Properties

Label 231.4.g.a.197.5
Level $231$
Weight $4$
Character 231.197
Analytic conductor $13.629$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [231,4,Mod(197,231)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("231.197"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(231, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6294412113\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 197.5
Character \(\chi\) \(=\) 231.197
Dual form 231.4.g.a.197.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.08922 q^{2} +(2.66331 - 4.46170i) q^{3} +17.9001 q^{4} +19.3058i q^{5} +(-13.5542 + 22.7066i) q^{6} -7.00000i q^{7} -50.3840 q^{8} +(-12.8135 - 23.7658i) q^{9} -98.2512i q^{10} +(-31.1051 - 19.0650i) q^{11} +(47.6737 - 79.8651i) q^{12} +5.35526i q^{13} +35.6245i q^{14} +(86.1365 + 51.4173i) q^{15} +113.214 q^{16} +44.3368 q^{17} +(65.2108 + 120.949i) q^{18} -15.3030i q^{19} +345.576i q^{20} +(-31.2319 - 18.6432i) q^{21} +(158.301 + 97.0260i) q^{22} -110.289i q^{23} +(-134.188 + 224.798i) q^{24} -247.712 q^{25} -27.2541i q^{26} +(-140.162 - 6.12574i) q^{27} -125.301i q^{28} +188.065 q^{29} +(-438.367 - 261.674i) q^{30} +323.720 q^{31} -173.099 q^{32} +(-167.905 + 88.0054i) q^{33} -225.640 q^{34} +135.140 q^{35} +(-229.364 - 425.411i) q^{36} -12.7844 q^{37} +77.8805i q^{38} +(23.8936 + 14.2627i) q^{39} -972.701i q^{40} +338.470 q^{41} +(158.946 + 94.8793i) q^{42} +125.542i q^{43} +(-556.785 - 341.266i) q^{44} +(458.817 - 247.375i) q^{45} +561.287i q^{46} -408.178i q^{47} +(301.525 - 505.127i) q^{48} -49.0000 q^{49} +1260.66 q^{50} +(118.083 - 197.817i) q^{51} +95.8599i q^{52} -303.069i q^{53} +(713.317 + 31.1752i) q^{54} +(368.064 - 600.507i) q^{55} +352.688i q^{56} +(-68.2775 - 40.7568i) q^{57} -957.106 q^{58} -18.6625i q^{59} +(1541.86 + 920.377i) q^{60} -922.178i q^{61} -1647.48 q^{62} +(-166.361 + 89.6946i) q^{63} -24.7739 q^{64} -103.387 q^{65} +(854.505 - 447.879i) q^{66} +284.742 q^{67} +793.635 q^{68} +(-492.078 - 293.735i) q^{69} -687.758 q^{70} +558.799i q^{71} +(645.596 + 1197.42i) q^{72} -846.812i q^{73} +65.0624 q^{74} +(-659.735 + 1105.22i) q^{75} -273.926i q^{76} +(-133.455 + 217.735i) q^{77} +(-121.600 - 72.5862i) q^{78} -221.581i q^{79} +2185.68i q^{80} +(-400.627 + 609.047i) q^{81} -1722.55 q^{82} +899.959 q^{83} +(-559.055 - 333.716i) q^{84} +855.955i q^{85} -638.913i q^{86} +(500.877 - 839.091i) q^{87} +(1567.20 + 960.571i) q^{88} +587.363i q^{89} +(-2335.02 + 1258.94i) q^{90} +37.4868 q^{91} -1974.20i q^{92} +(862.168 - 1444.34i) q^{93} +2077.31i q^{94} +295.437 q^{95} +(-461.017 + 772.315i) q^{96} -680.065 q^{97} +249.372 q^{98} +(-54.5300 + 983.527i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 288 q^{4} + 4 q^{9} + 16 q^{12} + 20 q^{15} + 1248 q^{16} + 384 q^{22} - 1824 q^{25} - 900 q^{27} + 264 q^{31} - 964 q^{33} - 1008 q^{34} + 48 q^{36} - 24 q^{37} + 1524 q^{45} + 192 q^{48} - 3528 q^{49}+ \cdots - 1260 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/231\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.08922 −1.79931 −0.899655 0.436601i \(-0.856182\pi\)
−0.899655 + 0.436601i \(0.856182\pi\)
\(3\) 2.66331 4.46170i 0.512555 0.858654i
\(4\) 17.9001 2.23752
\(5\) 19.3058i 1.72676i 0.504555 + 0.863380i \(0.331657\pi\)
−0.504555 + 0.863380i \(0.668343\pi\)
\(6\) −13.5542 + 22.7066i −0.922246 + 1.54499i
\(7\) 7.00000i 0.377964i
\(8\) −50.3840 −2.22668
\(9\) −12.8135 23.7658i −0.474575 0.880215i
\(10\) 98.2512i 3.10698i
\(11\) −31.1051 19.0650i −0.852594 0.522574i
\(12\) 47.6737 79.8651i 1.14685 1.92125i
\(13\) 5.35526i 0.114252i 0.998367 + 0.0571262i \(0.0181938\pi\)
−0.998367 + 0.0571262i \(0.981806\pi\)
\(14\) 35.6245i 0.680075i
\(15\) 86.1365 + 51.4173i 1.48269 + 0.885059i
\(16\) 113.214 1.76897
\(17\) 44.3368 0.632544 0.316272 0.948669i \(-0.397569\pi\)
0.316272 + 0.948669i \(0.397569\pi\)
\(18\) 65.2108 + 120.949i 0.853907 + 1.58378i
\(19\) 15.3030i 0.184777i −0.995723 0.0923883i \(-0.970550\pi\)
0.995723 0.0923883i \(-0.0294501\pi\)
\(20\) 345.576i 3.86366i
\(21\) −31.2319 18.6432i −0.324541 0.193728i
\(22\) 158.301 + 97.0260i 1.53408 + 0.940273i
\(23\) 110.289i 0.999867i −0.866064 0.499933i \(-0.833358\pi\)
0.866064 0.499933i \(-0.166642\pi\)
\(24\) −134.188 + 224.798i −1.14130 + 1.91195i
\(25\) −247.712 −1.98170
\(26\) 27.2541i 0.205576i
\(27\) −140.162 6.12574i −0.999046 0.0436630i
\(28\) 125.301i 0.845702i
\(29\) 188.065 1.20424 0.602119 0.798407i \(-0.294323\pi\)
0.602119 + 0.798407i \(0.294323\pi\)
\(30\) −438.367 261.674i −2.66782 1.59250i
\(31\) 323.720 1.87554 0.937772 0.347252i \(-0.112885\pi\)
0.937772 + 0.347252i \(0.112885\pi\)
\(32\) −173.099 −0.956246
\(33\) −167.905 + 88.0054i −0.885712 + 0.464235i
\(34\) −225.640 −1.13814
\(35\) 135.140 0.652654
\(36\) −229.364 425.411i −1.06187 1.96950i
\(37\) −12.7844 −0.0568037 −0.0284018 0.999597i \(-0.509042\pi\)
−0.0284018 + 0.999597i \(0.509042\pi\)
\(38\) 77.8805i 0.332470i
\(39\) 23.8936 + 14.2627i 0.0981034 + 0.0585607i
\(40\) 972.701i 3.84494i
\(41\) 338.470 1.28927 0.644635 0.764491i \(-0.277009\pi\)
0.644635 + 0.764491i \(0.277009\pi\)
\(42\) 158.946 + 94.8793i 0.583950 + 0.348576i
\(43\) 125.542i 0.445234i 0.974906 + 0.222617i \(0.0714599\pi\)
−0.974906 + 0.222617i \(0.928540\pi\)
\(44\) −556.785 341.266i −1.90769 1.16927i
\(45\) 458.817 247.375i 1.51992 0.819476i
\(46\) 561.287i 1.79907i
\(47\) 408.178i 1.26679i −0.773830 0.633393i \(-0.781662\pi\)
0.773830 0.633393i \(-0.218338\pi\)
\(48\) 301.525 505.127i 0.906694 1.51893i
\(49\) −49.0000 −0.142857
\(50\) 1260.66 3.56569
\(51\) 118.083 197.817i 0.324214 0.543137i
\(52\) 95.8599i 0.255642i
\(53\) 303.069i 0.785468i −0.919652 0.392734i \(-0.871529\pi\)
0.919652 0.392734i \(-0.128471\pi\)
\(54\) 713.317 + 31.1752i 1.79759 + 0.0785632i
\(55\) 368.064 600.507i 0.902360 1.47222i
\(56\) 352.688i 0.841606i
\(57\) −68.2775 40.7568i −0.158659 0.0947082i
\(58\) −957.106 −2.16680
\(59\) 18.6625i 0.0411805i −0.999788 0.0205903i \(-0.993445\pi\)
0.999788 0.0205903i \(-0.00655455\pi\)
\(60\) 1541.86 + 920.377i 3.31754 + 1.98034i
\(61\) 922.178i 1.93562i −0.251684 0.967809i \(-0.580984\pi\)
0.251684 0.967809i \(-0.419016\pi\)
\(62\) −1647.48 −3.37469
\(63\) −166.361 + 89.6946i −0.332690 + 0.179372i
\(64\) −24.7739 −0.0483865
