Properties

Label 272.2.v.e.161.1
Level $272$
Weight $2$
Character 272.161
Analytic conductor $2.172$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [272,2,Mod(49,272)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(272, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("272.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 272.v (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17193093498\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 161.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 272.161
Dual form 272.2.v.e.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.292893 - 0.707107i) q^{3} +(1.70711 + 0.707107i) q^{5} +(0.292893 - 0.121320i) q^{7} +(1.70711 + 1.70711i) q^{9} +(-0.292893 - 0.707107i) q^{11} +(1.00000 - 1.00000i) q^{15} +(1.00000 - 4.00000i) q^{17} +(1.58579 - 1.58579i) q^{19} -0.242641i q^{21} +(2.53553 + 6.12132i) q^{23} +(-1.12132 - 1.12132i) q^{25} +(3.82843 - 1.58579i) q^{27} +(-5.12132 - 2.12132i) q^{29} +(-0.878680 + 2.12132i) q^{31} -0.585786 q^{33} +0.585786 q^{35} +(0.292893 - 0.707107i) q^{37} +(-2.29289 + 0.949747i) q^{41} +(-7.24264 - 7.24264i) q^{43} +(1.70711 + 4.12132i) q^{45} +12.8284i q^{47} +(-4.87868 + 4.87868i) q^{49} +(-2.53553 - 1.87868i) q^{51} +(2.17157 - 2.17157i) q^{53} -1.41421i q^{55} +(-0.656854 - 1.58579i) q^{57} +(-5.58579 - 5.58579i) q^{59} +(-9.12132 + 3.77817i) q^{61} +(0.707107 + 0.292893i) q^{63} -9.65685 q^{67} +5.07107 q^{69} +(-3.70711 + 8.94975i) q^{71} +(7.36396 + 3.05025i) q^{73} +(-1.12132 + 0.464466i) q^{75} +(-0.171573 - 0.171573i) q^{77} +(-5.46447 - 13.1924i) q^{79} +4.07107i q^{81} +(7.24264 - 7.24264i) q^{83} +(4.53553 - 6.12132i) q^{85} +(-3.00000 + 3.00000i) q^{87} -1.65685i q^{89} +(1.24264 + 1.24264i) q^{93} +(3.82843 - 1.58579i) q^{95} +(-14.7782 - 6.12132i) q^{97} +(0.707107 - 1.70711i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{5} + 4 q^{7} + 4 q^{9} - 4 q^{11} + 4 q^{15} + 4 q^{17} + 12 q^{19} - 4 q^{23} + 4 q^{25} + 4 q^{27} - 12 q^{29} - 12 q^{31} - 8 q^{33} + 8 q^{35} + 4 q^{37} - 12 q^{41} - 12 q^{43}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/272\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(239\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.292893 0.707107i 0.169102 0.408248i −0.816497 0.577350i \(-0.804087\pi\)
0.985599 + 0.169102i \(0.0540867\pi\)
\(4\) 0 0
\(5\) 1.70711 + 0.707107i 0.763441 + 0.316228i 0.730213 0.683220i \(-0.239421\pi\)
0.0332288 + 0.999448i \(0.489421\pi\)
\(6\) 0 0
\(7\) 0.292893 0.121320i 0.110703 0.0458548i −0.326644 0.945147i \(-0.605918\pi\)
0.437348 + 0.899293i \(0.355918\pi\)
\(8\) 0 0
\(9\) 1.70711 + 1.70711i 0.569036 + 0.569036i
\(10\) 0 0
\(11\) −0.292893 0.707107i −0.0883106 0.213201i 0.873554 0.486728i \(-0.161810\pi\)
−0.961864 + 0.273527i \(0.911810\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 1.00000 1.00000i 0.258199 0.258199i
\(16\) 0 0
\(17\) 1.00000 4.00000i 0.242536 0.970143i
\(18\) 0 0
\(19\) 1.58579 1.58579i 0.363804 0.363804i −0.501407 0.865211i \(-0.667184\pi\)
0.865211 + 0.501407i \(0.167184\pi\)
\(20\) 0 0
\(21\) 0.242641i 0.0529485i
\(22\) 0 0
\(23\) 2.53553 + 6.12132i 0.528695 + 1.27638i 0.932378 + 0.361484i \(0.117730\pi\)
−0.403683 + 0.914899i \(0.632270\pi\)
\(24\) 0 0
\(25\) −1.12132 1.12132i −0.224264 0.224264i
\(26\) 0 0
\(27\) 3.82843 1.58579i 0.736781 0.305185i
\(28\) 0 0
\(29\) −5.12132 2.12132i −0.951005 0.393919i −0.147397 0.989077i \(-0.547089\pi\)
−0.803609 + 0.595158i \(0.797089\pi\)
\(30\) 0 0
\(31\) −0.878680 + 2.12132i −0.157816 + 0.381000i −0.982934 0.183960i \(-0.941108\pi\)
0.825118 + 0.564960i \(0.191108\pi\)
\(32\) 0 0
\(33\) −0.585786 −0.101972
\(34\) 0 0
\(35\) 0.585786 0.0990160
\(36\) 0 0
\(37\) 0.292893 0.707107i 0.0481513 0.116248i −0.897974 0.440049i \(-0.854961\pi\)
0.946125 + 0.323802i \(0.104961\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.29289 + 0.949747i −0.358090 + 0.148326i −0.554473 0.832202i \(-0.687080\pi\)
0.196384 + 0.980527i \(0.437080\pi\)
\(42\) 0 0
\(43\) −7.24264 7.24264i −1.10449 1.10449i −0.993862 0.110631i \(-0.964713\pi\)
−0.110631 0.993862i \(-0.535287\pi\)
\(44\) 0 0
\(45\) 1.70711 + 4.12132i 0.254480 + 0.614370i
\(46\) 0 0
\(47\) 12.8284i 1.87122i 0.353037 + 0.935609i \(0.385149\pi\)
−0.353037 + 0.935609i \(0.614851\pi\)
\(48\) 0 0
\(49\) −4.87868 + 4.87868i −0.696954 + 0.696954i
\(50\) 0 0
\(51\) −2.53553 1.87868i −0.355046 0.263068i
\(52\) 0 0
\(53\) 2.17157 2.17157i 0.298288 0.298288i −0.542055 0.840343i \(-0.682353\pi\)
0.840343 + 0.542055i \(0.182353\pi\)
\(54\) 0 0
\(55\) 1.41421i 0.190693i
\(56\) 0 0
\(57\) −0.656854 1.58579i −0.0870025 0.210043i
\(58\) 0 0
\(59\) −5.58579 5.58579i −0.727207 0.727207i 0.242855 0.970063i \(-0.421916\pi\)
−0.970063 + 0.242855i \(0.921916\pi\)
\(60\) 0 0
\(61\) −9.12132 + 3.77817i −1.16787 + 0.483746i −0.880486 0.474071i \(-0.842784\pi\)
−0.287379 + 0.957817i \(0.592784\pi\)
\(62\) 0 0
\(63\) 0.707107 + 0.292893i 0.0890871 + 0.0369011i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −9.65685 −1.17977 −0.589886 0.807486i \(-0.700827\pi\)
−0.589886 + 0.807486i \(0.700827\pi\)
\(68\) 0 0
\(69\) 5.07107 0.610485
\(70\) 0 0
\(71\) −3.70711 + 8.94975i −0.439953 + 1.06214i 0.536012 + 0.844210i \(0.319930\pi\)
