
\(985\) −22.7279 −0.724172
\(986\) 0 0
\(987\) −3.11270 −0.0990783
\(988\) 0 0
\(989\) −67.8644 −2.15796
\(990\) 0 0
\(991\) −50.7862 −1.61328 −0.806638 0.591046i \(-0.798715\pi\)
−0.806638 + 0.591046i \(0.798715\pi\)
\(992\) 0 0
\(993\) −10.5294 −0.334141
\(994\) 0 0
\(995\) −41.5563 −1.31742
\(996\) 0 0
\(997\) 8.68167 0.274951 0.137476 0.990505i \(-0.456101\pi\)
0.137476 + 0.990505i \(0.456101\pi\)
\(998\) 0 0
\(999\) 3.17157 0.100344
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.a.s.1.3 4
4.3 odd 2 4624.2.a.bm.1.2 4
17.4 even 4 2312.2.b.j.577.2 4
17.5 odd 16 136.2.n.a.25.1 4
17.7 odd 16 136.2.n.a.49.1 yes 4
17.13 even 4 2312.2.b.j.577.3 4
17.16 even 2 inner 2312.2.a.s.1.2 4
51.5 even 16 1224.2.bq.a.433.1 4
51.41 even 16 1224.2.bq.a.865.1 4
68.7 even 16 272.2.v.e.49.1 4
68.39 even 16 272.2.v.e.161.1 4
68.67 odd 2 4624.2.a.bm.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.n.a.25.1 4 17.5 odd 16
136.2.n.a.49.1 yes 4 17.7 odd 16
272.2.v.e.49.1 4 68.7 even 16
272.2.v.e.161.1 4 68.39 even 16
1224.2.bq.a.433.1 4 51.5 even 16
1224.2.bq.a.865.1 4 51.41 even 16
2312.2.a.s.1.2 4 17.16 even 2 inner
2312.2.a.s.1.3 4 1.1 even 1 trivial
2312.2.b.j.577.2 4 17.4 even 4
2312.2.b.j.577.3 4 17.13 even 4
4624.2.a.bm.1.2 4 4.3 odd 2
4624.2.a.bm.1.3 4 68.67 odd 2