\(65\) −103.387 −0.197287
\(66\) 854.505 447.879i 1.59367 0.835304i
\(67\) 284.742 0.519206 0.259603 0.965715i \(-0.416408\pi\)
0.259603 + 0.965715i \(0.416408\pi\)
\(68\) 793.635 1.41533
\(69\) −492.078 293.735i −0.858540 0.512487i
\(70\) −687.758 −1.17433
\(71\) 558.799i 0.934045i 0.884245 + 0.467023i \(0.154673\pi\)
−0.884245 + 0.467023i \(0.845327\pi\)
\(72\) 645.596 + 1197.42i 1.05673 + 1.95996i
\(73\) 846.812i 1.35770i −0.734279 0.678848i \(-0.762480\pi\)
0.734279 0.678848i \(-0.237520\pi\)
\(74\) 65.0624 0.102207
\(75\) −659.735 + 1105.22i −1.01573 + 1.70159i
\(76\) 273.926i 0.413441i
\(77\) −133.455 + 217.735i −0.197514 + 0.322250i
\(78\) −121.600 72.5862i −0.176518 0.105369i
\(79\) 221.581i 0.315567i −0.987474 0.157783i \(-0.949565\pi\)
0.987474 0.157783i \(-0.0504348\pi\)
\(80\) 2185.68i 3.05458i
\(81\) −400.627 + 609.047i −0.549558 + 0.835456i
\(82\) −1722.55 −2.31980
\(83\) 899.959 1.19016 0.595080 0.803666i \(-0.297120\pi\)
0.595080 + 0.803666i \(0.297120\pi\)
\(84\) −559.055 333.716i −0.726166 0.433469i
\(85\) 855.955i 1.09225i
\(86\) 638.913i 0.801114i
\(87\) 500.877 839.091i 0.617238 1.03402i
\(88\) 1567.20 + 960.571i 1.89845 + 1.16361i
\(89\) 587.363i 0.699555i 0.936833 + 0.349778i \(0.113743\pi\)
−0.936833 + 0.349778i \(0.886257\pi\)
\(90\) −2335.02 + 1258.94i −2.73481 + 1.47449i
\(91\) 37.4868 0.0431834
\(92\) 1974.20i 2.23722i
\(93\) 862.168 1444.34i 0.961319 1.61044i
\(94\) 2077.31i 2.27934i
\(95\) 295.437 0.319065
\(96\) −461.017 + 772.315i −0.490128 + 0.821085i
\(97\) −680.065 −0.711857 −0.355928 0.934513i \(-0.615835\pi\)
−0.355928 + 0.934513i \(0.615835\pi\)
\(98\) 249.372 0.257044
\(99\) −54.5300 + 983.527i −0.0553583 + 0.998467i
\(100\) −4434.08 −4.43408
\(101\) −1493.24 −1.47112 −0.735559 0.677460i \(-0.763081\pi\)
−0.735559 + 0.677460i \(0.763081\pi\)
\(102\) −600.949 + 1006.74i −0.583361 + 0.977272i
\(103\) 2040.28 1.95180 0.975899 0.218223i \(-0.0700261\pi\)
0.975899 + 0.218223i \(0.0700261\pi\)
\(104\) 269.819i 0.254404i
\(105\) 359.921 602.955i 0.334521 0.560404i
\(106\) 1542.39i 1.41330i
\(107\) −1153.93 −1.04256 −0.521282 0.853385i \(-0.674546\pi\)
−0.521282 + 0.853385i \(0.674546\pi\)
\(108\) −2508.93 109.652i −2.23538 0.0976967i
\(109\) 385.169i 0.338463i 0.985576 + 0.169231i \(0.0541285\pi\)
−0.985576 + 0.169231i \(0.945871\pi\)
\(110\) −1873.16 + 3056.11i −1.62363 + 2.64899i
\(111\) −34.0488 + 57.0400i −0.0291150 + 0.0487747i
\(112\) 792.498i 0.668608i
\(113\) 1410.54i 1.17427i −0.809488 0.587136i \(-0.800255\pi\)
0.809488 0.587136i \(-0.199745\pi\)
\(114\) 347.479 + 207.420i 0.285477 + 0.170409i
\(115\) 2129.22 1.72653
\(116\) 3366.40 2.69450
\(117\) 127.272 68.6197i 0.100567 0.0542213i
\(118\) 94.9776i 0.0740965i
\(119\) 310.358i 0.239079i
\(120\) −4339.90 2590.61i −3.30147 1.97074i
\(121\) 604.051 + 1186.04i 0.453832 + 0.891087i
\(122\) 4693.16i 3.48278i
\(123\) 901.451 1510.15i 0.660822 1.10704i
\(124\) 5794.64 4.19656
\(125\) 2369.05i 1.69516i
\(126\) 846.646 456.476i 0.598613 0.322747i
\(127\) 1501.87i 1.04937i −0.851298 0.524683i \(-0.824184\pi\)
0.851298 0.524683i \(-0.175816\pi\)
\(128\) 1510.87 1.04331
\(129\) 560.133 + 334.359i 0.382302 + 0.228207i
\(130\) 526.161 0.354980
\(131\) 1508.86 1.00633 0.503166 0.864190i \(-0.332168\pi\)
0.503166 + 0.864190i \(0.332168\pi\)
\(132\) −3005.52 + 1575.31i −1.98180 + 1.03874i
\(133\) −107.121 −0.0698390
\(134\) −1449.12 −0.934213
\(135\) 118.262 2705.94i 0.0753954 1.72511i
\(136\) −2233.87 −1.40847
\(137\) 1408.49i 0.878360i −0.898399 0.439180i \(-0.855269\pi\)
0.898399 0.439180i \(-0.144731\pi\)
\(138\) 2504.29 + 1494.88i 1.54478 + 0.922123i
\(139\) 1180.45i 0.720322i 0.932890 + 0.360161i \(0.117278\pi\)
−0.932890 + 0.360161i \(0.882722\pi\)
\(140\) 2419.03 1.46032
\(141\) −1821.17 1087.11i −1.08773 0.649297i
\(142\) 2843.85i 1.68064i
\(143\) 102.098 166.576i 0.0597054 0.0974109i
\(144\) −1450.67 2690.62i −0.839508 1.55707i
\(145\) 3630.75i 2.07943i
\(146\) 4309.61i 2.44292i
\(147\) −130.502 + 218.623i −0.0732221 + 0.122665i
\(148\) −228.842 −0.127099
\(149\) −2628.81 −1.44537 −0.722685 0.691177i \(-0.757092\pi\)
−0.722685 + 0.691177i \(0.757092\pi\)
\(150\) 3357.54 5624.69i 1.82761 3.06169i
\(151\) 1583.26i 0.853268i 0.904424 + 0.426634i \(0.140301\pi\)
−0.904424 + 0.426634i \(0.859699\pi\)
\(152\) 771.028i 0.411438i
\(153\) −568.110 1053.70i −0.300190 0.556775i
\(154\) 679.182 1108.10i 0.355390 0.579828i
\(155\) 6249.66i 3.23861i
\(156\) 427.698 + 255.305i 0.219508 + 0.131031i
\(157\) −1060.25 −0.538962 −0.269481 0.963006i \(-0.586852\pi\)
−0.269481 + 0.963006i \(0.586852\pi\)
\(158\) 1127.67i 0.567803i
\(159\) −1352.20 807.169i −0.674445 0.402595i
\(160\) 3341.81i 1.65121i
\(161\) −772.026 −0.377914
\(162\) 2038.88 3099.57i 0.988825 1.50324i
\(163\) 1225.66 0.588963 0.294481 0.955657i \(-0.404853\pi\)
0.294481 + 0.955657i \(0.404853\pi\)
\(164\) 6058.65 2.88476
\(165\) −1699.01 3241.53i −0.801623 1.52941i
\(166\) −4580.09 −2.14147
\(167\) 3263.64 1.51227 0.756133 0.654418i \(-0.227086\pi\)
0.756133 + 0.654418i \(0.227086\pi\)
\(168\) 1573.59 + 939.319i 0.722648 + 0.431369i
\(169\) 2168.32 0.986946
\(170\) 4356.14i 1.96530i
\(171\) −363.689 + 196.086i −0.162643 + 0.0876903i
\(172\) 2247.23i 0.996218i
\(173\) −1598.62 −0.702546 −0.351273 0.936273i \(-0.614251\pi\)
−0.351273 + 0.936273i \(0.614251\pi\)
\(174\) −2549.07 + 4270.32i −1.11060 + 1.86053i
\(175\) 1733.99i 0.749011i
\(176\) −3521.53 2158.43i −1.50821 0.924418i
\(177\) −83.2665 49.7041i −0.0353598 0.0211073i
\(178\) 2989.22i 1.25872i
\(179\) 562.245i 0.234772i −0.993086 0.117386i \(-0.962549\pi\)
0.993086 0.117386i \(-0.0374514\pi\)
\(180\) 8212.89 4428.04i 3.40085 1.83359i
\(181\) −1921.89 −0.789242 −0.394621 0.918844i \(-0.629124\pi\)
−0.394621 + 0.918844i \(0.629124\pi\)
\(182\) −190.779 −0.0777003
\(183\) −4114.48 2456.05i −1.66203 0.992111i
\(184\) 5556.82i 2.22638i
\(185\) 246.812i 0.0980863i
\(186\) −4387.76 + 7350.57i −1.72971 + 2.89769i
\(187\) −1379.10 845.281i −0.539303 0.330551i
\(188\) 7306.45i 2.83446i
\(189\) −42.8802 + 981.136i −0.0165030 + 0.377604i
\(190\) −1503.54 −0.574096
\(191\) 2473.38i 0.937001i 0.883463 + 0.468500i \(0.155206\pi\)
−0.883463 + 0.468500i \(0.844794\pi\)
\(192\) −65.9806 + 110.534i −0.0248007 + 0.0415473i