−0.975965 + 0.217929i \(0.930070\pi\)
\(72\) 0 0
\(73\) 7.36396 + 3.05025i 0.861886 + 0.357005i 0.769445 0.638713i \(-0.220533\pi\)
0.0924414 + 0.995718i \(0.470533\pi\)
\(74\) 0 0
\(75\) −1.12132 + 0.464466i −0.129479 + 0.0536319i
\(76\) 0 0
\(77\) −0.171573 0.171573i −0.0195525 0.0195525i
\(78\) 0 0
\(79\) −5.46447 13.1924i −0.614800 1.48426i −0.857670 0.514201i \(-0.828089\pi\)
0.242869 0.970059i \(-0.421911\pi\)
\(80\) 0 0
\(81\) 4.07107i 0.452341i
\(82\) 0 0
\(83\) 7.24264 7.24264i 0.794983 0.794983i −0.187317 0.982300i \(-0.559979\pi\)
0.982300 + 0.187317i \(0.0599790\pi\)
\(84\) 0 0
\(85\) 4.53553 6.12132i 0.491948 0.663950i
\(86\) 0 0
\(87\) −3.00000 + 3.00000i −0.321634 + 0.321634i
\(88\) 0 0
\(89\) 1.65685i 0.175626i −0.996137 0.0878131i \(-0.972012\pi\)
0.996137 0.0878131i \(-0.0279878\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.24264 + 1.24264i 0.128856 + 0.128856i
\(94\) 0 0
\(95\) 3.82843 1.58579i 0.392788 0.162698i
\(96\) 0 0
\(97\) −14.7782 6.12132i −1.50050 0.621526i −0.526926 0.849911i \(-0.676655\pi\)
−0.973571 + 0.228386i \(0.926655\pi\)
\(98\) 0 0
\(99\) 0.707107 1.70711i 0.0710669 0.171571i
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) 2.34315 0.230877 0.115439 0.993315i \(-0.463173\pi\)
0.115439 + 0.993315i \(0.463173\pi\)
\(104\) 0 0
\(105\) 0.171573 0.414214i 0.0167438 0.0404231i
\(106\) 0 0
\(107\) 13.3640 + 5.53553i 1.29194 + 0.535140i 0.919564 0.392940i \(-0.128542\pi\)
0.372379 + 0.928081i \(0.378542\pi\)
\(108\) 0 0
\(109\) −10.7782 + 4.46447i −1.03236 + 0.427618i −0.833564 0.552422i \(-0.813704\pi\)
−0.198797 + 0.980041i \(0.563704\pi\)
\(110\) 0 0
\(111\) −0.414214 0.414214i −0.0393154 0.0393154i
\(112\) 0 0
\(113\) 3.12132 + 7.53553i 0.293629 + 0.708883i 0.999999 + 0.00104094i \(0.000331343\pi\)
−0.706370 + 0.707842i \(0.749669\pi\)
\(114\) 0 0
\(115\) 12.2426i 1.14163i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.192388 1.29289i −0.0176362 0.118519i
\(120\) 0 0
\(121\) 7.36396 7.36396i 0.669451 0.669451i
\(122\) 0 0
\(123\) 1.89949i 0.171272i
\(124\) 0 0
\(125\) −4.65685 11.2426i −0.416522 1.00557i
\(126\) 0 0
\(127\) 1.24264 + 1.24264i 0.110267 + 0.110267i 0.760087 0.649821i \(-0.225156\pi\)
−0.649821 + 0.760087i \(0.725156\pi\)
\(128\) 0 0
\(129\) −7.24264 + 3.00000i −0.637679 + 0.264135i
\(130\) 0 0
\(131\) 13.3640 + 5.53553i 1.16761 + 0.483642i 0.880403 0.474225i \(-0.157272\pi\)
0.287211 + 0.957867i \(0.407272\pi\)
\(132\) 0 0
\(133\) 0.272078 0.656854i 0.0235921 0.0569565i
\(134\) 0 0
\(135\) 7.65685 0.658997
\(136\) 0 0
\(137\) 14.0000 1.19610 0.598050 0.801459i \(-0.295942\pi\)
0.598050 + 0.801459i \(0.295942\pi\)
\(138\) 0 0
\(139\) −0.192388 + 0.464466i −0.0163182 + 0.0393955i −0.931829 0.362899i \(-0.881787\pi\)
0.915510 + 0.402294i \(0.131787\pi\)
\(140\) 0 0
\(141\) 9.07107 + 3.75736i 0.763922 + 0.316427i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −7.24264 7.24264i −0.601469 0.601469i
\(146\) 0 0
\(147\) 2.02082 + 4.87868i 0.166674 + 0.402387i
\(148\) 0 0
\(149\) 6.34315i 0.519651i 0.965656 + 0.259825i \(0.0836650\pi\)
−0.965656 + 0.259825i \(0.916335\pi\)
\(150\) 0 0
\(151\) 14.0711 14.0711i 1.14509 1.14509i 0.157581 0.987506i \(-0.449630\pi\)
0.987506 0.157581i \(-0.0503696\pi\)
\(152\) 0 0
\(153\) 8.53553 5.12132i 0.690057 0.414034i
\(154\) 0 0
\(155\) −3.00000 + 3.00000i −0.240966 + 0.240966i
\(156\) 0 0
\(157\) 15.3137i 1.22217i −0.791566 0.611083i \(-0.790734\pi\)
0.791566 0.611083i \(-0.209266\pi\)
\(158\) 0 0
\(159\) −0.899495 2.17157i −0.0713346 0.172217i
\(160\) 0 0
\(161\) 1.48528 + 1.48528i 0.117057 + 0.117057i
\(162\) 0 0
\(163\) 4.29289 1.77817i 0.336245 0.139277i −0.208171 0.978092i \(-0.566751\pi\)
0.544417 + 0.838815i \(0.316751\pi\)
\(164\) 0 0
\(165\) −1.00000 0.414214i −0.0778499 0.0322465i
\(166\) 0 0
\(167\) 0.292893 0.707107i 0.0226648 0.0547176i −0.912142 0.409874i \(-0.865573\pi\)
0.934807 + 0.355157i \(0.115573\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 5.41421 0.414035
\(172\) 0 0
\(173\) −7.22183 + 17.4350i −0.549065 + 1.32556i 0.369110 + 0.929386i \(0.379663\pi\)
−0.918175 + 0.396175i \(0.870337\pi\)
\(174\) 0 0
\(175\) −0.464466 0.192388i −0.0351103 0.0145432i
\(176\) 0 0
\(177\) −5.58579 + 2.31371i −0.419853 + 0.173909i
\(178\) 0 0
\(179\) −12.8995 12.8995i −0.964154 0.964154i 0.0352259 0.999379i \(-0.488785\pi\)
−0.999379 + 0.0352259i \(0.988785\pi\)
\(180\) 0 0
\(181\) 3.12132 + 7.53553i 0.232006 + 0.560112i 0.996413 0.0846219i \(-0.0269682\pi\)
−0.764407 + 0.644734i \(0.776968\pi\)
\(182\) 0 0
\(183\) 7.55635i 0.558581i
\(184\) 0 0
\(185\) 1.00000 1.00000i 0.0735215 0.0735215i
\(186\) 0 0
\(187\) −3.12132 + 0.464466i −0.228254 + 0.0339651i
\(188\) 0 0
\(189\) 0.928932 0.928932i 0.0675699 0.0675699i
\(190\) 0 0
\(191\) 8.82843i 0.638803i −0.947620 0.319401i \(-0.896518\pi\)
0.947620 0.319401i \(-0.103482\pi\)
\(192\) 0 0
\(193\) 0.292893 + 0.707107i 0.0210829 + 0.0508987i 0.934070 0.357089i \(-0.116231\pi\)
−0.912987 + 0.407988i \(0.866231\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 11.3640 4.70711i 0.809649 0.335367i 0.0608349 0.998148i \(-0.480624\pi\)
0.748814 + 0.662780i \(0.230624\pi\)
\(198\) 0 0
\(199\) −20.7782 8.60660i −1.47293 0.610106i −0.505402 0.862884i \(-0.668656\pi\)