\(193\) 4618.34i 1.72246i −0.508213 0.861231i \(-0.669694\pi\)
0.508213 0.861231i \(-0.330306\pi\)
\(194\) 3461.00 1.28085
\(195\) −275.353 + 461.283i −0.101120 + 0.169401i
\(196\) −877.107 −0.319645
\(197\) 1312.52 0.474684 0.237342 0.971426i \(-0.423724\pi\)
0.237342 + 0.971426i \(0.423724\pi\)
\(198\) 277.515 5005.38i 0.0996067 1.79655i
\(199\) 649.120 0.231231 0.115615 0.993294i \(-0.463116\pi\)
0.115615 + 0.993294i \(0.463116\pi\)
\(200\) 12480.7 4.41261
\(201\) 758.358 1270.43i 0.266122 0.445818i
\(202\) 7599.43 2.64700
\(203\) 1316.46i 0.455159i
\(204\) 2113.70 3540.96i 0.725434 1.21528i
\(205\) 6534.41i 2.22626i
\(206\) −10383.5 −3.51189
\(207\) −2621.12 + 1413.20i −0.880098 + 0.474512i
\(208\) 606.291i 0.202109i
\(209\) −291.752 + 476.002i −0.0965595 + 0.157539i
\(210\) −1831.72 + 3068.57i −0.601907 + 1.00834i
\(211\) 2047.96i 0.668188i −0.942540 0.334094i \(-0.891570\pi\)
0.942540 0.334094i \(-0.108430\pi\)
\(212\) 5424.99i 1.75750i
\(213\) 2493.19 + 1488.26i 0.802022 + 0.478750i
\(214\) 5872.58 1.87590
\(215\) −2423.69 −0.768811
\(216\) 7061.94 + 308.639i 2.22456 + 0.0972234i
\(217\) 2266.04i 0.708889i
\(218\) 1960.21i 0.609000i
\(219\) −3778.22 2255.32i −1.16579 0.695894i
\(220\) 6588.41 10749.2i 2.01905 3.29413i
\(221\) 237.435i 0.0722697i
\(222\) 173.282 290.289i 0.0523870 0.0877609i
\(223\) −389.399 −0.116933 −0.0584665 0.998289i \(-0.518621\pi\)
−0.0584665 + 0.998289i \(0.518621\pi\)
\(224\) 1211.69i 0.361427i
\(225\) 3174.07 + 5887.08i 0.940464 + 1.74432i
\(226\) 7178.56i 2.11288i
\(227\) −4194.16 −1.22633 −0.613164 0.789956i \(-0.710103\pi\)
−0.613164 + 0.789956i \(0.710103\pi\)
\(228\) −1222.18 729.552i −0.355003 0.211911i
\(229\) −2762.08 −0.797044 −0.398522 0.917159i \(-0.630477\pi\)
−0.398522 + 0.917159i \(0.630477\pi\)
\(230\) −10836.1 −3.10656
\(231\) 616.038 + 1175.33i 0.175464 + 0.334768i
\(232\) −9475.49 −2.68145
\(233\) −2543.40 −0.715124 −0.357562 0.933889i \(-0.616392\pi\)
−0.357562 + 0.933889i \(0.616392\pi\)
\(234\) −647.716 + 349.221i −0.180951 + 0.0975610i
\(235\) 7880.19 2.18743
\(236\) 334.061i 0.0921422i
\(237\) −988.627 590.139i −0.270963 0.161745i
\(238\) 1579.48i 0.430178i
\(239\) 3145.26 0.851255 0.425627 0.904898i \(-0.360053\pi\)
0.425627 + 0.904898i \(0.360053\pi\)
\(240\) 9751.86 + 5821.16i 2.62283 + 1.56564i
\(241\) 2067.13i 0.552513i 0.961084 + 0.276257i \(0.0890940\pi\)
−0.961084 + 0.276257i \(0.910906\pi\)
\(242\) −3074.15 6036.00i −0.816585 1.60334i
\(243\) 1650.39 + 3409.56i 0.435689 + 0.900097i
\(244\) 16507.1i 4.33098i
\(245\) 945.982i 0.246680i
\(246\) −4587.68 + 7685.48i −1.18902 + 1.99190i
\(247\) 81.9517 0.0211112
\(248\) −16310.3 −4.17623
\(249\) 2396.87 4015.35i 0.610023 1.02194i
\(250\) 12056.6i 3.05011i
\(251\) 2034.49i 0.511616i −0.966728 0.255808i \(-0.917659\pi\)
0.966728 0.255808i \(-0.0823415\pi\)
\(252\) −2977.88 + 1605.55i −0.744400 + 0.401349i
\(253\) −2102.67 + 3430.56i −0.522505 + 0.852480i
\(254\) 7643.35i 1.88813i
\(255\) 3819.02 + 2279.68i 0.937867 + 0.559839i
\(256\) −7490.96 −1.82885
\(257\) 4128.28i 1.00201i 0.865446 + 0.501003i \(0.167035\pi\)
−0.865446 + 0.501003i \(0.832965\pi\)
\(258\) −2850.64 1701.63i −0.687880 0.410615i
\(259\) 89.4906i 0.0214698i
\(260\) −1850.65 −0.441432
\(261\) −2409.78 4469.53i −0.571501 1.05999i
\(262\) −7678.91 −1.81071
\(263\) −2804.26 −0.657483 −0.328741 0.944420i \(-0.606624\pi\)
−0.328741 + 0.944420i \(0.606624\pi\)
\(264\) 8459.72 4434.06i 1.97220 1.03370i
\(265\) 5850.98 1.35631
\(266\) 545.163 0.125662
\(267\) 2620.64 + 1564.33i 0.600676 + 0.358560i
\(268\) 5096.93 1.16173
\(269\) 355.233i 0.0805165i −0.999189 0.0402582i \(-0.987182\pi\)
0.999189 0.0402582i \(-0.0128181\pi\)
\(270\) −601.862 + 13771.1i −0.135660 + 3.10401i
\(271\) 4496.47i 1.00790i 0.863733 + 0.503950i \(0.168120\pi\)
−0.863733 + 0.503950i \(0.831880\pi\)
\(272\) 5019.55 1.11895
\(273\) 99.8392 167.255i 0.0221339 0.0370796i
\(274\) 7168.11i 1.58044i
\(275\) 7705.11 + 4722.64i 1.68958 + 1.03558i
\(276\) −8808.27 5257.91i −1.92100 1.14670i
\(277\) 2716.98i 0.589342i 0.955599 + 0.294671i \(0.0952101\pi\)
−0.955599 + 0.294671i \(0.904790\pi\)
\(278\) 6007.59i 1.29608i
\(279\) −4147.99 7693.47i −0.890086 1.65088i
\(280\) −6808.91 −1.45325
\(281\) 298.561 0.0633832 0.0316916 0.999498i \(-0.489911\pi\)
0.0316916 + 0.999498i \(0.489911\pi\)
\(282\) 9268.33 + 5532.52i 1.95717 + 1.16829i
\(283\) 5011.77i 1.05272i 0.850263 + 0.526358i \(0.176443\pi\)
−0.850263 + 0.526358i \(0.823557\pi\)
\(284\) 10002.6i 2.08994i
\(285\) 786.840 1318.15i 0.163538 0.273966i
\(286\) −519.600 + 847.740i −0.107429 + 0.175273i
\(287\) 2369.29i 0.487298i
\(288\) 2218.01 + 4113.84i 0.453810 + 0.841702i
\(289\) −2947.25 −0.599888
\(290\) 18477.7i 3.74154i
\(291\) −1811.23 + 3034.24i −0.364866 + 0.611239i
\(292\) 15158.0i 3.03787i
\(293\) −68.5089 −0.0136598 −0.00682992 0.999977i \(-0.502174\pi\)
−0.00682992 + 0.999977i \(0.502174\pi\)
\(294\) 664.155 1112.62i 0.131749 0.220712i
\(295\) 360.294 0.0711088
\(296\) 644.128 0.126484
\(297\) 4242.97 + 2862.74i 0.828964 + 0.559303i
\(298\) 13378.6 2.60067
\(299\) 590.629 0.114237
\(300\) −11809.4 + 19783.6i −2.27271 + 3.80735i
\(301\) 878.797 0.168282
\(302\) 8057.53i 1.53529i
\(303\) −3976.97 + 6662.39i −0.754029 + 1.26318i
\(304\) 1732.52i 0.326864i
\(305\) 17803.3 3.34235
\(306\) 2891.24 + 5362.51i 0.540134 + 1.00181i
\(307\) 3943.18i 0.733059i −0.930406 0.366529i \(-0.880546\pi\)
0.930406 0.366529i \(-0.119454\pi\)
\(308\) −2388.87 + 3897.50i −0.441942 + 0.721041i
\(309\) 5433.92 9103.13i 1.00040 1.67592i
\(310\) 31805.9i 5.82727i
\(311\) 4735.59i 0.863442i 0.902007 + 0.431721i \(0.142094\pi\)
−0.902007 + 0.431721i \(0.857906\pi\)
\(312\) −1203.85 718.614i −0.218445 0.130396i
\(313\) 2998.16 0.541426 0.270713 0.962660i \(-0.412741\pi\)
0.270713 + 0.962660i \(0.412741\pi\)
\(314\) 5395.84 0.969761
\(315\) −1731.62 3211.72i −0.309733 0.574476i
\(316\) 3966.33i 0.706087i
\(317\) 2760.19i 0.489047i 0.969643 + 0.244523i \(0.0786315\pi\)
−0.969643 + 0.244523i \(0.921369\pi\)
\(318\) 6881.66 + 4107.86i 1.21354 + 0.724394i
\(319\) −5849.79 3585.47i −1.02673 0.629303i
\(320\) 478.279i 0.0835518i
\(321\) −3073.27 + 5148.47i −0.534371 + 0.895202i
\(322\) 3929.01 0.679985
\(323\) 678.487i 0.116879i
\(324\) −7171.29 + 10902.0i −1.22965 + 1.86935i
\(325\) 1326.56i 0.226414i
\(326\) −6237.64 −1.05973
\(327\) 1718.51 + 1025.82i 0.290623 + 0.173481i
\(328\) −17053.4 −2.87079
\(329\) −2857.25 −0.478800
\(330\) 8646.63 + 16496.9i 1.44237 + 2.75189i
\(331\) −3459.72 −0.574512 −0.287256 0.957854i \(-0.592743\pi\)
−0.287256 + 0.957854i \(0.592743\pi\)
\(332\) 16109.4 2.66301
\(333\) 163.813 + 303.831i 0.0269576 + 0.0499995i
\(334\) −16609.4 −2.72104
\(335\) 5497.16i 0.896544i
\(336\) −3535.89 2110.67i −0.574103 0.342698i
\(337\) 4834.04i 0.781386i −0.920521 0.390693i \(-0.872235\pi\)
0.920521 0.390693i \(-0.127765\pi\)
\(338\) −11035.1 −1.77582
\(339\) −6293.42 3756.72i −1.00829 0.601879i
\(340\) 15321.7i 2.44393i
\(341\) −10069.3 6171.73i −1.59908 0.980111i
\(342\) 1850.89 997.923i 0.292646 0.157782i
\(343\) 343.000i 0.0539949i
\(344\) 6325.33i 0.991393i
\(345\) 5670.78 9499.94i 0.884941 1.48249i
\(346\) 8135.71 1.26410
\(347\) −9893.29 −1.53055 −0.765273 0.643706i \(-0.777396\pi\)
−0.765273 + 0.643706i \(0.777396\pi\)
\(348\) 8965.78 15019.9i 1.38108 2.31365i
\(349\) 7531.68i 1.15519i −0.816323 0.577595i \(-0.803991\pi\)
0.816323 0.577595i \(-0.196009\pi\)
\(350\) 8824.63i 1.34770i
\(351\) 32.8050 750.606i 0.00498860 0.114144i
\(352\) 5384.26 + 3300.13i 0.815289 + 0.499709i
\(353\) 7982.30i 1.20355i 0.798664 + 0.601777i \(0.205541\pi\)
−0.798664 + 0.601777i \(0.794459\pi\)
\(354\) 423.761 + 252.955i 0.0636233 + 0.0379786i
\(355\) −10788.0 −1.61287
\(356\) 10513.9i 1.56527i
\(357\) −1384.72 826.580i −0.205286 0.122541i
\(358\) 2861.39i 0.422427i
\(359\) 12947.6 1.90348 0.951742 0.306900i \(-0.0992916\pi\)
0.951742 + 0.306900i \(0.0992916\pi\)
\(360\) −23117.0 + 12463.7i −3.38437 + 1.82471i
\(361\) 6624.82 0.965858
\(362\) 9780.90 1.42009
\(363\) 6900.52 + 463.695i 0.997750 + 0.0670460i
\(364\) 671.020 0.0966236
\(365\) 16348.3 2.34441
\(366\) 20939.5 + 12499.4i 2.99050 + 1.78512i
\(367\) −4168.83 −0.592947 −0.296473 0.955041i \(-0.595811\pi\)
−0.296473 + 0.955041i \(0.595811\pi\)
\(368\) 12486.3i 1.76873i
\(369\) −4336.99 8044.00i −0.611855 1.13483i
\(370\) 1256.08i 0.176488i
\(371\) −2121.49 −0.296879
\(372\) 15432.9 25853.9i 2.15097 3.60340i
\(373\) 3855.42i 0.535190i 0.963531 + 0.267595i \(0.0862289\pi\)
−0.963531 + 0.267595i \(0.913771\pi\)
\(374\) 7018.54 + 4301.82i 0.970374 + 0.594764i
\(375\) −10570.0 6309.53i −1.45555 0.868860i
\(376\) 20565.7i 2.82073i
\(377\) 1007.14i 0.137587i
\(378\) 218.227 4993.22i 0.0296941 0.679427i
\(379\) 5187.84 0.703118 0.351559 0.936166i \(-0.385652\pi\)
0.351559 + 0.936166i \(0.385652\pi\)
\(380\) 5288.36 0.713913
\(381\) −6700.89 3999.95i −0.901043 0.537858i
\(382\) 12587.5i 1.68596i
\(383\) 8321.35i 1.11019i −0.831788 0.555093i \(-0.812683\pi\)
0.831788 0.555093i \(-0.187317\pi\)
\(384\) 4023.92 6741.05i 0.534753 0.895841i
\(385\) −4203.55 2576.45i −0.556448 0.341060i
\(386\) 23503.7i 3.09925i
\(387\) 2983.62 1608.64i 0.391901 0.211297i
\(388\) −12173.3 −1.59279
\(389\) 1196.59i 0.155963i −0.996955 0.0779816i \(-0.975152\pi\)
0.996955 0.0779816i \(-0.0248476\pi\)
\(390\) 1401.33 2347.57i 0.181947 0.304805i
\(391\) 4889.88i 0.632460i
\(392\) 2468.82 0.318097
\(393\) 4018.56 6732.07i 0.515801 0.864092i
\(394\) −6679.68 −0.854105
\(395\) 4277.78 0.544908
\(396\) −976.095 + 17605.3i −0.123865 + 2.23409i
\(397\) −6109.12 −0.772312 −0.386156 0.922433i \(-0.626197\pi\)
−0.386156 + 0.922433i \(0.626197\pi\)
\(398\) −3303.51 −0.416056
\(399\) −285.297 + 477.943i −0.0357963 + 0.0599676i
\(400\) −28044.5 −3.50556
\(401\) 13781.5i 1.71625i 0.513438 + 0.858126i \(0.328371\pi\)
−0.513438 + 0.858126i \(0.671629\pi\)
\(402\) −3859.45 + 6465.52i −0.478835 + 0.802166i
\(403\) 1733.61i 0.214286i
\(404\) −26729.2 −3.29165
\(405\) −11758.1 7734.42i −1.44263 0.948954i
\(406\) 6699.74i 0.818972i
\(407\) 397.659 + 243.734i 0.0484305 + 0.0296841i
\(408\) −5949.48 + 9966.83i −0.721920 + 1.20939i
\(409\) 8693.30i 1.05099i 0.850796 + 0.525496i \(0.176120\pi\)
−0.850796 + 0.525496i \(0.823880\pi\)
\(410\) 33255.0i 4.00573i
\(411\) −6284.25 3751.25i −0.754208 0.450208i
\(412\) 36521.4 4.36718
\(413\) −130.638 −0.0155648
\(414\) 13339.4 7192.06i 1.58357 0.853794i
\(415\) 17374.4i 2.05512i
\(416\) 926.990i 0.109253i
\(417\) 5266.83 + 3143.92i 0.618508 + 0.369205i
\(418\) 1484.79 2422.48i 0.173740 0.283462i
\(419\) 512.168i 0.0597160i 0.999554 + 0.0298580i \(0.00950552\pi\)
−0.999554 + 0.0298580i \(0.990494\pi\)
\(420\) 6442.64 10793.0i 0.748497 1.25391i
\(421\) 12376.8 1.43280 0.716399 0.697691i \(-0.245789\pi\)
0.716399 + 0.697691i \(0.245789\pi\)
\(422\) 10422.5i 1.20228i
\(423\) −9700.69 + 5230.20i −1.11504 + 0.601185i
\(424\) 15269.8i 1.74898i
\(425\) −10982.8 −1.25351
\(426\) −12688.4 7574.06i −1.44309 0.861419i
\(427\) −6455.24 −0.731595
\(428\) −20655.4 −2.33275
\(429\) −471.292 899.175i −0.0530400 0.101195i
\(430\) 12334.7 1.38333
\(431\) −11336.6 −1.26697 −0.633487 0.773753i \(-0.718377\pi\)
−0.633487 + 0.773753i \(0.718377\pi\)
\(432\) −15868.3 693.520i −1.76728 0.0772384i
\(433\) 1811.36 0.201035 0.100518 0.994935i \(-0.467950\pi\)
0.100518 + 0.994935i \(0.467950\pi\)
\(434\) 11532.4i 1.27551i
\(435\) 16199.3 + 9669.81i 1.78551 + 1.06582i
\(436\) 6894.57i 0.757317i
\(437\) −1687.76 −0.184752
\(438\) 19228.2 + 11477.8i 2.09762 + 1.25213i
\(439\) 1173.94i 0.127629i 0.997962 + 0.0638145i \(0.0203266\pi\)
−0.997962 + 0.0638145i \(0.979673\pi\)
\(440\) −18544.6 + 30255.9i −2.00927 + 3.27817i
\(441\) 627.862 + 1164.52i 0.0677964 + 0.125745i
\(442\) 1208.36i 0.130036i
\(443\) 11990.3i 1.28595i −0.765888 0.642975i \(-0.777700\pi\)
0.765888 0.642975i \(-0.222300\pi\)
\(444\) −609.478 + 1021.02i −0.0651454 + 0.109134i
\(445\) −11339.5 −1.20796
\(446\) 1981.73 0.210399
\(447\) −7001.34 + 11728.9i −0.740832 + 1.24107i
\(448\) 173.417i 0.0182884i
\(449\) 17778.6i 1.86865i 0.356417 + 0.934327i \(0.383998\pi\)
−0.356417 + 0.934327i \(0.616002\pi\)
\(450\) −16153.5 29960.6i −1.69219 3.13857i
\(451\) −10528.1 6452.92i −1.09922 0.673739i
\(452\) 25248.9i 2.62745i
\(453\) 7064.01 + 4216.71i 0.732662 + 0.437347i
\(454\) 21345.0 2.20654
\(455\) 723.711i 0.0745673i
\(456\) 3440.09 + 2053.49i 0.353283 + 0.210885i
\(457\) 1089.90i 0.111561i −0.998443 0.0557807i \(-0.982235\pi\)
0.998443 0.0557807i \(-0.0177648\pi\)
\(458\) 14056.8 1.43413