−0.967524 + 0.252778i \(0.918656\pi\)
\(200\) 0 0
\(201\) −2.82843 + 6.82843i −0.199502 + 0.481640i
\(202\) 0 0
\(203\) −1.75736 −0.123342
\(204\) 0 0
\(205\) −4.58579 −0.320285
\(206\) 0 0
\(207\) −6.12132 + 14.7782i −0.425461 + 1.02715i
\(208\) 0 0
\(209\) −1.58579 0.656854i −0.109691 0.0454356i
\(210\) 0 0
\(211\) −24.1924 + 10.0208i −1.66547 + 0.689861i −0.998475 0.0551988i \(-0.982421\pi\)
−0.666997 + 0.745060i \(0.732421\pi\)
\(212\) 0 0
\(213\) 5.24264 + 5.24264i 0.359220 + 0.359220i
\(214\) 0 0
\(215\) −7.24264 17.4853i −0.493944 1.19249i
\(216\) 0 0
\(217\) 0.727922i 0.0494146i
\(218\) 0 0
\(219\) 4.31371 4.31371i 0.291493 0.291493i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 12.4142 12.4142i 0.831317 0.831317i −0.156380 0.987697i \(-0.549982\pi\)
0.987697 + 0.156380i \(0.0499824\pi\)
\(224\) 0 0
\(225\) 3.82843i 0.255228i
\(226\) 0 0
\(227\) 1.36396 + 3.29289i 0.0905293 + 0.218557i 0.962659 0.270719i \(-0.0872613\pi\)
−0.872129 + 0.489276i \(0.837261\pi\)
\(228\) 0 0
\(229\) −7.00000 7.00000i −0.462573 0.462573i 0.436925 0.899498i \(-0.356068\pi\)
−0.899498 + 0.436925i \(0.856068\pi\)
\(230\) 0 0
\(231\) −0.171573 + 0.0710678i −0.0112887 + 0.00467592i
\(232\) 0 0
\(233\) 0.535534 + 0.221825i 0.0350840 + 0.0145323i 0.400156 0.916447i \(-0.368956\pi\)
−0.365072 + 0.930979i \(0.618956\pi\)
\(234\) 0 0
\(235\) −9.07107 + 21.8995i −0.591731 + 1.42857i
\(236\) 0 0
\(237\) −10.9289 −0.709910
\(238\) 0 0
\(239\) −11.3137 −0.731823 −0.365911 0.930650i \(-0.619243\pi\)
−0.365911 + 0.930650i \(0.619243\pi\)
\(240\) 0 0
\(241\) −5.36396 + 12.9497i −0.345523 + 0.834167i 0.651614 + 0.758551i \(0.274092\pi\)
−0.997137 + 0.0756158i \(0.975908\pi\)
\(242\) 0 0
\(243\) 14.3640 + 5.94975i 0.921449 + 0.381676i
\(244\) 0 0
\(245\) −11.7782 + 4.87868i −0.752480 + 0.311687i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −3.00000 7.24264i −0.190117 0.458984i
\(250\) 0 0
\(251\) 0.828427i 0.0522899i 0.999658 + 0.0261449i \(0.00832314\pi\)
−0.999658 + 0.0261449i \(0.991677\pi\)
\(252\) 0 0
\(253\) 3.58579 3.58579i 0.225436 0.225436i
\(254\) 0 0
\(255\) −3.00000 5.00000i −0.187867 0.313112i
\(256\) 0 0
\(257\) −5.82843 + 5.82843i −0.363567 + 0.363567i −0.865124 0.501557i \(-0.832761\pi\)
0.501557 + 0.865124i \(0.332761\pi\)
\(258\) 0 0
\(259\) 0.242641i 0.0150770i
\(260\) 0 0
\(261\) −5.12132 12.3640i −0.317002 0.765310i
\(262\) 0 0
\(263\) −2.75736 2.75736i −0.170026 0.170026i 0.616965 0.786991i \(-0.288362\pi\)
−0.786991 + 0.616965i \(0.788362\pi\)
\(264\) 0 0
\(265\) 5.24264 2.17157i 0.322053 0.133399i
\(266\) 0 0
\(267\) −1.17157 0.485281i −0.0716991 0.0296987i
\(268\) 0 0
\(269\) −5.36396 + 12.9497i −0.327046 + 0.789560i 0.671762 + 0.740767i \(0.265538\pi\)
−0.998809 + 0.0487934i \(0.984462\pi\)
\(270\) 0 0
\(271\) 11.3137 0.687259 0.343629 0.939105i \(-0.388344\pi\)
0.343629 + 0.939105i \(0.388344\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.464466 + 1.12132i −0.0280084 + 0.0676182i
\(276\) 0 0
\(277\) 8.53553 + 3.53553i 0.512851 + 0.212430i 0.624073 0.781366i \(-0.285477\pi\)
−0.111223 + 0.993796i \(0.535477\pi\)
\(278\) 0 0
\(279\) −5.12132 + 2.12132i −0.306605 + 0.127000i
\(280\) 0 0
\(281\) −2.31371 2.31371i −0.138024 0.138024i 0.634719 0.772743i \(-0.281116\pi\)
−0.772743 + 0.634719i \(0.781116\pi\)
\(282\) 0 0
\(283\) 10.0503 + 24.2635i 0.597426 + 1.44231i 0.876196 + 0.481955i \(0.160073\pi\)
−0.278770 + 0.960358i \(0.589927\pi\)
\(284\) 0 0
\(285\) 3.17157i 0.187868i
\(286\) 0 0
\(287\) −0.556349 + 0.556349i −0.0328403 + 0.0328403i
\(288\) 0 0
\(289\) −15.0000 8.00000i −0.882353 0.470588i
\(290\) 0 0
\(291\) −8.65685 + 8.65685i −0.507474 + 0.507474i
\(292\) 0 0
\(293\) 7.31371i 0.427271i 0.976913 + 0.213636i \(0.0685306\pi\)
−0.976913 + 0.213636i \(0.931469\pi\)
\(294\) 0 0
\(295\) −5.58579 13.4853i −0.325217 0.785143i
\(296\) 0 0
\(297\) −2.24264 2.24264i −0.130131 0.130131i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −3.00000 1.24264i −0.172917 0.0716246i
\(302\) 0 0
\(303\) 2.92893 7.07107i 0.168263 0.406222i
\(304\) 0 0
\(305\) −18.2426 −1.04457
\(306\) 0 0
\(307\) 26.6274 1.51971 0.759853 0.650094i \(-0.225271\pi\)
0.759853 + 0.650094i \(0.225271\pi\)
\(308\) 0 0
\(309\) 0.686292 1.65685i 0.0390418 0.0942551i
\(310\) 0 0
\(311\) 3.70711 + 1.53553i 0.210211 + 0.0870721i 0.485304 0.874345i \(-0.338709\pi\)
−0.275094 + 0.961417i \(0.588709\pi\)
\(312\) 0 0
\(313\) −3.94975 + 1.63604i −0.223253 + 0.0924744i −0.491506 0.870874i \(-0.663554\pi\)
0.268253 + 0.963348i \(0.413554\pi\)
\(314\) 0 0
\(315\) 1.00000 + 1.00000i 0.0563436 + 0.0563436i
\(316\) 0 0
\(317\) −6.05025 14.6066i −0.339816 0.820388i −0.997733 0.0672979i \(-0.978562\pi\)
0.657917 0.753091i \(-0.271438\pi\)
\(318\) 0 0
\(319\) 4.24264i 0.237542i
\(320\) 0 0
\(321\) 7.82843 7.82843i 0.436940 0.436940i
\(322\) 0 0
\(323\) −4.75736 7.92893i −0.264707 0.441178i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 8.92893i 0.493771i
\(328\) 0 0
\(329\) 1.55635 + 3.75736i 0.0858043 + 0.207150i
\(330\) 0 0
\(331\) 9.72792 + 9.72792i 0.534695 + 0.534695i 0.921966 0.387271i \(-0.126582\pi\)
−0.387271 + 0.921966i \(0.626582\pi\)
\(332\) 0 0
\(333\) 1.70711 0.707107i 0.0935489 0.0387492i
\(334\) 0 0
\(335\) −16.4853 6.82843i −0.900687 0.373077i
\(336\) 0 0
\(337\) 5.94975 14.3640i 0.324103 0.782455i −0.674904 0.737906i \(-0.735815\pi\)
0.999007 0.0445491i \(-0.0141851\pi\)
\(338\) 0 0
\(339\) 6.24264 0.339054
\(340\) 0 0
\(341\) 1.75736 0.0951663
\(342\) 0 0
\(343\) −1.68629 + 4.07107i −0.0910512 + 0.219817i
\(344\) 0 0
\(345\) 8.65685 + 3.58579i 0.466069 + 0.193052i
\(346\) 0 0
\(347\) −5.36396 + 2.22183i −0.287953 + 0.119274i −0.521984 0.852955i \(-0.674808\pi\)
0.234032 + 0.972229i \(0.424808\pi\)
\(348\) 0 0
\(349\) −15.4853 15.4853i −0.828908 0.828908i 0.158458 0.987366i \(-0.449348\pi\)
−0.987366 + 0.158458i \(0.949348\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.9706i 1.32905i 0.747266 + 0.664524i \(0.231366\pi\)
−0.747266 + 0.664524i \(0.768634\pi\)
\(354\) 0 0
\(355\) −12.6569 + 12.6569i −0.671756 + 0.671756i
\(356\) 0 0
\(357\) −0.970563 0.242641i −0.0513676 0.0128419i
\(358\) 0 0
\(359\) 15.7279 15.7279i 0.830088 0.830088i −0.157440 0.987528i \(-0.550324\pi\)
0.987528 + 0.157440i \(0.0503242\pi\)
\(360\) 0 0
\(361\) 13.9706i 0.735293i
\(362\) 0 0
\(363\) −3.05025 7.36396i −0.160097 0.386508i
\(364\) 0 0
\(365\) 10.4142 + 10.4142i 0.545105 + 0.545105i
\(366\) 0 0
\(367\) 1.94975 0.807612i 0.101776 0.0421570i −0.331214 0.943555i \(-0.607458\pi\)
0.432990 + 0.901398i \(0.357458\pi\)
\(368\) 0 0
\(369\) −5.53553 2.29289i −0.288168 0.119363i
\(370\) 0 0
\(371\) 0.372583 0.899495i 0.0193435 0.0466995i
\(372\) 0 0
\(373\) 35.9411 1.86096 0.930480 0.366342i \(-0.119390\pi\)
0.930480 + 0.366342i \(0.119390\pi\)
\(374\) 0 0
\(375\) −9.31371 −0.480958
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −13.9497 5.77817i −0.716550 0.296805i −0.00553829 0.999985i \(-0.501763\pi\)
−0.711012 + 0.703180i \(0.751763\pi\)
\(380\) 0 0
\(381\) 1.24264 0.514719i 0.0636624 0.0263698i
\(382\) 0 0
\(383\) 7.58579 + 7.58579i 0.387616 + 0.387616i 0.873836 0.486221i \(-0.161625\pi\)
−0.486221 + 0.873836i \(0.661625\pi\)
\(384\) 0 0
\(385\) −0.171573 0.414214i −0.00874416 0.0211103i
\(386\) 0 0
\(387\) 24.7279i 1.25699i
\(388\) 0 0
\(389\) 20.3137 20.3137i 1.02995 1.02995i 0.0304083 0.999538i \(-0.490319\pi\)
0.999538 0.0304083i \(-0.00968077\pi\)
\(390\) 0 0
\(391\) 27.0208 4.02082i 1.36650 0.203341i
\(392\) 0 0
\(393\) 7.82843 7.82843i 0.394892 0.394892i
\(394\) 0 0
\(395\) 26.3848i 1.32756i
\(396\) 0 0
\(397\) 11.1213 + 26.8492i 0.558163 + 1.34752i 0.911219 + 0.411923i \(0.135143\pi\)
−0.353056 + 0.935602i \(0.614857\pi\)
\(398\) 0 0
\(399\) −0.384776 0.384776i −0.0192629 0.0192629i
\(400\) 0 0
\(401\) 25.0208 10.3640i 1.24948 0.517552i 0.342815 0.939403i \(-0.388620\pi\)
0.906665 + 0.421851i \(0.138620\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.87868 + 6.94975i −0.143043 + 0.345336i
\(406\) 0 0
\(407\) −0.585786 −0.0290364
\(408\) 0 0
\(409\) 18.0000 0.890043 0.445021 0.895520i \(-0.353196\pi\)
0.445021 + 0.895520i \(0.353196\pi\)
\(410\) 0 0
\(411\) 4.10051 9.89949i 0.202263 0.488306i
\(412\) 0 0
\(413\) −2.31371 0.958369i −0.113850 0.0471583i
\(414\) 0 0
\(415\) 17.4853 7.24264i 0.858319 0.355527i
\(416\) 0 0
\(417\) 0.272078 + 0.272078i 0.0133237 + 0.0133237i
\(418\) 0 0
\(419\) 2.53553 + 6.12132i 0.123869 + 0.299046i 0.973634 0.228115i \(-0.0732563\pi\)
−0.849765 + 0.527161i \(0.823256\pi\)
\(420\) 0 0
\(421\) 11.3137i 0.551396i 0.961244 + 0.275698i \(0.0889090\pi\)
−0.961244 + 0.275698i \(0.911091\pi\)
\(422\) 0 0
\(423\) −21.8995 + 21.8995i −1.06479 + 1.06479i
\(424\) 0 0
\(425\) −5.60660 + 3.36396i −0.271960 + 0.163176i
\(426\) 0 0
\(427\) −2.21320 + 2.21320i −0.107104 + 0.107104i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.878680 + 2.12132i 0.0423245 + 0.102180i 0.943628 0.331008i \(-0.107389\pi\)
−0.901304 + 0.433188i \(0.857389\pi\)
\(432\) 0 0
\(433\) 3.82843 + 3.82843i 0.183982 + 0.183982i 0.793089 0.609106i \(-0.208472\pi\)
−0.609106 + 0.793089i \(0.708472\pi\)
\(434\) 0 0
\(435\) −7.24264 + 3.00000i −0.347258 + 0.143839i
\(436\) 0 0
\(437\) 13.7279 + 5.68629i 0.656696 + 0.272012i
\(438\) 0 0
\(439\) 3.60660 8.70711i 0.172134 0.415568i −0.814144 0.580663i \(-0.802793\pi\)
0.986278 + 0.165096i \(0.0527933\pi\)
\(440\) 0 0
\(441\) −16.6569 −0.793184
\(442\) 0 0
\(443\) 40.2843 1.91396 0.956982 0.290148i \(-0.0937046\pi\)
0.956982 + 0.290148i \(0.0937046\pi\)
\(444\) 0 0
\(445\) 1.17157 2.82843i 0.0555379 0.134080i
\(446\) 0 0
\(447\) 4.48528 + 1.85786i 0.212147 + 0.0878740i
\(448\) 0 0
\(449\) 16.5355 6.84924i 0.780360 0.323236i 0.0432993 0.999062i \(-0.486213\pi\)
0.737061 + 0.675826i \(0.236213\pi\)
\(450\) 0 0
\(451\) 1.34315 + 1.34315i 0.0632463 + 0.0632463i
\(452\) 0 0
\(453\) −5.82843 14.0711i −0.273843 0.661116i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.48528 + 3.48528i −0.163035 + 0.163035i −0.783910 0.620875i \(-0.786777\pi\)
0.620875 + 0.783910i \(0.286777\pi\)
\(458\) 0 0
\(459\) −2.51472 16.8995i −0.117377 0.788801i
\(460\) 0 0
\(461\) −2.51472 + 2.51472i −0.117122 + 0.117122i −0.763239 0.646117i \(-0.776392\pi\)
0.646117 + 0.763239i \(0.276392\pi\)
\(462\) 0 0
\(463\) 24.1421i 1.12198i 0.827823 + 0.560990i \(0.189579\pi\)
−0.827823 + 0.560990i \(0.810421\pi\)
\(464\) 0 0
\(465\) 1.24264 + 3.00000i 0.0576261 + 0.139122i