\(459\) −6214.35 271.596i −0.631941 0.0276188i
\(460\) 38113.4 3.86314
\(461\) −2110.05 −0.213178 −0.106589 0.994303i \(-0.533993\pi\)
−0.106589 + 0.994303i \(0.533993\pi\)
\(462\) −3135.15 5981.53i −0.315715 0.602351i
\(463\) −9497.11 −0.953279 −0.476639 0.879099i \(-0.658145\pi\)
−0.476639 + 0.879099i \(0.658145\pi\)
\(464\) 21291.6 2.13026
\(465\) 27884.1 + 16644.8i 2.78085 + 1.65997i
\(466\) 12943.9 1.28673
\(467\) 3480.44i 0.344873i −0.985021 0.172437i \(-0.944836\pi\)
0.985021 0.172437i \(-0.0551640\pi\)
\(468\) 2278.19 1228.30i 0.225020 0.121321i
\(469\) 1993.20i 0.196241i
\(470\) −40104.0 −3.93587
\(471\) −2823.78 + 4730.51i −0.276248 + 0.462782i
\(472\) 940.292i 0.0916958i
\(473\) 2393.47 3905.01i 0.232668 0.379603i
\(474\) 5031.34 + 3003.35i 0.487546 + 0.291030i
\(475\) 3790.75i 0.366171i
\(476\) 5555.45i 0.534944i
\(477\) −7202.69 + 3883.39i −0.691381 + 0.372763i
\(478\) −16006.9 −1.53167
\(479\) 14854.9 1.41699 0.708496 0.705715i \(-0.249374\pi\)
0.708496 + 0.705715i \(0.249374\pi\)
\(480\) −14910.1 8900.28i −1.41782 0.846334i
\(481\) 68.4636i 0.00648996i
\(482\) 10520.1i 0.994143i
\(483\) −2056.15 + 3444.55i −0.193702 + 0.324498i
\(484\) 10812.6 + 21230.2i 1.01546 + 1.99382i
\(485\) 13129.2i 1.22921i
\(486\) −8399.19 17352.0i −0.783940 1.61955i
\(487\) 6600.15 0.614130 0.307065 0.951689i \(-0.400653\pi\)
0.307065 + 0.951689i \(0.400653\pi\)
\(488\) 46463.0i 4.31000i
\(489\) 3264.31 5468.52i 0.301876 0.505716i
\(490\) 4814.31i 0.443854i
\(491\) 768.249 0.0706122 0.0353061 0.999377i \(-0.488759\pi\)
0.0353061 + 0.999377i \(0.488759\pi\)
\(492\) 16136.1 27031.9i 1.47860 2.47702i
\(493\) 8338.22 0.761733
\(494\) −417.070 −0.0379856
\(495\) −18987.7 1052.74i −1.72411 0.0955904i
\(496\) 36649.7 3.31778
\(497\) 3911.59 0.353036
\(498\) −12198.2 + 20435.0i −1.09762 + 1.83878i
\(499\) 2674.41 0.239926 0.119963 0.992778i \(-0.461722\pi\)
0.119963 + 0.992778i \(0.461722\pi\)
\(500\) 42406.4i 3.79294i
\(501\) 8692.11 14561.4i 0.775119 1.29851i
\(502\) 10353.9i 0.920556i
\(503\) −1280.71 −0.113527 −0.0567635 0.998388i \(-0.518078\pi\)
−0.0567635 + 0.998388i \(0.518078\pi\)
\(504\) 8381.92 4519.17i 0.740794 0.399405i
\(505\) 28828.1i 2.54027i
\(506\) 10700.9 17458.9i 0.940148 1.53388i
\(507\) 5774.92 9674.40i 0.505864 0.847446i
\(508\) 26883.7i 2.34797i
\(509\) 20562.6i 1.79061i −0.445451 0.895306i \(-0.646957\pi\)
0.445451 0.895306i \(-0.353043\pi\)
\(510\) −19435.8 11601.8i −1.68751 1.00732i
\(511\) −5927.68 −0.513161
\(512\) 26036.2 2.24736
\(513\) −93.7424 + 2144.91i −0.00806789 + 0.184600i
\(514\) 21009.7i 1.80292i
\(515\) 39389.2i 3.37028i
\(516\) 10026.5 + 5985.07i 0.855407 + 0.510617i
\(517\) −7781.92 + 12696.4i −0.661990 + 1.08005i
\(518\) 455.437i 0.0386308i
\(519\) −4257.62 + 7132.54i −0.360094 + 0.603245i
\(520\) 5209.07 0.439294
\(521\) 5933.99i 0.498988i −0.968376 0.249494i \(-0.919736\pi\)
0.968376 0.249494i \(-0.0802643\pi\)
\(522\) 12263.9 + 22746.4i 1.02831 + 1.90725i
\(523\) 7681.86i 0.642265i −0.947034 0.321132i \(-0.895937\pi\)
0.947034 0.321132i \(-0.104063\pi\)
\(524\) 27008.8 2.25169
\(525\) 7736.52 + 4618.15i 0.643142 + 0.383909i
\(526\) 14271.5 1.18302
\(527\) 14352.7 1.18636
\(528\) −19009.2 + 9963.44i −1.56680 + 0.821218i
\(529\) 3.23965 0.000266265
\(530\) −29776.9 −2.44043
\(531\) −443.529 + 239.132i −0.0362477 + 0.0195432i
\(532\) −1917.48 −0.156266
\(533\) 1812.59i 0.147302i
\(534\) −13337.0 7961.23i −1.08080 0.645162i
\(535\) 22277.4i 1.80026i
\(536\) −14346.5 −1.15611
\(537\) −2508.57 1497.43i −0.201588 0.120333i
\(538\) 1807.86i 0.144874i
\(539\) 1524.15 + 934.185i 0.121799 + 0.0746535i
\(540\) 2116.91 48436.7i 0.168699 3.85997i
\(541\) 3969.52i 0.315458i −0.987482 0.157729i \(-0.949583\pi\)
0.987482 0.157729i \(-0.0504173\pi\)
\(542\) 22883.5i 1.81352i
\(543\) −5118.59 + 8574.88i −0.404530 + 0.677686i
\(544\) −7674.65 −0.604868
\(545\) −7435.97 −0.584444
\(546\) −508.103 + 851.197i −0.0398257 + 0.0667177i
\(547\) 1248.29i 0.0975743i 0.998809 + 0.0487871i \(0.0155356\pi\)
−0.998809 + 0.0487871i \(0.984464\pi\)
\(548\) 25212.2i 1.96535i
\(549\) −21916.3 + 11816.3i −1.70376 + 0.918596i
\(550\) −39213.0 24034.5i −3.04008 1.86334i
\(551\) 2877.97i 0.222515i
\(552\) 24792.9 + 14799.6i 1.91169 + 1.14114i
\(553\) −1551.07 −0.119273
\(554\) 13827.3i 1.06041i
\(555\) −1101.20 657.337i −0.0842222 0.0502746i
\(556\) 21130.3i 1.61173i
\(557\) 7821.05 0.594953 0.297476 0.954729i \(-0.403855\pi\)
0.297476 + 0.954729i \(0.403855\pi\)
\(558\) 21110.1 + 39153.8i 1.60154 + 2.97045i
\(559\) −672.313 −0.0508690
\(560\) 15299.8 1.15452
\(561\) −7444.37 + 3901.88i −0.560252 + 0.293649i
\(562\) −1519.44 −0.114046
\(563\) 7575.96 0.567120 0.283560 0.958954i \(-0.408484\pi\)
0.283560 + 0.958954i \(0.408484\pi\)
\(564\) −32599.2 19459.4i −2.43382 1.45281i
\(565\) 27231.6 2.02768
\(566\) 25506.0i 1.89416i
\(567\) 4263.33 + 2804.39i 0.315773 + 0.207713i
\(568\) 28154.5i 2.07982i
\(569\) −6621.75 −0.487870 −0.243935 0.969792i \(-0.578438\pi\)
−0.243935 + 0.969792i \(0.578438\pi\)
\(570\) −4004.40 + 6708.35i −0.294256 + 0.492950i
\(571\) 17750.7i 1.30095i 0.759526 + 0.650477i \(0.225431\pi\)
−0.759526 + 0.650477i \(0.774569\pi\)
\(572\) 1827.57 2981.73i 0.133592 0.217959i
\(573\) 11035.5 + 6587.37i 0.804560 + 0.480264i
\(574\) 12057.8i 0.876801i
\(575\) 27320.0i 1.98143i
\(576\) 317.441 + 588.771i 0.0229630 + 0.0425905i
\(577\) −2101.26 −0.151606 −0.0758029 0.997123i \(-0.524152\pi\)
−0.0758029 + 0.997123i \(0.524152\pi\)
\(578\) 14999.2 1.07938
\(579\) −20605.6 12300.1i −1.47900 0.882857i
\(580\) 64990.9i 4.65276i
\(581\) 6299.71i 0.449838i
\(582\) 9217.72 15441.9i 0.656507 1.09981i
\(583\) −5778.02 + 9427.00i −0.410465 + 0.669685i
\(584\) 42665.8i 3.02315i
\(585\) 1324.76 + 2457.08i 0.0936272 + 0.173655i
\(586\) 348.657 0.0245783
\(587\) 4200.54i 0.295357i −0.989035 0.147679i \(-0.952820\pi\)
0.989035 0.147679i \(-0.0471801\pi\)
\(588\) −2336.01 + 3913.39i −0.163836 + 0.274465i
\(589\) 4953.90i 0.346557i
\(590\) −1833.61 −0.127947
\(591\) 3495.64 5856.05i 0.243302 0.407590i
\(592\) −1447.37 −0.100484
\(593\) 22724.7 1.57368 0.786839 0.617158i \(-0.211716\pi\)
0.786839 + 0.617158i \(0.211716\pi\)
\(594\) −21593.4 14569.1i −1.49156 1.00636i
\(595\) 5991.69 0.412832
\(596\) −47056.0 −3.23404