\(466\) 0 0
\(467\) −9.58579 9.58579i −0.443577 0.443577i 0.449635 0.893212i \(-0.351554\pi\)
−0.893212 + 0.449635i \(0.851554\pi\)
\(468\) 0 0
\(469\) −2.82843 + 1.17157i −0.130605 + 0.0540982i
\(470\) 0 0
\(471\) −10.8284 4.48528i −0.498948 0.206671i
\(472\) 0 0
\(473\) −3.00000 + 7.24264i −0.137940 + 0.333017i
\(474\) 0 0
\(475\) −3.55635 −0.163176
\(476\) 0 0
\(477\) 7.41421 0.339474
\(478\) 0 0
\(479\) −14.5355 + 35.0919i −0.664145 + 1.60339i 0.127100 + 0.991890i \(0.459433\pi\)
−0.791245 + 0.611499i \(0.790567\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 1.48528 0.615224i 0.0675826 0.0279936i
\(484\) 0 0
\(485\) −20.8995 20.8995i −0.948997 0.948997i
\(486\) 0 0
\(487\) 6.73654 + 16.2635i 0.305262 + 0.736968i 0.999846 + 0.0175559i \(0.00558849\pi\)
−0.694584 + 0.719412i \(0.744412\pi\)
\(488\) 0 0
\(489\) 3.55635i 0.160824i
\(490\) 0 0
\(491\) −14.4142 + 14.4142i −0.650504 + 0.650504i −0.953114 0.302610i \(-0.902142\pi\)
0.302610 + 0.953114i \(0.402142\pi\)
\(492\) 0 0
\(493\) −13.6066 + 18.3640i −0.612811 + 0.827071i
\(494\) 0 0
\(495\) 2.41421 2.41421i 0.108511 0.108511i
\(496\) 0 0
\(497\) 3.07107i 0.137756i
\(498\) 0 0
\(499\) −6.43503 15.5355i −0.288071 0.695466i 0.711905 0.702275i \(-0.247832\pi\)
−0.999977 + 0.00680940i \(0.997832\pi\)
\(500\) 0 0
\(501\) −0.414214 0.414214i −0.0185057 0.0185057i
\(502\) 0 0
\(503\) 0.292893 0.121320i 0.0130595 0.00540941i −0.376144 0.926561i \(-0.622750\pi\)
0.389204 + 0.921152i \(0.372750\pi\)
\(504\) 0 0
\(505\) 17.0711 + 7.07107i 0.759653 + 0.314658i
\(506\) 0 0
\(507\) 3.80761 9.19239i 0.169102 0.408248i
\(508\) 0 0
\(509\) −38.2843 −1.69692 −0.848460 0.529259i \(-0.822470\pi\)
−0.848460 + 0.529259i \(0.822470\pi\)
\(510\) 0 0
\(511\) 2.52691 0.111784
\(512\) 0 0
\(513\) 3.55635 8.58579i 0.157017 0.379072i
\(514\) 0 0
\(515\) 4.00000 + 1.65685i 0.176261 + 0.0730097i
\(516\) 0 0
\(517\) 9.07107 3.75736i 0.398945 0.165248i
\(518\) 0 0
\(519\) 10.2132 + 10.2132i 0.448310 + 0.448310i
\(520\) 0 0
\(521\) −15.0208 36.2635i −0.658074 1.58873i −0.800775 0.598965i \(-0.795579\pi\)
0.142701 0.989766i \(-0.454421\pi\)
\(522\) 0 0
\(523\) 4.14214i 0.181123i 0.995891 + 0.0905615i \(0.0288662\pi\)
−0.995891 + 0.0905615i \(0.971134\pi\)
\(524\) 0 0
\(525\) −0.272078 + 0.272078i −0.0118745 + 0.0118745i
\(526\) 0 0
\(527\) 7.60660 + 5.63604i 0.331349 + 0.245510i
\(528\) 0 0
\(529\) −14.7782 + 14.7782i −0.642529 + 0.642529i
\(530\) 0 0
\(531\) 19.0711i 0.827614i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 18.8995 + 18.8995i 0.817096 + 0.817096i
\(536\) 0 0
\(537\) −12.8995 + 5.34315i −0.556654 + 0.230574i
\(538\) 0 0
\(539\) 4.87868 + 2.02082i 0.210140 + 0.0870427i
\(540\) 0 0
\(541\) 9.94975 24.0208i 0.427773 1.03274i −0.552219 0.833699i \(-0.686219\pi\)
0.979992 0.199036i \(-0.0637812\pi\)
\(542\) 0 0
\(543\) 6.24264 0.267897
\(544\) 0 0
\(545\) −21.5563 −0.923373
\(546\) 0 0
\(547\) 17.2635 41.6777i 0.738132 1.78201i 0.124802 0.992182i \(-0.460170\pi\)
0.613330 0.789827i \(-0.289830\pi\)
\(548\) 0 0
\(549\) −22.0208 9.12132i −0.939825 0.389288i
\(550\) 0 0
\(551\) −11.4853 + 4.75736i −0.489289 + 0.202670i
\(552\) 0 0
\(553\) −3.20101 3.20101i −0.136121 0.136121i
\(554\) 0 0
\(555\) −0.414214 1.00000i −0.0175824 0.0424476i
\(556\) 0 0
\(557\) 16.0000i 0.677942i 0.940797 + 0.338971i \(0.110079\pi\)
−0.940797 + 0.338971i \(0.889921\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −0.585786 + 2.34315i −0.0247319 + 0.0989277i
\(562\) 0 0
\(563\) −18.4142 + 18.4142i −0.776067 + 0.776067i −0.979159 0.203093i \(-0.934901\pi\)
0.203093 + 0.979159i \(0.434901\pi\)
\(564\) 0 0
\(565\) 15.0711i 0.634045i
\(566\) 0 0
\(567\) 0.493903 + 1.19239i 0.0207420 + 0.0500756i
\(568\) 0 0
\(569\) −21.3431 21.3431i −0.894751 0.894751i 0.100215 0.994966i \(-0.468047\pi\)
−0.994966 + 0.100215i \(0.968047\pi\)
\(570\) 0 0
\(571\) −29.8492 + 12.3640i −1.24915 + 0.517416i −0.906563 0.422070i \(-0.861304\pi\)
−0.342589 + 0.939486i \(0.611304\pi\)
\(572\) 0 0
\(573\) −6.24264 2.58579i −0.260790 0.108023i
\(574\) 0 0
\(575\) 4.02082 9.70711i 0.167680 0.404814i
\(576\) 0 0
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) 0 0
\(579\) 0.585786 0.0243445
\(580\) 0 0
\(581\) 1.24264 3.00000i 0.0515534 0.124461i
\(582\) 0 0
\(583\) −2.17157 0.899495i −0.0899374 0.0372533i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6.27208 6.27208i −0.258876 0.258876i 0.565721 0.824597i \(-0.308598\pi\)
−0.824597 + 0.565721i \(0.808598\pi\)
\(588\) 0 0
\(589\) 1.97056 + 4.75736i 0.0811956 + 0.196024i
\(590\) 0 0
\(591\) 9.41421i 0.387249i
\(592\) 0 0
\(593\) 15.3431 15.3431i 0.630067 0.630067i −0.318017 0.948085i \(-0.603017\pi\)
0.948085 + 0.318017i \(0.103017\pi\)
\(594\) 0 0
\(595\) 0.585786 2.34315i 0.0240149 0.0960596i
\(596\) 0 0
\(597\) −12.1716 + 12.1716i −0.498149 + 0.498149i
\(598\) 0 0
\(599\) 44.8284i 1.83164i 0.401589 + 0.915820i \(0.368458\pi\)
−0.401589 + 0.915820i \(0.631542\pi\)
\(600\) 0 0
\(601\) 11.6066 + 28.0208i 0.473443 + 1.14299i 0.962631 + 0.270815i \(0.0872931\pi\)
−0.489188 + 0.872178i \(0.662707\pi\)
\(602\) 0 0
\(603\) −16.4853 16.4853i −0.671333 0.671333i
\(604\) 0 0
\(605\) 17.7782 7.36396i 0.722786 0.299388i
\(606\) 0 0