\(597\) 1728.81 2896.18i 0.118518 0.198547i
\(598\) −3005.84 −0.205548
\(599\) 12256.4i 0.836029i 0.908440 + 0.418015i \(0.137274\pi\)
−0.908440 + 0.418015i \(0.862726\pi\)
\(600\) 33240.1 55685.3i 2.26170 3.78890i
\(601\) 2009.00i 0.136354i 0.997673 + 0.0681772i \(0.0217183\pi\)
−0.997673 + 0.0681772i \(0.978282\pi\)
\(602\) −4472.39 −0.302792
\(603\) −3648.55 6767.13i −0.246402 0.457013i
\(604\) 28340.5i 1.90920i
\(605\) −22897.3 + 11661.7i −1.53869 + 0.783659i
\(606\) 20239.7 33906.4i 1.35673 2.27286i
\(607\) 11582.1i 0.774469i −0.921981 0.387234i \(-0.873430\pi\)
0.921981 0.387234i \(-0.126570\pi\)
\(608\) 2648.94i 0.176692i
\(609\) −5873.64 3506.14i −0.390824 0.233294i
\(610\) −90605.1 −6.01392
\(611\) 2185.90 0.144733
\(612\) −10169.3 18861.4i −0.671680 1.24579i
\(613\) 17850.5i 1.17614i −0.808810 0.588070i \(-0.799888\pi\)
0.808810 0.588070i \(-0.200112\pi\)
\(614\) 20067.7i 1.31900i
\(615\) 29154.6 + 17403.2i 1.91159 + 1.14108i
\(616\) 6724.00 10970.4i 0.439801 0.717548i
\(617\) 7771.43i 0.507076i −0.967325 0.253538i \(-0.918406\pi\)
0.967325 0.253538i \(-0.0815943\pi\)
\(618\) −27654.4 + 46327.8i −1.80004 + 3.01550i
\(619\) −1198.31 −0.0778094 −0.0389047 0.999243i \(-0.512387\pi\)
−0.0389047 + 0.999243i \(0.512387\pi\)
\(620\) 111870.i 7.24646i
\(621\) −675.605 + 15458.4i −0.0436571 + 0.998913i
\(622\) 24100.4i 1.55360i
\(623\) 4111.54 0.264407
\(624\) 2705.09 + 1614.74i 0.173542 + 0.103592i
\(625\) 14772.3 0.945428
\(626\) −15258.3 −0.974193
\(627\) 1346.75 + 2569.45i 0.0857798 + 0.163659i
\(628\) −18978.6 −1.20594
\(629\) −566.818 −0.0359309
\(630\) 8812.61 + 16345.1i 0.557306 + 1.03366i
\(631\) 5841.29 0.368523 0.184262 0.982877i \(-0.441011\pi\)
0.184262 + 0.982877i \(0.441011\pi\)
\(632\) 11164.1i 0.702666i
\(633\) −9137.40 5454.37i −0.573742 0.342483i
\(634\) 14047.2i 0.879947i
\(635\) 28994.7 1.81200
\(636\) −24204.7 14448.4i −1.50908 0.900814i
\(637\) 262.408i 0.0163218i
\(638\) 29770.9 + 18247.2i 1.84740 + 1.13231i
\(639\) 13280.3 7160.18i 0.822161 0.443274i
\(640\) 29168.5i 1.80154i
\(641\) 15867.0i 0.977704i −0.872367 0.488852i \(-0.837416\pi\)
0.872367 0.488852i \(-0.162584\pi\)
\(642\) 15640.5 26201.7i 0.961499 1.61075i
\(643\) −24781.4 −1.51988 −0.759941 0.649992i \(-0.774772\pi\)
−0.759941 + 0.649992i \(0.774772\pi\)
\(644\) −13819.4 −0.845590
\(645\) −6455.05 + 10813.8i −0.394058 + 0.660143i
\(646\) 3452.97i 0.210302i
\(647\) 3705.33i 0.225149i −0.993643 0.112575i \(-0.964090\pi\)
0.993643 0.112575i \(-0.0359098\pi\)
\(648\) 20185.2 30686.2i 1.22369 1.86029i
\(649\) −355.801 + 580.498i −0.0215199 + 0.0351103i
\(650\) 6751.17i 0.407389i
\(651\) −10110.4 6035.18i −0.608691 0.363345i
\(652\) 21939.5 1.31782
\(653\) 20988.0i 1.25777i −0.777499 0.628884i \(-0.783512\pi\)
0.777499 0.628884i \(-0.216488\pi\)
\(654\) −8745.85 5220.65i −0.522920 0.312146i
\(655\) 29129.7i 1.73769i
\(656\) 38319.5 2.28068
\(657\) −20125.2 + 10850.6i −1.19506 + 0.644328i
\(658\) 14541.2 0.861510
\(659\) 19842.5 1.17292 0.586458 0.809979i \(-0.300522\pi\)
0.586458 + 0.809979i \(0.300522\pi\)
\(660\) −30412.5 58023.9i −1.79365 3.42209i
\(661\) −9896.73 −0.582357 −0.291179 0.956669i \(-0.594047\pi\)
−0.291179 + 0.956669i \(0.594047\pi\)
\(662\) 17607.3 1.03373
\(663\) 1059.36 + 632.364i 0.0620547 + 0.0370422i
\(664\) −45343.5 −2.65011
\(665\) 2068.06i 0.120595i
\(666\) −833.679 1546.26i −0.0485051 0.0899646i
\(667\) 20741.6i 1.20408i
\(668\) 58419.7 3.38372
\(669\) −1037.09 + 1737.38i −0.0599346 + 0.100405i
\(670\) 27976.3i 1.61316i
\(671\) −17581.3 + 28684.4i −1.01150 + 1.65030i
\(672\) 5406.21 + 3227.12i 0.310341 + 0.185251i
\(673\) 9024.80i 0.516910i 0.966023 + 0.258455i \(0.0832134\pi\)
−0.966023 + 0.258455i \(0.916787\pi\)
\(674\) 24601.5i 1.40596i
\(675\) 34719.9 + 1517.42i 1.97981 + 0.0865268i
\(676\) 38813.3 2.20831
\(677\) −15168.3 −0.861101 −0.430551 0.902566i \(-0.641681\pi\)
−0.430551 + 0.902566i \(0.641681\pi\)
\(678\) 32028.6 + 19118.8i 1.81423 + 1.08297i
\(679\) 4760.45i 0.269057i
\(680\) 43126.5i 2.43209i
\(681\) −11170.4 + 18713.1i −0.628560 + 1.05299i
\(682\) 51245.1 + 31409.3i 2.87724 + 1.76352i
\(683\) 12158.0i 0.681133i 0.940220 + 0.340567i \(0.110619\pi\)
−0.940220 + 0.340567i \(0.889381\pi\)
\(684\) −6510.08 + 3509.96i −0.363917 + 0.196209i
\(685\) 27191.9 1.51672
\(686\) 1745.60i 0.0971536i
\(687\) −7356.27 + 12323.6i −0.408529 + 0.684385i
\(688\) 14213.2i 0.787605i
\(689\) 1623.02 0.0897416
\(690\) −28859.9 + 48347.3i −1.59228 + 2.66746i
\(691\) 9147.68 0.503609 0.251805 0.967778i \(-0.418976\pi\)
0.251805 + 0.967778i \(0.418976\pi\)
\(692\) −28615.5 −1.57196
\(693\) 6884.69 + 381.710i 0.377385 + 0.0209235i
\(694\) 50349.1 2.75393
\(695\) −22789.6 −1.24382
\(696\) −25236.2 + 42276.8i −1.37439 + 2.30244i
\(697\) 15006.7 0.815520
\(698\) 38330.4i 2.07855i
\(699\) −6773.88 + 11347.9i −0.366540 + 0.614044i
\(700\) 31038.6i 1.67593i
\(701\) −17573.0 −0.946823 −0.473411 0.880841i \(-0.656978\pi\)
−0.473411 + 0.880841i \(0.656978\pi\)
\(702\) −166.952 + 3820.00i −0.00897604 + 0.205380i
\(703\) 195.640i 0.0104960i
\(704\) 770.593 + 472.314i 0.0412540 + 0.0252855i
\(705\) 20987.4 35159.0i 1.12118 1.87825i
\(706\) 40623.7i 2.16557i
\(707\) 10452.7i 0.556031i
\(708\) −1490.48 889.711i −0.0791183 0.0472279i
\(709\) −13023.4 −0.689849 −0.344924 0.938631i \(-0.612095\pi\)
−0.344924 + 0.938631i \(0.612095\pi\)
\(710\) 54902.7 2.90206
\(711\) −5266.05 + 2839.23i −0.277767 + 0.149760i
\(712\) 29593.7i 1.55768i
\(713\) 35702.9i 1.87529i
\(714\) 7047.15 + 4206.64i 0.369374 + 0.220490i
\(715\) 3215.87 + 1971.08i 0.168205 + 0.103097i
\(716\) 10064.3i 0.525306i
\(717\) 8376.81 14033.2i 0.436315 0.730934i
\(718\) −65893.4 −3.42496
\(719\) 1181.05i 0.0612599i 0.999531 + 0.0306300i \(0.00975135\pi\)
−0.999531 + 0.0306300i \(0.990249\pi\)
\(720\) 51944.5 28006.3i 2.68869 1.44963i
\(721\) 14282.0i 0.737710i
\(722\) −33715.1 −1.73788
\(723\) 9222.93 + 5505.42i 0.474418 + 0.283194i
\(724\) −34402.1 −1.76594
\(725\) −46586.1 −2.38643
\(726\) −35118.2 2359.85i −1.79526 0.120637i
\(727\) 5915.80 0.301795 0.150897 0.988549i \(-0.451784\pi\)
0.150897 + 0.988549i \(0.451784\pi\)
\(728\) −1888.74 −0.0961555
\(729\) 19608.0 + 1717.20i 0.996187 + 0.0872426i
\(730\) −83200.3 −4.21833
\(731\) 5566.15i 0.281630i
\(732\) −73649.8 43963.6i −3.71882 2.21987i
\(733\) 34504.2i 1.73867i 0.494226 + 0.869334i \(0.335452\pi\)
−0.494226 + 0.869334i \(0.664548\pi\)
\(734\) 21216.1 1.06690
\(735\) −4220.69 2519.45i −0.211813 0.126437i
\(736\) 19091.0i 0.956118i
\(737\) −8856.93 5428.61i −0.442672 0.271324i
\(738\) 22071.9 + 40937.7i 1.10092 + 2.04192i
\(739\) 3219.32i 0.160250i −0.996785 0.0801248i \(-0.974468\pi\)
0.996785 0.0801248i \(-0.0255319\pi\)
\(740\) 4417.97i 0.219470i
\(741\) 218.263 365.644i 0.0108206 0.0181272i
\(742\) 10796.7 0.534177
\(743\) −18197.0 −0.898495 −0.449248 0.893407i \(-0.648308\pi\)
−0.449248 + 0.893407i \(0.648308\pi\)
\(744\) −43439.5 + 72771.7i −2.14055 + 3.58594i
\(745\) 50751.1i 2.49581i
\(746\) 19621.1i 0.962973i
\(747\) −11531.6 21388.2i −0.564820 1.04760i
\(748\) −24686.1 15130.7i −1.20670 0.739615i
\(749\) 8077.48i 0.394052i
\(750\) 53793.0 + 32110.6i 2.61899 + 1.56335i
\(751\) −19418.9 −0.943549 −0.471774 0.881719i \(-0.656386\pi\)
−0.471774 + 0.881719i \(0.656386\pi\)
\(752\) 46211.5i 2.24090i
\(753\) −9077.26 5418.47i −0.439301 0.262231i
\(754\) 5125.55i 0.247562i
\(755\) −30565.9 −1.47339
\(756\) −767.562 + 17562.5i −0.0369259 + 0.844896i
\(757\) 951.894 0.0457030 0.0228515 0.999739i \(-0.492726\pi\)
0.0228515 + 0.999739i \(0.492726\pi\)
\(758\) −26402.1 −1.26513
\(759\) 9706.06 + 18518.1i 0.464174 + 0.885594i
\(760\) −14885.3 −0.710455
\(761\) 3967.66 0.188998 0.0944990 0.995525i \(-0.469875\pi\)
0.0944990 + 0.995525i \(0.469875\pi\)
\(762\) 34102.3 + 20356.6i 1.62126 + 0.967773i
\(763\) 2696.18 0.127927
\(764\) 44273.8i 2.09656i
\(765\) 20342.5 10967.8i 0.961417 0.518355i
\(766\) 42349.2i 1.99757i
\(767\) 99.9426 0.00470498
\(768\) −19950.8 + 33422.4i −0.937385 + 1.57035i
\(769\) 7769.69i 0.364346i −0.983266 0.182173i \(-0.941687\pi\)
0.983266 0.182173i \(-0.0583131\pi\)
\(770\) 21392.8 + 13112.1i 1.00122 + 0.613673i
\(771\) 18419.2 + 10994.9i 0.860376 + 0.513583i
\(772\) 82668.9i 3.85404i
\(773\) 28786.3i 1.33942i 0.742623 + 0.669710i \(0.233581\pi\)
−0.742623 + 0.669710i \(0.766419\pi\)
\(774\) −15184.3 + 8186.72i −0.705152 + 0.380188i
\(775\) −80189.4 −3.71676
\(776\) 34264.4 1.58508
\(777\) 399.280 + 238.341i 0.0184351 + 0.0110044i
\(778\) 6089.73i 0.280626i
\(779\) 5179.61i 0.238227i
\(780\) −4928.86 + 8257.04i −0.226258 + 0.379038i
\(781\) 10653.5 17381.5i 0.488108 0.796361i
\(782\) 24885.7i 1.13799i
\(783\) −26359.7 1152.04i −1.20309 0.0525806i
\(784\) −5547.49 −0.252710
\(785\) 20468.9i 0.930658i
\(786\) −20451.4 + 34261.0i −0.928086 + 1.55477i
\(787\) 9026.09i 0.408825i 0.978885 + 0.204413i \(0.0655284\pi\)
−0.978885 + 0.204413i \(0.934472\pi\)
\(788\) 23494.2 1.06212
\(789\) −7468.62 + 12511.8i −0.336996 + 0.564550i
\(790\) −21770.6 −0.980459
\(791\) −9873.80 −0.443833
\(792\) 2747.44 49554.0i 0.123265 2.22326i
\(793\) 4938.50 0.221149
\(794\) 31090.6 1.38963
\(795\) 15583.0 26105.3i 0.695185 1.16460i
\(796\) 11619.3 0.517383
\(797\) 22813.9i 1.01394i −0.861964 0.506969i \(-0.830766\pi\)
0.861964 0.506969i \(-0.169234\pi\)
\(798\) 1451.94 2432.35i 0.0644087 0.107900i
\(799\) 18097.3i 0.801298i
\(800\) 42878.7 1.89499
\(801\) 13959.2 7526.19i 0.615759 0.331991i
\(802\) 70137.3i 3.08807i
\(803\) −16144.5 + 26340.1i −0.709497 + 1.15756i
\(804\) 13574.7 22741.0i 0.595452 0.997527i
\(805\) 14904.5i 0.652567i
\(806\) 8822.70i 0.385566i
\(807\) −1584.94 946.097i −0.0691358 0.0412691i
\(808\) 75235.4 3.27571
\(809\) 29900.1 1.29942 0.649710 0.760182i \(-0.274890\pi\)
0.649710 + 0.760182i \(0.274890\pi\)
\(810\) 59839.6 + 39362.1i 2.59574 + 1.70746i
\(811\) 14200.0i 0.614832i −0.951575 0.307416i \(-0.900536\pi\)
0.951575 0.307416i \(-0.0994643\pi\)
\(812\) 23564.8i 1.01843i
\(813\) 20061.9 + 11975.5i 0.865438 + 0.516604i
\(814\) −2023.77 1240.42i −0.0871415 0.0534110i
\(815\) 23662.3i 1.01700i
\(816\) 13368.6 22395.7i 0.573524 0.960793i
\(817\) 1921.18 0.0822688
\(818\) 44242.1i 1.89106i
\(819\) −480.338 890.905i −0.0204937 0.0380107i
\(820\) 116967.i 4.98129i
\(821\) 26294.6 1.11777 0.558883 0.829246i \(-0.311230\pi\)
0.558883 + 0.829246i \(0.311230\pi\)
\(822\) 31981.9 + 19090.9i 1.35705 + 0.810064i
\(823\) 31406.6 1.33021 0.665107 0.746748i \(-0.268386\pi\)
0.665107 + 0.746748i \(0.268386\pi\)
\(824\) −102798. −4.34603
\(825\) 41592.1 21800.0i 1.75521 0.919974i
\(826\) 664.843 0.0280059
\(827\) 34810.1 1.46368 0.731841 0.681476i \(-0.238662\pi\)
0.731841 + 0.681476i \(0.238662\pi\)
\(828\) −46918.4 + 25296.4i −1.96924 + 1.06173i
\(829\) −29176.1 −1.22235 −0.611176 0.791495i \(-0.709303\pi\)
−0.611176 + 0.791495i \(0.709303\pi\)
\(830\) 88422.0i 3.69780i
\(831\) 12122.4 + 7236.18i 0.506041 + 0.302070i
\(832\) 132.671i 0.00552828i
\(833\) −2172.50 −0.0903635
\(834\) −26804.0 16000.1i −1.11289 0.664314i
\(835\) 63007.1i 2.61132i
\(836\) −5222.41 + 8520.50i −0.216054 + 0.352497i
\(837\) −45373.4 1983.03i −1.87376 0.0818918i
\(838\) 2606.53i 0.107448i
\(839\) 40421.4i 1.66329i −0.555307 0.831645i \(-0.687399\pi\)
0.555307 0.831645i \(-0.312601\pi\)
\(840\) −18134.3 + 30379.3i −0.744871 + 1.24784i
\(841\) 10979.6 0.450187
\(842\) −62988.2 −2.57805
\(843\) 795.163 1332.09i 0.0324874 0.0544243i
\(844\) 36658.8i 1.49508i
\(845\) 41861.1i 1.70422i
\(846\) 49368.9 26617.6i 2.00631 1.08172i
\(847\) 8302.26 4228.36i 0.336799 0.171532i
\(848\) 34311.7i 1.38947i
\(849\) 22361.0 + 13347.9i 0.903919 + 0.539575i
\(850\) 55893.7 2.25546
\(851\) 1409.98i 0.0567961i
\(852\) 44628.5 + 26640.0i 1.79454 + 1.07121i
\(853\) 8072.68i 0.324037i 0.986788 + 0.162018i \(0.0518004\pi\)
−0.986788 + 0.162018i \(0.948200\pi\)
\(854\) 32852.1 1.31637
\(855\) −3785.58 7021.29i −0.151420 0.280846i
\(856\) 58139.4 2.32145
\(857\) −39705.8 −1.58264 −0.791321 0.611401i \(-0.790606\pi\)
−0.791321 + 0.611401i \(0.790606\pi\)
\(858\) 2398.51 + 4576.10i 0.0954355 + 0.182081i
\(859\) −33321.0 −1.32351 −0.661757 0.749719i \(-0.730189\pi\)
−0.661757 + 0.749719i \(0.730189\pi\)
\(860\) −43384.4 −1.72023
\(861\) −10571.0 6310.15i −0.418421 0.249767i
\(862\) 57694.6 2.27968
\(863\) 48839.3i 1.92643i −0.268733 0.963215i \(-0.586605\pi\)
0.268733 0.963215i \(-0.413395\pi\)
\(864\) 24262.0 + 1060.36i 0.955334 + 0.0417525i
\(865\) 30862.5i 1.21313i
\(866\) −9218.39 −0.361725
\(867\) −7849.45 + 13149.7i −0.307475 + 0.515096i