\(607\) −36.0919 14.9497i −1.46492 0.606792i −0.499229 0.866470i \(-0.666383\pi\)
−0.965695 + 0.259678i \(0.916383\pi\)
\(608\) 0 0
\(609\) −0.514719 + 1.24264i −0.0208575 + 0.0503543i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −29.3137 −1.18397 −0.591985 0.805949i \(-0.701655\pi\)
−0.591985 + 0.805949i \(0.701655\pi\)
\(614\) 0 0
\(615\) −1.34315 + 3.24264i −0.0541609 + 0.130756i
\(616\) 0 0
\(617\) −22.7782 9.43503i −0.917015 0.379840i −0.126277 0.991995i \(-0.540303\pi\)
−0.790738 + 0.612155i \(0.790303\pi\)
\(618\) 0 0
\(619\) 1.94975 0.807612i 0.0783670 0.0324607i −0.343156 0.939279i \(-0.611496\pi\)
0.421523 + 0.906818i \(0.361496\pi\)
\(620\) 0 0
\(621\) 19.4142 + 19.4142i 0.779066 + 0.779066i
\(622\) 0 0
\(623\) −0.201010 0.485281i −0.00805330 0.0194424i
\(624\) 0 0
\(625\) 14.5563i 0.582254i
\(626\) 0 0
\(627\) −0.928932 + 0.928932i −0.0370980 + 0.0370980i
\(628\) 0 0
\(629\) −2.53553 1.87868i −0.101098 0.0749079i
\(630\) 0 0
\(631\) 17.3848 17.3848i 0.692077 0.692077i −0.270612 0.962689i \(-0.587226\pi\)
0.962689 + 0.270612i \(0.0872259\pi\)
\(632\) 0 0
\(633\) 20.0416i 0.796583i
\(634\) 0 0
\(635\) 1.24264 + 3.00000i 0.0493127 + 0.119051i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −21.6066 + 8.94975i −0.854744 + 0.354047i
\(640\) 0 0
\(641\) 10.8787 + 4.50610i 0.429682 + 0.177980i 0.587034 0.809563i \(-0.300296\pi\)
−0.157352 + 0.987543i \(0.550296\pi\)
\(642\) 0 0
\(643\) −15.0208 + 36.2635i −0.592363 + 1.43009i 0.288851 + 0.957374i \(0.406727\pi\)
−0.881214 + 0.472717i \(0.843273\pi\)
\(644\) 0 0
\(645\) −14.4853 −0.570357
\(646\) 0 0
\(647\) −45.2548 −1.77915 −0.889576 0.456788i \(-0.849000\pi\)
−0.889576 + 0.456788i \(0.849000\pi\)
\(648\) 0 0
\(649\) −2.31371 + 5.58579i −0.0908210 + 0.219261i
\(650\) 0 0
\(651\) 0.514719 + 0.213203i 0.0201734 + 0.00835610i
\(652\) 0 0
\(653\) 23.3640 9.67767i 0.914302 0.378716i 0.124600 0.992207i \(-0.460235\pi\)
0.789702 + 0.613491i \(0.210235\pi\)
\(654\) 0 0
\(655\) 18.8995 + 18.8995i 0.738464 + 0.738464i
\(656\) 0 0
\(657\) 7.36396 + 17.7782i 0.287295 + 0.693593i
\(658\) 0 0
\(659\) 22.7696i 0.886976i −0.896280 0.443488i \(-0.853741\pi\)
0.896280 0.443488i \(-0.146259\pi\)
\(660\) 0 0
\(661\) −18.7990 + 18.7990i −0.731196 + 0.731196i −0.970857 0.239661i \(-0.922964\pi\)
0.239661 + 0.970857i \(0.422964\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.928932 0.928932i 0.0360224 0.0360224i
\(666\) 0 0
\(667\) 36.7279i 1.42211i
\(668\) 0 0
\(669\) −5.14214 12.4142i −0.198806 0.479961i
\(670\) 0 0
\(671\) 5.34315 + 5.34315i 0.206270 + 0.206270i
\(672\) 0 0
\(673\) 14.1924 5.87868i 0.547076 0.226606i −0.0919875 0.995760i \(-0.529322\pi\)
0.639064 + 0.769154i \(0.279322\pi\)
\(674\) 0 0
\(675\) −6.07107 2.51472i −0.233676 0.0967916i
\(676\) 0 0
\(677\) −3.90812 + 9.43503i −0.150201 + 0.362618i −0.981015 0.193933i \(-0.937876\pi\)
0.830814 + 0.556551i \(0.187876\pi\)
\(678\) 0 0
\(679\) −5.07107 −0.194610
\(680\) 0 0
\(681\) 2.72792 0.104534
\(682\) 0 0
\(683\) 12.9792 31.3345i 0.496635 1.19898i −0.454650 0.890670i \(-0.650236\pi\)
0.951285 0.308312i \(-0.0997642\pi\)
\(684\) 0 0
\(685\) 23.8995 + 9.89949i 0.913153 + 0.378240i
\(686\) 0 0
\(687\) −7.00000 + 2.89949i −0.267067 + 0.110623i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 12.3934 + 29.9203i 0.471467 + 1.13822i 0.963515 + 0.267654i \(0.0862485\pi\)
−0.492048 + 0.870568i \(0.663752\pi\)
\(692\) 0 0
\(693\) 0.585786i 0.0222522i
\(694\) 0 0
\(695\) −0.656854 + 0.656854i −0.0249159 + 0.0249159i
\(696\) 0 0
\(697\) 1.50610 + 10.1213i 0.0570475 + 0.383372i
\(698\) 0 0
\(699\) 0.313708 0.313708i 0.0118655 0.0118655i
\(700\) 0 0
\(701\) 28.6863i 1.08347i −0.840551 0.541733i \(-0.817768\pi\)
0.840551 0.541733i \(-0.182232\pi\)
\(702\) 0 0
\(703\) −0.656854 1.58579i −0.0247737 0.0598091i
\(704\) 0 0
\(705\) 12.8284 + 12.8284i 0.483147 + 0.483147i
\(706\) 0 0
\(707\) 2.92893 1.21320i 0.110154 0.0456272i
\(708\) 0 0
\(709\) 34.1924 + 14.1630i 1.28412 + 0.531901i 0.917228 0.398362i \(-0.130421\pi\)
0.366894 + 0.930263i \(0.380421\pi\)
\(710\) 0 0
\(711\) 13.1924 31.8492i 0.494753 1.19444i
\(712\) 0 0
\(713\) −15.2132 −0.569739
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −3.31371 + 8.00000i −0.123753 + 0.298765i
\(718\) 0 0
\(719\) −17.9497 7.43503i −0.669413 0.277280i 0.0219807 0.999758i \(-0.493003\pi\)
−0.691393 + 0.722479i \(0.743003\pi\)
\(720\) 0 0
\(721\) 0.686292 0.284271i 0.0255588 0.0105868i
\(722\) 0 0
\(723\) 7.58579 + 7.58579i 0.282118 + 0.282118i
\(724\) 0 0
\(725\) 3.36396 + 8.12132i 0.124934 + 0.301618i
\(726\) 0 0
\(727\) 17.7990i 0.660128i −0.943959 0.330064i \(-0.892930\pi\)
0.943959 0.330064i \(-0.107070\pi\)
\(728\) 0 0
\(729\) −0.221825 + 0.221825i −0.00821576 + 0.00821576i
\(730\) 0 0
\(731\) −36.2132 + 21.7279i −1.33939 + 0.803636i
\(732\) 0 0
\(733\) 17.4853 17.4853i 0.645834 0.645834i −0.306150 0.951983i \(-0.599041\pi\)
0.951983 + 0.306150i \(0.0990408\pi\)
\(734\) 0 0
\(735\) 9.75736i 0.359906i
\(736\) 0 0
\(737\) 2.82843 + 6.82843i 0.104186 + 0.251528i
\(738\) 0 0
\(739\) 6.41421 + 6.41421i 0.235951 + 0.235951i 0.815171 0.579220i \(-0.196643\pi\)
−0.579220 + 0.815171i \(0.696643\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 29.8492 + 12.3640i 1.09506 + 0.453590i 0.855769 0.517358i \(-0.173084\pi\)