\(868\) 40562.5i 1.58615i
\(869\) −4224.44 + 6892.28i −0.164907 + 0.269050i
\(870\) −82441.8 49211.8i −3.21269 1.91774i
\(871\) 1524.87i 0.0593206i
\(872\) 19406.3i 0.753648i
\(873\) 8714.02 + 16162.3i 0.337829 + 0.626587i
\(874\) 8589.39 0.332426
\(875\) −16583.4 −0.640709
\(876\) −67630.7 40370.6i −2.60848 1.55707i
\(877\) 28801.3i 1.10895i 0.832199 + 0.554476i \(0.187081\pi\)
−0.832199 + 0.554476i \(0.812919\pi\)
\(878\) 5974.44i 0.229644i
\(879\) −182.461 + 305.666i −0.00700142 + 0.0117291i
\(880\) 41670.1 67985.8i 1.59625 2.60432i
\(881\) 24899.5i 0.952197i 0.879392 + 0.476099i \(0.157949\pi\)
−0.879392 + 0.476099i \(0.842051\pi\)
\(882\) −3195.33 5926.52i −0.121987 0.226254i
\(883\) 43258.8 1.64867 0.824335 0.566102i \(-0.191549\pi\)
0.824335 + 0.566102i \(0.191549\pi\)
\(884\) 4250.12i 0.161705i
\(885\) 959.575 1607.52i 0.0364472 0.0610579i
\(886\) 61021.2i 2.31382i
\(887\) −18076.2 −0.684263 −0.342131 0.939652i \(-0.611149\pi\)
−0.342131 + 0.939652i \(0.611149\pi\)
\(888\) 1715.51 2873.90i 0.0648298 0.108606i
\(889\) −10513.1 −0.396623
\(890\) 57709.2 2.17350
\(891\) 24073.0 11306.5i 0.905137 0.425120i
\(892\) −6970.29 −0.261640
\(893\) −6246.36 −0.234072
\(894\) 35631.3 59691.2i 1.33299 2.23308i
\(895\) 10854.6 0.405394
\(896\) 10576.1i 0.394333i
\(897\) 1573.03 2635.21i 0.0585529 0.0980903i
\(898\) 90479.4i 3.36229i
\(899\) 60880.6 2.25860
\(900\) 56816.2 + 105380.i 2.10430 + 3.90295i
\(901\) 13437.1i 0.496843i
\(902\) 53579.9 + 32840.3i 1.97784 + 1.21227i
\(903\) 2340.51 3920.93i 0.0862540 0.144497i
\(904\) 71068.8i 2.61473i
\(905\) 37103.5i 1.36283i
\(906\) −35950.3 21459.7i −1.31829 0.786923i
\(907\) 6196.80 0.226859 0.113430 0.993546i \(-0.463816\pi\)
0.113430 + 0.993546i \(0.463816\pi\)
\(908\) −75076.1 −2.74393
\(909\) 19133.7 + 35488.1i 0.698156 + 1.29490i
\(910\) 3683.13i 0.134170i
\(911\) 39268.2i 1.42811i −0.700087 0.714057i \(-0.746856\pi\)
0.700087 0.714057i \(-0.253144\pi\)
\(912\) −7729.97 4614.24i −0.280663 0.167536i
\(913\) −27993.3 17157.7i −1.01472 0.621947i
\(914\) 5546.76i 0.200734i
\(915\) 47415.9 79433.1i 1.71314 2.86992i
\(916\) −49441.6 −1.78340
\(917\) 10562.0i 0.380358i
\(918\) 31626.2 + 1382.21i 1.13706 + 0.0496947i
\(919\) 28397.6i 1.01931i −0.860378 0.509657i \(-0.829772\pi\)
0.860378 0.509657i \(-0.170228\pi\)
\(920\) −107279. −3.84443
\(921\) −17593.3 10501.9i −0.629444 0.375733i
\(922\) 10738.5 0.383573
\(923\) −2992.51 −0.106717
\(924\) 11027.2 + 21038.7i 0.392605 + 0.749049i
\(925\) 3166.84 0.112568
\(926\) 48332.9 1.71524
\(927\) −26143.2 48489.0i −0.926274 1.71800i
\(928\) −32553.9 −1.15155
\(929\) 25873.6i 0.913762i −0.889528 0.456881i \(-0.848966\pi\)
0.889528 0.456881i \(-0.151034\pi\)
\(930\) −141908. 84709.1i −5.00361 2.98680i
\(931\) 749.848i 0.0263967i
\(932\) −45527.3 −1.60010
\(933\) 21128.8 + 12612.4i 0.741399 + 0.442562i
\(934\) 17712.7i 0.620534i
\(935\) 16318.8 26624.6i 0.570783 0.931247i
\(936\) −6412.48 + 3457.34i −0.223930 + 0.120734i
\(937\) 43297.4i 1.50957i 0.655974 + 0.754783i \(0.272258\pi\)
−0.655974 + 0.754783i \(0.727742\pi\)
\(938\) 10143.8i 0.353099i
\(939\) 7985.05 13376.9i 0.277511 0.464898i
\(940\) 141057. 4.89442
\(941\) 29358.7 1.01707 0.508537 0.861040i \(-0.330187\pi\)
0.508537 + 0.861040i \(0.330187\pi\)
\(942\) 14370.8 24074.6i 0.497056 0.832689i
\(943\) 37329.6i 1.28910i
\(944\) 2112.86i 0.0728471i
\(945\) −18941.6 827.835i −0.652031 0.0284968i
\(946\) −12180.9 + 19873.4i −0.418641 + 0.683024i
\(947\) 28664.4i 0.983598i 0.870709 + 0.491799i \(0.163661\pi\)
−0.870709 + 0.491799i \(0.836339\pi\)
\(948\) −17696.6 10563.6i −0.606284 0.361908i
\(949\) 4534.90 0.155120
\(950\) 19291.9i 0.658856i
\(951\) 12315.1 + 7351.26i 0.419922 + 0.250663i
\(952\) 15637.1i 0.532353i
\(953\) 13033.7 0.443027 0.221513 0.975157i \(-0.428900\pi\)
0.221513 + 0.975157i \(0.428900\pi\)
\(954\) 36656.1 19763.4i 1.24401 0.670717i
\(955\) −47750.4 −1.61797
\(956\) 56300.6 1.90470
\(957\) −31577.1 + 16550.8i −1.06661 + 0.559049i
\(958\) −75600.0 −2.54961
\(959\) −9859.42 −0.331989
\(960\) −2133.94 1273.81i −0.0717421 0.0428249i
\(961\) 75003.8 2.51766
\(962\) 348.426i 0.0116775i
\(963\) 14785.9 + 27424.0i 0.494774 + 0.917680i
\(964\) 37002.0i 1.23626i
\(965\) 89160.5 2.97428
\(966\) 10464.2 17530.1i 0.348530 0.583872i
\(967\) 52979.8i 1.76186i 0.473250 + 0.880928i \(0.343081\pi\)
−0.473250 + 0.880928i \(0.656919\pi\)
\(968\) −30434.5 59757.3i −1.01054 1.98417i
\(969\) −3027.21 1807.02i −0.100359 0.0599071i
\(970\) 66817.2i 2.21172i
\(971\) 7741.94i 0.255871i 0.991783 + 0.127935i \(0.0408350\pi\)
−0.991783 + 0.127935i \(0.959165\pi\)
\(972\) 29542.2 + 61031.7i 0.974863 + 2.01398i
\(973\) 8263.18 0.272256
\(974\) −33589.6 −1.10501
\(975\) −5918.73 3533.05i −0.194411 0.116050i
\(976\) 104403.i 3.42405i
\(977\) 2451.15i 0.0802654i −0.999194 0.0401327i \(-0.987222\pi\)
0.999194 0.0401327i \(-0.0127781\pi\)
\(978\) −16612.8 + 27830.5i −0.543168 + 0.909939i
\(979\) 11198.1 18270.0i 0.365569 0.596436i
\(980\) 16933.2i 0.551951i
\(981\) 9153.84 4935.36i 0.297920 0.160626i
\(982\) −3909.78 −0.127053
\(983\) 45946.2i 1.49080i −0.666617 0.745400i \(-0.732258\pi\)
0.666617 0.745400i \(-0.267742\pi\)
\(984\) −45418.7 + 76087.4i −1.47144 + 2.46502i
\(985\) 25339.1i 0.819666i
\(986\) −42435.0 −1.37059
\(987\) −7609.75 + 12748.2i −0.245411 + 0.411124i
\(988\) 1466.95 0.0472367
\(989\) 13846.0 0.445174
\(990\) 96632.7 + 5357.64i 3.10221 + 0.171997i
\(991\) 34744.4 1.11371 0.556857 0.830608i \(-0.312007\pi\)
0.556857 + 0.830608i \(0.312007\pi\)
\(992\) −56035.6 −1.79348
\(993\) −9214.32 + 15436.2i −0.294469 + 0.493307i
\(994\) −19906.9 −0.635221
\(995\) 12531.7i 0.399280i
\(996\) 42904.4 71875.3i 1.36494 2.28660i
\(997\) 48583.2i 1.54328i 0.636063 + 0.771638i \(0.280562\pi\)
−0.636063 + 0.771638i \(0.719438\pi\)
\(998\) −13610.7 −0.431701
\(999\) 1791.89 + 78.3137i 0.0567495 + 0.00248022i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.g.a.197.5 72
3.2 odd 2 inner 231.4.g.a.197.68 yes 72
11.10 odd 2 inner 231.4.g.a.197.67 yes 72
33.32 even 2 inner 231.4.g.a.197.6 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.g.a.197.5 72 1.1 even 1 trivial
231.4.g.a.197.6 yes 72 33.32 even 2 inner
231.4.g.a.197.67 yes 72 11.10 odd 2 inner
231.4.g.a.197.68 yes 72 3.2 odd 2 inner