0.239293 + 0.970947i \(0.423084\pi\)
\(744\) 0 0
\(745\) −4.48528 + 10.8284i −0.164328 + 0.396723i
\(746\) 0 0
\(747\) 24.7279 0.904747
\(748\) 0 0
\(749\) 4.58579 0.167561
\(750\) 0 0
\(751\) 9.26346 22.3640i 0.338028 0.816073i −0.659877 0.751374i \(-0.729391\pi\)
0.997905 0.0646985i \(-0.0206086\pi\)
\(752\) 0 0
\(753\) 0.585786 + 0.242641i 0.0213472 + 0.00884232i
\(754\) 0 0
\(755\) 33.9706 14.0711i 1.23632 0.512099i
\(756\) 0 0
\(757\) 9.97056 + 9.97056i 0.362386 + 0.362386i 0.864691 0.502305i \(-0.167514\pi\)
−0.502305 + 0.864691i \(0.667514\pi\)
\(758\) 0 0
\(759\) −1.48528 3.58579i −0.0539123 0.130156i
\(760\) 0 0
\(761\) 3.02944i 0.109817i 0.998491 + 0.0549085i \(0.0174867\pi\)
−0.998491 + 0.0549085i \(0.982513\pi\)
\(762\) 0 0
\(763\) −2.61522 + 2.61522i −0.0946775 + 0.0946775i
\(764\) 0 0
\(765\) 18.1924 2.70711i 0.657747 0.0978757i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 43.5980i 1.57218i −0.618110 0.786092i \(-0.712101\pi\)
0.618110 0.786092i \(-0.287899\pi\)
\(770\) 0 0
\(771\) 2.41421 + 5.82843i 0.0869458 + 0.209906i
\(772\) 0 0
\(773\) −23.2843 23.2843i −0.837477 0.837477i 0.151049 0.988526i \(-0.451735\pi\)
−0.988526 + 0.151049i \(0.951735\pi\)
\(774\) 0 0
\(775\) 3.36396 1.39340i 0.120837 0.0500523i
\(776\) 0 0
\(777\) −0.171573 0.0710678i −0.00615514 0.00254954i
\(778\) 0 0
\(779\) −2.12994 + 5.14214i −0.0763131 + 0.184236i
\(780\) 0 0
\(781\) 7.41421 0.265301
\(782\) 0 0
\(783\) −22.9706 −0.820901
\(784\) 0 0
\(785\) 10.8284 26.1421i 0.386483 0.933053i
\(786\) 0 0
\(787\) −10.4350 4.32233i −0.371969 0.154074i 0.188865 0.982003i \(-0.439519\pi\)
−0.560833 + 0.827929i \(0.689519\pi\)
\(788\) 0 0
\(789\) −2.75736 + 1.14214i −0.0981646 + 0.0406611i
\(790\) 0 0
\(791\) 1.82843 + 1.82843i 0.0650114 + 0.0650114i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 4.34315i 0.154036i
\(796\) 0 0
\(797\) 9.48528 9.48528i 0.335986 0.335986i −0.518868 0.854854i \(-0.673646\pi\)
0.854854 + 0.518868i \(0.173646\pi\)
\(798\) 0 0
\(799\) 51.3137 + 12.8284i 1.81535 + 0.453837i
\(800\) 0 0
\(801\) 2.82843 2.82843i 0.0999376 0.0999376i
\(802\) 0 0
\(803\) 6.10051i 0.215282i
\(804\) 0 0
\(805\) 1.48528 + 3.58579i 0.0523493 + 0.126382i
\(806\) 0 0
\(807\) 7.58579 + 7.58579i 0.267032 + 0.267032i
\(808\) 0 0
\(809\) −14.7782 + 6.12132i −0.519573 + 0.215214i −0.627029 0.778996i \(-0.715729\pi\)
0.107456 + 0.994210i \(0.465729\pi\)
\(810\) 0 0
\(811\) 39.5061 + 16.3640i 1.38725 + 0.574616i 0.946409 0.322970i \(-0.104681\pi\)
0.440838 + 0.897587i \(0.354681\pi\)
\(812\) 0 0
\(813\) 3.31371 8.00000i 0.116217 0.280572i
\(814\) 0 0
\(815\) 8.58579 0.300747
\(816\) 0 0
\(817\) −22.9706 −0.803638
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −44.4350 18.4056i −1.55079 0.642360i −0.567334 0.823488i \(-0.692025\pi\)
−0.983459 + 0.181128i \(0.942025\pi\)
\(822\) 0 0
\(823\) 8.77817 3.63604i 0.305988 0.126744i −0.224406 0.974496i \(-0.572044\pi\)
0.530394 + 0.847751i \(0.322044\pi\)
\(824\) 0 0
\(825\) 0.656854 + 0.656854i 0.0228687 + 0.0228687i
\(826\) 0 0
\(827\) −3.12132 7.53553i −0.108539 0.262036i 0.860273 0.509834i \(-0.170293\pi\)
−0.968812 + 0.247798i \(0.920293\pi\)
\(828\) 0 0
\(829\) 53.9411i 1.87345i −0.350062 0.936726i \(-0.613840\pi\)
0.350062 0.936726i \(-0.386160\pi\)
\(830\) 0 0
\(831\) 5.00000 5.00000i 0.173448 0.173448i
\(832\) 0 0
\(833\) 14.6360 + 24.3934i 0.507109 + 0.845181i
\(834\) 0 0
\(835\) 1.00000 1.00000i 0.0346064 0.0346064i
\(836\) 0 0
\(837\) 9.51472i 0.328877i
\(838\) 0 0
\(839\) 13.3640 + 32.2635i 0.461375 + 1.11386i 0.967833 + 0.251593i \(0.0809546\pi\)
−0.506458 + 0.862265i \(0.669045\pi\)
\(840\) 0 0
\(841\) 1.22183 + 1.22183i 0.0421319 + 0.0421319i
\(842\) 0 0
\(843\) −2.31371 + 0.958369i −0.0796884 + 0.0330080i
\(844\) 0 0
\(845\) 22.1924 + 9.19239i 0.763441 + 0.316228i
\(846\) 0 0
\(847\) 1.26346 3.05025i 0.0434129 0.104808i
\(848\) 0 0
\(849\) 20.1005 0.689848
\(850\) 0 0
\(851\) 5.07107 0.173834
\(852\) 0 0
\(853\) −6.05025 + 14.6066i −0.207157 + 0.500121i −0.992973 0.118339i \(-0.962243\pi\)
0.785817 + 0.618460i \(0.212243\pi\)
\(854\) 0 0
\(855\) 9.24264 + 3.82843i 0.316092 + 0.130929i
\(856\) 0 0
\(857\) 7.36396 3.05025i 0.251548 0.104195i −0.253347 0.967376i \(-0.581531\pi\)
0.504895 + 0.863181i \(0.331531\pi\)
\(858\) 0 0
\(859\) 29.7279 + 29.7279i 1.01430 + 1.01430i 0.999896 + 0.0144074i \(0.00458618\pi\)
0.0144074 + 0.999896i \(0.495414\pi\)
\(860\) 0 0
\(861\) 0.230447 + 0.556349i 0.00785363 + 0.0189603i
\(862\) 0 0
\(863\) 15.8579i 0.539808i −0.962887 0.269904i \(-0.913008\pi\)
0.962887 0.269904i \(-0.0869920\pi\)
\(864\) 0 0
\(865\) −24.6569 + 24.6569i −0.838358 + 0.838358i
\(866\) 0 0
\(867\) −10.0503 + 8.26346i −0.341324 + 0.280642i
\(868\) 0 0
\(869\) −7.72792 + 7.72792i −0.262152 + 0.262152i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −14.7782 35.6777i −0.500165 1.20751i
\(874\) 0 0
\(875\) −2.72792 2.72792i −0.0922206 0.0922206i
\(876\) 0 0
\(877\) −6.77817 + 2.80761i −0.228883 + 0.0948063i −0.494178 0.869361i \(-0.664531\pi\)
0.265295 + 0.964167i \(0.414531\pi\)
\(878\) 0 0
\(879\) 5.17157 + 2.14214i 0.174433 + 0.0722524i
\(880\) 0 0
\(881\) 9.26346 22.3640i 0.312094 0.753461i −0.687533 0.726153i \(-0.741306\pi\)
0.999627 0.0273081i \(-0.00869353\pi\)
\(882\) 0 0
\(883\) −41.2548 −1.38834 −0.694168 0.719813i \(-0.744227\pi\)
−0.694168 + 0.719813i \(0.744227\pi\)
\(884\) 0 0
\(885\) −11.1716 −0.375528
\(886\) 0 0
\(887\) −5.84924 + 14.1213i −0.196398 + 0.474148i −0.991143 0.132796i \(-0.957605\pi\)
0.794745 + 0.606943i \(0.207605\pi\)
\(888\) 0 0
\(889\) 0.514719 + 0.213203i 0.0172631 + 0.00715061i
\(890\) 0 0
\(891\) 2.87868 1.19239i 0.0964394 0.0399465i
\(892\) 0 0
\(893\) 20.3431 + 20.3431i 0.680757 + 0.680757i
\(894\) 0 0
\(895\) −12.8995 31.1421i −0.431183 1.04097i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.00000 9.00000i 0.300167 0.300167i
\(900\) 0 0
\(901\) −6.51472 10.8579i −0.217037 0.361728i
\(902\) 0 0
\(903\) −1.75736 + 1.75736i −0.0584813 + 0.0584813i
\(904\) 0 0
\(905\) 15.0711i 0.500979i
\(906\) 0 0
\(907\) −8.97918 21.6777i −0.298149 0.719795i −0.999972 0.00744418i \(-0.997630\pi\)
0.701823 0.712351i \(-0.252370\pi\)
\(908\) 0 0
\(909\) 17.0711 + 17.0711i 0.566212 + 0.566212i
\(910\) 0 0
\(911\) 26.9203 11.1508i 0.891910 0.369441i 0.110806 0.993842i \(-0.464657\pi\)
0.781104 + 0.624401i \(0.214657\pi\)
\(912\) 0 0
\(913\) −7.24264 3.00000i −0.239696 0.0992855i
\(914\) 0 0
\(915\) −5.34315 + 12.8995i −0.176639 + 0.426444i
\(916\) 0 0
\(917\) 4.58579 0.151436
\(918\) 0 0
\(919\) −44.2843 −1.46080 −0.730402 0.683018i \(-0.760667\pi\)
−0.730402 + 0.683018i \(0.760667\pi\)
\(920\) 0 0
\(921\) 7.79899 18.8284i 0.256985 0.620418i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.12132 + 0.464466i −0.0368688 + 0.0152716i
\(926\) 0 0
\(927\) 4.00000 + 4.00000i 0.131377 + 0.131377i
\(928\) 0 0
\(929\) 10.6360 + 25.6777i 0.348957 + 0.842457i 0.996744 + 0.0806351i \(0.0256949\pi\)
−0.647787 + 0.761822i \(0.724305\pi\)
\(930\) 0 0
\(931\) 15.4731i 0.507110i
\(932\) 0 0
\(933\) 2.17157 2.17157i 0.0710941 0.0710941i
\(934\) 0 0
\(935\) −5.65685 1.41421i −0.184999 0.0462497i
\(936\) 0 0
\(937\) 0.313708 0.313708i 0.0102484 0.0102484i −0.701964 0.712212i \(-0.747693\pi\)
0.712212 + 0.701964i \(0.247693\pi\)
\(938\) 0 0
\(939\) 3.27208i 0.106780i
\(940\) 0 0
\(941\) 14.9203 + 36.0208i 0.486388 + 1.17425i 0.956525 + 0.291651i \(0.0942047\pi\)
−0.470136 + 0.882594i \(0.655795\pi\)
\(942\) 0 0
\(943\) −11.6274 11.6274i −0.378641 0.378641i
\(944\) 0 0
\(945\) 2.24264 0.928932i 0.0729531 0.0302182i
\(946\) 0 0
\(947\) 47.5061 + 19.6777i 1.54374 + 0.639438i 0.982171 0.187991i \(-0.0601976\pi\)
0.561570 + 0.827429i \(0.310198\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −12.1005 −0.392386
\(952\) 0 0
\(953\) −50.0000 −1.61966 −0.809829 0.586665i \(-0.800440\pi\)
−0.809829 + 0.586665i \(0.800440\pi\)
\(954\) 0 0
\(955\) 6.24264 15.0711i 0.202007 0.487688i
\(956\) 0 0
\(957\) 3.00000 + 1.24264i 0.0969762 + 0.0401689i
\(958\) 0 0
\(959\) 4.10051 1.69848i 0.132412 0.0548469i
\(960\) 0 0
\(961\) 18.1924 + 18.1924i 0.586851 + 0.586851i
\(962\) 0 0
\(963\) 13.3640 + 32.2635i 0.430648 + 1.03968i
\(964\) 0 0
\(965\) 1.41421i 0.0455251i
\(966\) 0 0
\(967\) 24.4142 24.4142i 0.785108 0.785108i −0.195580 0.980688i \(-0.562659\pi\)
0.980688 + 0.195580i \(0.0626588\pi\)
\(968\) 0 0
\(969\) −7.00000 + 1.04163i −0.224872 + 0.0334620i
\(970\) 0 0
\(971\) −38.6985 + 38.6985i −1.24189 + 1.24189i −0.282679 + 0.959215i \(0.591223\pi\)
−0.959215 + 0.282679i \(0.908777\pi\)
\(972\) 0 0
\(973\) 0.159380i 0.00510947i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.3137 + 24.3137i 0.777864 + 0.777864i 0.979467 0.201603i \(-0.0646150\pi\)
−0.201603 + 0.979467i \(0.564615\pi\)
\(978\) 0 0
\(979\) −1.17157 + 0.485281i −0.0374436 + 0.0155097i
\(980\) 0 0
\(981\) −26.0208 10.7782i −0.830781 0.344121i
\(982\) 0 0
\(983\) 14.9203 36.0208i 0.475884 1.14889i −0.485639 0.874160i \(-0.661413\pi\)
0.961523 0.274726i \(-0.0885871\pi\)
\(984\) 0 0
\(985\) 22.7279 0.724172
\(986\) 0 0
\(987\) 3.11270 0.0990783
\(988\) 0 0
\(989\) 25.9706 62.6985i 0.825816 1.99370i
\(990\) 0 0
\(991\) −46.9203 19.4350i −1.49047 0.617374i −0.519053 0.854742i \(-0.673715\pi\)
−0.971420 + 0.237368i \(0.923715\pi\)
\(992\) 0 0
\(993\) 9.72792 4.02944i 0.308706 0.127870i
\(994\) 0 0
\(995\) −29.3848 29.3848i −0.931560 0.931560i
\(996\) 0 0
\(997\) 3.32233 + 8.02082i 0.105219 + 0.254022i 0.967717 0.252039i \(-0.0811011\pi\)
−0.862498 + 0.506061i \(0.831101\pi\)
\(998\) 0 0
\(999\) 3.17157i 0.100344i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 272.2.v.e.161.1 4
4.3 odd 2 136.2.n.a.25.1 4
12.11 even 2 1224.2.bq.a.433.1 4
17.7 odd 16 4624.2.a.bm.1.2 4
17.10 odd 16 4624.2.a.bm.1.3 4
17.15 even 8 inner 272.2.v.e.49.1 4
68.7 even 16 2312.2.a.s.1.3 4
68.11 even 16 2312.2.b.j.577.2 4
68.15 odd 8 136.2.n.a.49.1 yes 4
68.23 even 16 2312.2.b.j.577.3 4
68.27 even 16 2312.2.a.s.1.2 4
204.83 even 8 1224.2.bq.a.865.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.n.a.25.1 4 4.3 odd 2
136.2.n.a.49.1 yes 4 68.15 odd 8
272.2.v.e.49.1 4 17.15 even 8 inner
272.2.v.e.161.1 4 1.1 even 1 trivial
1224.2.bq.a.433.1 4 12.11 even 2
1224.2.bq.a.865.1 4 204.83 even 8
2312.2.a.s.1.2 4 68.27 even 16
2312.2.a.s.1.3 4 68.7 even 16
2312.2.b.j.577.2 4 68.11 even 16
2312.2.b.j.577.3 4 68.23 even 16
4624.2.a.bm.1.2 4 17.7 odd 16
4624.2.a.bm.1.3 4 17.10 odd 16